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Abstract: Human travel plays a crucial role in the spread of infectious 

disease between regions. Travel of infected individuals from one region to 

another can transport a virus to places that were previously unaffected or may 

accelerate the spread of disease in places where the disease is not yet well 

established.  We develop and apply models and metrics to analyze the role of 

inter-regional travel relative to the spread of disease, drawing from data on 

Covid-19 in the United States. To better understand how transportation affects 

disease transmission, we established a multi-regional time-varying 

compartmental disease model with spatial interaction.  The compartmental 

model was integrated with statistical estimates of travel between regions.  From 

the integrated model, we derived a transmission import index to assess the risk 

of Covid-19 transmission between states. Based on the index, we determined 

states with high risk for disease spreading to other states at months scale, and 

we analyzed how the index changed over time during 2020. Our model 

provides a tool for policymakers to evaluate the influence of travel between 

regions on disease transmission in support of strategies for epidemic control. 
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1 Introduction 

Travel plays a crucial role in the spread of infectious disease between regions. Covid-19, 

for example, can be spread through respiratory droplets that are released when an infected 

person talks, coughs, or sneezes. These droplets can then be inhaled by other individuals in 

proximity to the infected person. Transportation modes such as buses, trains, and airplanes 

are high-risk areas for the transmission of the virus, as they often involve large numbers of 

people in enclosed spaces for extended periods of time [1]. In addition, long-distance travel 

can significantly impact the spread of diseases to new areas. When people travel long 

distances, they can bring infectious agents with them. These agents can then spread to new 

populations and new areas, potentially causing outbreaks of disease. 

Whereas Covid-19 originated in a specific location in China in late 2019, human travel 

provided a vector through which it spread from region to region.  As illustrated in Fig. 1, 

regions may export the disease to adjacent regions through travel of infected individuals 

from adjacent regions, or from long-distance travel of infected individuals from far away.  

Once the disease has been imported to a region, it may subsequently be transmitted among 

individuals within the region via “community spread” and may also be exported elsewhere 

through travel of infected individuals, either to places where the disease is not yet present, 

or back to places where the disease is already present (second phase of Fig. 1).  In the third 

phase of Fig. 1, community spread can become the dominant form of infection and all 

regions, now experiencing infections, will both import and export disease. Over time the 

relative risk of contracting the disease via travel of infected individuals from elsewhere 

versus community spread will change within regions.  On the other hand, if a region has, 

through public health measures, greatly reduced the prevalence of disease, the risk from 

importation may become the dominant – or perhaps the only – risk for developing new 

infections.  If the region aims to maintain low risk of disease, it may need to prohibit travel 

into the region, or impose quarantines on incoming travelers, as occurred in China.  

In sum, travel restrictions may be effective at disease control, but their effectiveness 

depends on the prevalence of disease within the region, the prevalence of disease elsewhere, 

and the volume of travel between regions. Therefore, studying the impact of travel on the 

transmission of diseases is crucial for understanding how infectious diseases can spread 

across different regions and populations. Studying the impact of travel on disease 

transmission can also inform broader discussions about global health and the 

interconnectedness of populations around the world. As travel has become common and 

widespread, it is increasingly important to understand how diseases can be transmitted 

between regions and how to prevent the spread of infectious agents. 

This paper aims to investigate the transmission of diseases through spatial interaction, 

with a specific focus on state-level travel in the United States. We develop and apply a 

transmission import index related to transportation to assess the impact of long-distance 

travel on disease transmission. By gaining a better understanding of the effects of travel on  
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disease transmission, we can analyze historical disease outbreaks and develop effective 

strategies for preventing and controlling future outbreaks and pandemics. 

 

  

   

 

Fig. 1. Three Phases of Disease Spreading Among Regions (blue shading reflects prevalence of 

disease in regions, with darker shade showing greater prevalence) 

2 Literature Review 

Traveler behavior underlies the spread of infectious diseases between regions. Various 

modes of transportation, such as air [2–4], rail [5], and water [2], can facilitate the spread 

of infectious diseases. In epidemiology, understanding the impact of human mobility on 

transmission dynamics is needed for disease modeling and investigation. Spatial interaction 

models of human mobility have been employed to study epidemics using two approaches: 
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modeling spatial interactions between distinct population groups and integrating spatial 

interaction into epidemic models. 

2.1 Spatial Interaction Models in Epidemics 

The gravity model [6] and radiation model [7] are widely used spatial interaction models 

for analyzing travel between regions as well as the spread of infectious diseases. The gravity 

model is widely used in transportation modeling due to its simplicity and ability to predict 

transportation flows between regions. Gravity model have been applied in a wide range of 

transportation contexts, including freight transportation, passenger transportation, and 

tourism. The model has also been applied to various transportation modes, including air, 

sea, and land transportation. Additionally, the gravity model can be adapted to include other 

variables that may influence transportation flows, such as population density, income, or 

trade barriers. 

The gravity model postulates that travel between regions is positively correlated with the 

product of region sizes (such as populations or gross domestic products, GDP) and inversely 

proportional to the square [6] or non-quadratic of the inter-region distance. Because each 

person traveling from one region to another is potentially infectious, the rate at which new 

infections occur due to travel is proportionate to the predicted number of trips. The gravity 

model has been used to examine the transmission of influenza between regions in 

Bangladesh [8], population centers in England and Wales [9], Mexico and major global 

cities [10], and states in America [6,11]. Additionally, the gravity model has been applied 

to other infectious diseases transmission. Xia et al. embedded a metapopulation based 

gravity coupling model in a time series susceptible-infected‐recovered (TSIR) model to 

simulate measles dynamics in England and Wales [12]. Barrios et al. used the gravity model 

to study the spatial spread of vector-borne diseases, including nephropathia epidemica and 

lyme borreliosis between the physical habitat of pathogens and urban areas in Belgium [13].  

A limitation of the gravity model is that it may not accurately depict regions characterized 

by significant heterogeneity and uncertainty [14]. It also requires a tuning process to 

estimate the model parameter based on real observations. 

As an alternative, Simini proposed the radiation model to describe mobility patterns only 

using the population data between regions [7]. Kraemer et al. introduced a versatile 

transmission model to assess the effectiveness of generalized human movement models, 

including the radiation model, in estimating cases of Ebola virus disease (EVD) and 

mapping the spatial progression of the outbreak [15]. Tizzoni et al. utilized the radiation 

model to investigate spreading of influenza-like-illness (ILI) epidemics between a set of 

European countries [16]. Kraemer et al. used a logistic formula incorporating parameters 

from the gravity model and the radiation model to simulate the yellow fever virus outbreak 

in Angola and the Democratic Republic of the Congo[17]. 

Compared to the gravity model, Kang et al. and Masucci et al. found that the radiation 

model was more accurate for long-distance travel [18,19]. However, the radiation model 

only takes into account large-scale parameters. Thus, the radiation model has relatively poor 
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accuracy on short-distance travel [20]. The gravity model and radiation model both involve 

detailed data regarding inter-regional travel for parameter estimation, which is a challenge 

due to complexities associated with precisely collecting mobility data. Furthermore, privacy 

regulations regarding highly detailed mobile data pose an obstacle [16], impeding the 

establishment and application of spatial interaction models utilizing different datasets [8]. 
2.2 Epidemic Models with Spatial Interaction 

Besides direct modeling of spatial interaction, another approach for modeling inter-regional 

disease transmission is epidemic models incorporating spatial interaction terms. In the 

1980s, geographers first proposed a spatial framework for epidemiological models that 

explicitly considers the spatial dispersion of infectious diseases. A simple form of these 

spatial models is the  three waves model projecting the infectious, susceptible, and recovery 

populations in a two-dimensional grid [21,22]. The  population-based wave model has been 

applied to pandemic waves in a large space, such as the 1918-1920 Spanish flu [23].  

Instead of assuming the whole population as an identical model unit with three waves, 

spatially structured models can divide the population into a substantial number of 

subpopulations that are homogeneous within each group and heterogeneous from each other 

[22,24,25]. Spatially structured models can be derived with epidemiological compartment 

models [26], which divides the population in one region into three categories: susceptible, 

infectious, and recovered phases, combining with the spatial interactions between several 

investigated regions. Such compartment models provide insights for understanding 

infectious disease dynamics. Vrabac et al. proposed a transportation network embedded 

Susceptible-Exposed-Infectious-Recovered (SEIR) model and applied the model to 

simulate the Covid-19 transmission between 110 counties in the United States [27]. 

Kuzdeuov et al. developed a network-based simulator to account for the effect of 

transportation of Covid-19 spreading among 17 administrative regions in Kazakhstan [28]. 

Levin et al. investigated the patterns of Covid-19 transmission, including short-term travel 

between counties in Minnesota with a modified SEIR model [29]. Hatami et al. studied the 

spatio-temporal dynamics of Covid-19 in 10 counties in the Charlotte–Concord–Gastonia 

Metropolitan Statistical Area [30]. The spatially structured model is also effective when 

implemented in mobile and high-density populations, such as military or refugee camps. 

[31,32]. As a further exploration of the spatial structured model, individual-based spatial 

models divide the subpopulation into individual compartments [23]. Eames and Keeling 

developed pair-wise network equations utilizing the essential characteristics of the mixing 

network to estimate the effectiveness of various control strategies towards sexually 

transmitted diseases. However, individual-based models require a great amount of detailed 

information about individuals, which is generally not available, especially at the early stage 

of an epidemic when inter-regional spread is particularly important to predict. 

2.3 Time-varying Models 

Simulating infectious disease transmission with the SEIR model deepens the understanding 

of disease dynamics. Compartment models have been useful in modeling cases of H1N1 
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[33], Covid-19 [30,34], and measles [35] in the United States. Prior studies generally 

applied a standard SEIR model, which adopts a constant basic reproduction number. 

However, the transmissibility of each virus evolves with time, leading to the change in 

reproduction number [36]. Constant parameters in the standard SEIR model fail to capture 

the evolving nature of infectious viruses, such as influenza. Moreover, various government 

interventions like social distancing, masking and vaccine administration can also affect the 

transmission of diseases. Compared to the standard SEIR model, a time-varying SEIR 

model is more accurate in depicting infectious disease transmission. Wang et al. proposed 

a constrained time-varying SEIR model to explore the optimal vaccine allocation strategies 

and achieve a superior result than the standard model [37]. Feng et al. developed an 

algorithm combining deep learning and the SEIR model with time-varying parameters to 

predict Covid-19 cases in the United States [38]. Despite the complexity of time-varying 

parameters, incorporating spatial interaction into epidemiological models is essential for 

capturing disease dynamics, particularly in the early phases of a pandemic [39]. 

Nevertheless, prior studies have not used a time-varying SEIR model to investigate inter-

regional Covid-19 transmission at the state-level in the United States. Such as model could 

be important for vaccine allocation [40] or state-level travel restrictions, given the 

importance of states as governance units in the United States. Additionally, quantitative 

evaluation of the impact of transportation on infectious disease transmission poses 

challenges for state governments due to the absence of appropriate indices.  

In the following sections, we both define our model for disease transmission between 

regions and define an index to assess the importance of inter-regional travel for spread of 

disease.  We then apply the model to the United States, using the 50 states as regions, 

covering the time period from March 2020 to September 2020.  Last, we assess the extent 

to which inter-state interactions affected disease spread by date, and assess which states 

played the biggest role in exporting disease to other states as a function of time. 

3 Sources and Methodology 

We describe the data source and the proposed compartment model in this section. Based on 

the traditional SEIRD compartment model and a time-varying modification in parameters, 

we introduce the transportation impact into the mathematical model for our analysis. We 

utilize a combination of two data sources to estimate the regional travel volumes on a daily 

scale and then calibrate the model with Covid-19 case and mortality data. We interpret the 

fitting results with our index for assessing the relative important of disease import from 

other states versus community spread from within the states.  We did not analyze import 

and export of disease among nations. 

3.1 Data Sources 

This section introduces our primary data sources for estimating human travel between 

regions: the “Trips by Distance” data from the Bureau of Transportation Statistics and the 
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Covid-19 Impact Analysis Platform by Maryland Transportation Institute (MTI) and Center 

for Advanced Transportation Technology Laboratory (CATT Lab). By combining these 

sources, we collect and calculate the daily out-of-state trips for each state for model input. 

3.1.1 Trips by Distance Data 

Bureau of Transportation Statistics (BTS) collected and curated data on the number of 

trips taken in the United States by distance, mode of transportation, and purpose of trip [41]. 

The data is available for the years 2019 to 2022, and the daily travel estimates are based on 

a merged mobile device data panel that addresses issues with geographic and temporal 

variation. 

Trips are defined as movements that include a stay of longer than 10 minutes at an 

anonymized location away from home, and the data captures travel by all modes of 

transportation. A movement is considered to consist of multiple trips when it includes 

multiple stops, each lasting more than 10 minutes. The data is presented by BTS at the 

national, state, and county levels, and a weighting procedure is used to ensure the sample 

of mobile devices is representative of the entire population in each area. To protect 

confidentiality and support data quality, the source does not include data for a county if 

there are fewer than 50 devices in the sample on any given day. The dataset is combined 

with the following dataset provided by the Covid-19 Impact Analysis Platform to generate 

the spatial interaction flow. 

3.1.2 COVID-19 Impact Analysis Platform 

The COVID-19 Impact Analysis Platform [42] was developed by the Maryland 

Transportation Institute (MTI) and Center for Advanced Transportation Technology 

Laboratory (CATT Lab). The platform provides a range of data and analytical tools, 

including interactive maps, visualizations, and dashboards, to help users better understand 

the spread of the virus and its impact on various social and economic indicators. 

The platform integrates multiple data sources, including public health data, mobility data, 

and socioeconomic data, to provide a more comprehensive picture of the pandemic’s impact. 

Specifically, the mobility data tracks daily visits to different types of locations, such as retail 

and recreation areas, transit stations, workplaces, and grocery stores, and compares them to 

pre-pandemic levels. The mobility data is derived from anonymized and aggregated data 

from mobile devices, such as smartphones and tablets, that have opted into location tracking 

services. The data are aggregated at the county level in the United States. For the analysis 

of spatial interactions, the platform specifically provides the state/county level percentage 

of out-of-state/out-of-county trips per day from Jan 1st, 2020 to April 30th, 2021.  

We combined the mobility data provided by the Covid-19 Impact Analysis Platform and 

the daily trips from BTS to fit our model. However, it’s important to note that the mobility 

datasets are based on a sample of mobile devices and may not be representative of the entire 

population, and that the datasets are anonymized and aggregated to protect user privacy. 
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3.1.3 Disease Data 

Daily cases and deaths by state were utilized in our compartmental disease model, as 

described in section 3.3.  Data were obtained from the Covid-19 tracking project led by The 

Atlantic (derived from the Centers for Disease Control), for each 30 day period between 

03/15/2020 to 10/15/2020. 

3.2 Estimation of Travel Between Regions 

Our source data, discussed in Section 3.1, provide estimates of total daily out-of-state trips 

for each state, but do not estimate trips by destination state. In this section, we apply the 

gravity model to estimate the distribution of trips among states on a daily basis throughout 

the investigated period.  

We utilized the following form of the gravity model [9], where region size is defined by 

GDP[43]: 

 𝑀𝑖𝑗 = M𝑖 ∗

𝐺𝑗
𝛼

𝐷𝑖𝑗
𝛾

∑
𝐺𝑘

𝛼

𝐷𝑖𝑘
𝛾𝑘

 (1) 

Where 𝑀𝑖𝑗 represents the flow of trips from region 𝑖 to region 𝑗, M𝑖 is the total flow of 

trips out of region 𝑖, 𝐺𝑘 is the GDP of region 𝑘, 𝐷𝑖𝑘  represents the distance between the 

region 𝑖 and region 𝑘, and α and γ are exponents that determine the relative influence of the 

variables. 
𝐺𝑗

𝛼

𝐷
𝑖𝑗
𝛾  represents the attraction index of region 𝑗 calculated by gravity model. For 

distance, we calculated centroid-to-centroid distances for all pairs of regions, excluding 

pairing each region to itself. The ratio 

𝐺𝑗
𝛼

𝐷
𝑖𝑗
𝛾

∑
𝐺𝑘

𝛼

𝐷
𝑖𝑘
𝛾𝑘

 shows the proportion of the total trips goes 

from region 𝑖 to region 𝑗.  Because real trip flow data from region 𝑖 to region 𝑗 was not 

available, we could not statistically estimate the GDP power-law parameter α and the 

distance power-law parameter γ. We have instead analyzed the scenarios of setting α at 

values of 0.5, 1, 1.5, and 2 respectively while keeping γ fixed at 2, as well as assigning γ to 

be 0.5, 1, 1.5, and 2 with α fixed at 1. 

In general, movement of people between regions makes it possible for infected people 

to transmit the disease to susceptible people residing at their destinations. Thus, it creates 

the potential for the disease to spread between regions. As predicted by the gravity model, 

states that are adjacent or otherwise geographically close to each other tend to have more 

spatial interaction compared to states that are far apart.  Larger states also produce more 

travel, creating more potential to spread the disease to other states. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 20, 2024. ; https://doi.org/10.1101/2024.03.19.24304566doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.19.24304566


3.3 Disease Transmission Model 

In this section we introduce our compartmental model for disease transmission, which 

represents both communities spread of disease from infectious people residing in a 

particular region and importation of disease from infectious people traveling from other 

regions.  Our estimates of daily trips between regions were used as a model input.  The 

model is defined as follows: 

 

∂Si(t)

∂t
= −𝛽𝑖(𝑡) ∙ 𝐼𝑖(𝑡) ∙

𝑆𝑖(𝑡)

𝑁𝑖

+ ∑ 𝜇𝑗(𝑡) ∑
𝑀𝑖𝑗(𝑡)𝑆𝑗

𝑁𝑗 − 𝐼𝑗
𝑗≠𝑖𝑗≠𝑖

 − 𝜇𝑖(𝑡) ∑
𝑀𝑗𝑖(𝑡)𝑆𝑖

𝑁𝑖 − 𝐼𝑖
𝑗≠𝑖

 

𝜕𝐸𝑖(𝑡)

𝜕𝑡
= 𝛽𝑖(𝑡) ∙ 𝐼𝑖(𝑡) ∙

𝑆𝑖(𝑡)

𝑁𝑖

− σ ∙ 𝐸𝑖(𝑡) + ∑ 𝜇𝑗(𝑡) ∑
𝑀𝑖𝑗(𝑡)𝐸𝑗

𝑁𝑗 − 𝐼𝑗
𝑗≠𝑖𝑗≠𝑖

− 𝜇𝑖(𝑡) ∑
𝑀𝑗𝑖(𝑡)𝐸𝑖

𝑁𝑖 − 𝐼𝑖
𝑗≠𝑖

 

𝜕𝐼𝑖(𝑡)

𝜕𝑡
= σ ∙ 𝐸𝑖(𝑡) − (1 − 𝛼𝑖(𝑡)) ∙ γ ∙ 𝐼𝑖(𝑡) − 𝛼𝑖(𝑡) ∙ ρ ∙ 𝐼𝑖(𝑡) 

 
𝜕𝑅𝑖(𝑡)

𝜕𝑡
= (1 − 𝛼𝑖(𝑡)) ∙ γ ∙ 𝐼𝑖(𝑡) 

𝜕𝐷𝑖(𝑡)

𝜕𝑡
= 𝛼𝑖(𝑡) ∙ ρ ∙ 𝐼𝑖(𝑡) 

(2) 

where 𝑆𝑖(𝑡), 𝐸𝑖(𝑡), 𝐼𝑖(𝑡), 𝑅𝑖(𝑡), 𝐷𝑖(𝑡) 𝑎𝑛𝑑 𝑁𝑖 are the susceptible, exposed, infected, 

recovered, dead and total population in region 𝑖 at time 𝑡. 𝑀𝑖𝑗(𝑡)/𝑀𝑗𝑖(𝑡) represents the flow 

of trips from region 𝑗/𝑖  to region 𝑖/𝑗  at given time 𝑡 . The transformation rates in an 

epidemiological model are denoted as σ, γ, and 𝜌, where σ is the rate from exposed to 

infectious, equivalent to the reciprocal of the incubation period; γ is the rate from infectious 

to recovered, corresponding to the reciprocal of the recovery time; and ρ is the rate from 

infectious to dead. The values of γ, σ, and ρ are set to 1/6.5 [44], 1/3.0 [44], and 1/7.5 

respectively [45]. 𝛽𝑖(𝑡)  and 𝛼𝑖(𝑡)  are time-varying parameters following a Sigmoid 

function-based form [46] representing the reproduction number and fatality rate, 

respectively, at time t in region i. Spatial interaction between regions is represented by the 

daily number of people traveling from region 𝑗 to region 𝑖 and an adjustable factor 𝜇𝑖(𝑡) 

denoting rate at which an infectious  traveler from region i transmits disease to individuals 

in other regions per day, at time 𝑡.   

We use the Standard Federal Regions [47] to aggregate the 50 United States into 10 parts. 

The Standard Federal Regions are based on geographic, economic, and cultural factors. 

They were designed to promote efficient and effective delivery of federal programs and 

services by bringing together federal agencies, state and local governments, and private 

organizations to work collaboratively and address regional issues and concerns. The states 

within the same region have proven to be able to share resources, expertise, and best 

practices across state lines and jurisdictions. The 10 Standard Federal Regions are shown 

in Fig. 2. 
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Fig. 2. Ten Regions Defined by the Federal Emergency Management Agency [47]  

To reduce model complexity, we assume that states in the same region share similar traits 

of geographic, economic, and cultural factors. For instance, potential travelers in the same 

region may have similar destinations and purposes of traveling. Thus, a common μ value, 

which represents potential infection spread by a infectious traveler from region i, was 

assigned to states under the same division. We employ the Levenberg-Marquardt algorithm 

(LMA) within Python 3.10.0 to fit the model using both pandemic and transportation data. 

3.4 Transmission Import Index 

From Equation 2, the term ∑ 𝜇𝑗(𝑡) ∑
𝑀𝑖𝑗(𝑡)𝐸𝑗

𝑁𝑗−𝐼𝑗
𝑗≠𝑖𝑗≠𝑖  represents the rate at which people 

become newly exposed in region i at time 𝑡 due to the import of disease from other regions. 

Meanwhile, the term 𝛽𝑖(𝑡) ∙ 𝐼𝑖(𝑡) ∙
𝑆𝑖(𝑡)

𝑁𝑖
 is the rate at which people become newly exposed 

in region i due to local transmission. The total rate at which people become newly exposed 

in region i at time 𝑡 is the sum of these two rates. 

To evaluate the relative risk of disease transmission due to import from other 

regions, we introduce the transmission import index:  

𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝐼𝑚𝑝𝑜𝑟𝑡 𝐼𝑛𝑑𝑒𝑥 =  

∑ 𝜇𝑗(𝑡) ∑
𝑀𝑖𝑗(𝑡)𝐸𝑗

𝑁𝑗 − 𝐼𝑗
𝑗≠𝑖𝑗≠𝑖

𝛽𝑖(𝑡) ∙ 𝐼𝑖(𝑡) ∙
𝑆𝑖(𝑡)

𝑁𝑖
+ ∑ 𝜇𝑗(𝑡) ∑

𝑀𝑖𝑗(𝑡)𝐸𝑗

𝑁𝑗 − 𝐼𝑗
𝑗≠𝑖𝑗≠𝑖

         (3) 

The numerator is the rate of newly exposed people due to travel from other regions into 

region i at time 𝑡. The denominator is the total rate of newly exposed people in region i at 
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time 𝑡. The transmission import index quantifies the impact of travel into region i relative 

to the total rate of new exposures. If the number of travelers from all other regions is equal 

to 0, the numerator will be 0, resulting in the index also being 0. This signifies that import 

has no impact on the spread of the disease in region i at time 𝑡.  On the other hand, if there 

are currently no people exposed to disease in region i, then the import index either equals 1 

(if there is travel of exposed people into the region) or is undefined (if there is not travel of 

exposed people into the region).   

The transmission import index offers insights into the degree to which a region’s disease 

transmission is impacted by travel from other regions. A higher transmission import index 

for region i indicates a greater influence of incoming individuals on infectious conditions 

in that region. Consequently, policymakers in such regions might opt to enforce stringent 

regulations limiting travelers from other areas or implement quarantine measures to 

mitigate the heightened risks of disease spread. Conversely, if the index is low, restrictions 

on incoming travelers may not yield significant benefits, as the greater risks stem from 

community spread within the region. 

Transmission import index is an important metric for assessing the potential risk of 

disease transmission that one region experiences through multi-regional spatial interaction. 

By considering the effect of travel from other regions, this index serves as a valuable guide 

for healthcare policymakers. Furthermore, the change of transmission import index over 

time could indicate the trend of disease transmission and help policymakers assess the 

impact of interventions.  

4 Analysis and Results 

The results of our application of the compartment model to the United States are illustrated 

in this section. We analyzed domestic transmission of disease among states and not 

international transmission between nations. In section 4.1, we provide fitting results, 

showing root-mean-squared errors. We provide transmission import index results in section 

4.2 to quantify the impact of travel on disease transmission, by location and date. 

4.1 Fitting Results 

We fit the model with the dataset of 7-day moving average cases and deaths for the 50 states, 

provided by the Covid-19 tracking project lead by The Atlantic (derived from the Center 

for Disease Control), for each 30 days from 03/15/2020 to 10/15/2020.  The fitting accuracy 

across all states with γ set to be two and α to be one is presented in Fig. 3, measured by the 

relative root mean square error (RRMSE) defined as 𝑅𝑅𝑀𝑆𝐸 =
[∑ (𝑦𝑖̂−𝑦𝑖)2𝑁

𝑖=1 /𝑁]
1/2

𝑦𝑁
. 

The average RRMSE of the reported cases over 7 months ranges from 0.54% to 3.78% 

and of the reported deaths ranges over 7 months from 0.24% to 2.49%.  The average and 

median RRMSEs for cases are 1.54% and 1.48%; for deaths, the average and median values 
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are 1.20% and 1.14%. Fig.  shows the average RRMSE for cases and deaths over 7 months 

across 50 states of the dynamic model with multi-regional spatial interaction.  

 

Fig. 3. Average RRMSE for Cases and Deaths over 7 Months Among 50 States (α=1, γ=2) 

Fig. 4 and Fig. 5 display the fitted results for COVID-19 cases and deaths in example 

states (Georgia, New Jersey, Florida, and Maryland), during the period from October 15, 

2020, to November 15, 2020. 

In summary, the dynamic modeling with multiregional spatial interaction, demonstrates a 

high degree of accuracy in capturing the historical transmission dynamics of infectious 

diseases. This method effectively accounts for the complexities and interactions between 

various regions, leading to a more comprehensive understanding of the factors influencing 

disease spread and the effectiveness of control measures. 
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Fig. 4: Fitting for Cases in Georgia, New Jersey, Florida, and Maryland (α=1, γ=2) 

Fig. 5. Fitting Results for Deaths in Georgia, New Jersey, Florida, and Maryland (α=1, γ=2) 

4.2 Transmission Import Index 

Fig. 6 shows the fluctuation of the transmission import index in five states from mid-March 

to mid-September 2020. Each time period ends on the 15th of a month. For example, we 

refer to the April time period as the period ending on April 15. From March to June, the 
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average index among the states experienced a decline, potentially attributable to both a 

decline in domestic travel and the wider prevalence of the disease throughout the nation (as 

a consequence of prior importation). Throughout the investigation period, Illinois 

consistently exhibited indices higher than the national average, whereas Texas consistently 

maintained lower indices compared to the U.S. average.  We note that Illinois has 

traditionally been a hub for domestic travel in the U.S., offering greater potential for disease 

import.  On the other hand, Texas is surrounded by low population states, reducing interstate 

travel.   

New York’s index exhibited two surges, from April to May and later from July to August. 

In contrast, the California index declined from March to April but increased from August 

to September, remaining stable in the interim. Florida initially saw a decrease in the index 

during the first month under investigation, stabilizing in the subsequent five months. The 

magnitude and variation of the transmission import index within a state may be connected 

to the state’s characteristics, including size and proximity to other states, and social events 

that can cause into-state travels. Given that the outbreak’s first wave included many 

infections in New York State, local transmission dominated import from other states in the 

first time period. As the disease spread to surrounding states, New York become more 

susceptible to disease import. 

In contrast, California experienced a high import index in April, as local spread was 

initially minimal. By May, as interstate travel declined and local spread increased, the 

important index became very small. After the initial outbreak, the transmission import index 

for Illinois and New York remained consistently higher than the United States average. For 

California, Florida, and Texas, the transmission import index remained consistently lower 

than the United States average. This trend may be attributed in part to the vast and varied 

geographic landscapes of California, Florida, and Texas, which include both densely 

populated urban areas and sparsely populated rural regions around state boundaries, 

mitigating the effects of travels on the disease transmission. In contrast, New York City, 

the major population center in New York State, is adjacent to two other states (New Jersey 

and Connecticut) and less than 100 miles from Pennsylvania. Fluctuations in transmission 

import index may be affected by events that attract visitors from adjacent states. Between 

July and August, the transmission import index exhibited an upward trend for New York 

and Illinois, indicating a growing impact of travelers on disease transmission. This trend 

may be connected to the quarantine policy implemented in New York City in early August 

[48] and the quarantine order for 15 states issued in Chicago in July [49], which affected 

local transmission. 
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Fig. 6. Transmission Import Index for Six States in the US from 03/20/2020 to 09/15/2020 (α=1, 

γ=2) 

Fig. 7 summarizes the trend of average transmission import index in the top ten 

population states and the bottom forty population states from March to September 2020. 

States with larger populations consistently exhibited higher index values than both the U.S. 

average and the remaining lower-population states. More populous states are typically 

developed regions, naturally attracting a higher number of travelers passing through their 

boundaries. These individuals could potentially act as carriers of diseases, increasing the 

risk of disease transmission. Overall, the average transmission import index decreased from 

March 20th to July 15th and increased from July 15th to September 15th for the top ten, 

bottom forty states, and all fifty states in the US. The initial outbreak is reflected in the high 

index for April, 2020. From March 20th to July 15th, the average transmission import index 

decreased for all groups. This decline may link to the initial impact of public health 

measures restricting travel after the pandemic’s onset, and the increased occurrence of local 

transmission. From July to August, the index increased as travel resumed, spreading disease 

to areas that had previously seen a decline in rates of new cases.  Subsequently, from August 

to September, the average transmission import index decreased again, including both the 

high-population top ten and the lower-population bottom forty states. The decline in the 

index may be linked to a resurgence of local transmission of the disease [50]. 
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Fig. 7. Average Transmission Import Index for Top 10 Population States and Bottom 40 Population  

States in the US from 03/20/2020 to 09/15/2020 (α=1, γ=2) 

Figures 8 and 9 display heat maps for the normalized transmission import index, which 

ranges from zero to one. In this context, zero signifies the state with the lowest import index, 

while one indicates the state with the highest import index. All other states are 

proportionately assigned to values between 0 to 1, Fig. 8 depicts the normalized import 

index at the time of the initial outbreak for the April period. The northeast region, 

encompassing states such as Vermont, and Massachusetts, displayed notably high 

transmission import indices, signifying a heightened risk of travel from other states, such 

as New York. The heat map aligns with early introduction of Covid-19 in early 2020 when 

northeast states experienced an acute outbreak. While the overall trend in the transmission 

index was downward between April and September (as shown in Fig. 7), the normalized 

distribution of the index among states was similar, as shown in Fig. 9.  For instance, Illinois 

continued to have a high index relative to other states.    

  

Fig. 8. Transmission Import Index Heat Map in the US from 03/20/2020 to 04/15/2020 (α=1, γ=2) 
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Fig. 9. Transmission Import Index Heat Map in the US from 08/15/2020 to 09/15/2020 (α=1, γ=2) 

4.3 Sensitivity Analysis 

This section evaluates the model under scenarios with different trip flows as the input for 

our SEIRD compartmental model. Since the trip between two states is estimated by a ratio 

of out-of-state flow based on gravity model, the variation of the power-law parameters α 

and γ in the ratio 

𝐺𝑗
𝛼

𝐷
𝑖𝑗
𝛾

∑
𝐺𝑘

𝛼

𝐷
𝑖𝑘
𝛾𝑘

 , representing the proportion of the total trips from region 𝑖 to region 

𝑗, could affect the trip distribution from one state to all other states. Because real trip flow 

data from region 𝑖 to region 𝑗 was not available, statistical estimation is unavailable to fit 

the parameters α and γ. We have instead analyzed the scenarios of setting α at values of 0.5, 

1, 1.5, and 2 respectively while keeping γ fixed at 2, as well as assigning γ to be 0.5, 1, 1.5, 

and 2 with α fixed at 1 to investigate the model output and the state with the most substantial 

change in the transmission import index. The number of trips leaving a state is fixed in all 

cases, and defined by our input data, as mentioned earlier. 

4.3.1 Varying the GDP Power Parameter  

The change of power-law parameter for the GDP affects the distribution of trips among 

destinations and thus affects our model output. Since a distance power parameter around 

two has been widely used in previous research on infectious disease modeling 

[10,11,11,13,51,52], we fixed γ to be two while changing the GDP power-law parameter 

from 0.5 to 2 with increments of 0.5, creating four scenarios based on our model. The heat 

map of transmission import index for the three-example periods, March to April, May to 

June, and August to September, is shown in Fig. 10.   
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Fig. 10. Transmission import Index Heat Map in the US for Three Time Periods with a Changing 

GDP Power-law Parameter 

When the power-law parameter on the distance term is fixed, increasing the power-law 

parameter for the GDP terms increases marginal effect of GDP as GDP increases. Vermont 

consistently shows a high import index, which can be attributed to low reported cases in all 

periods.  With few cases, local transmission is very limited, making the state most 

vulnerable to infected travelers coming from elsewhere. Table 1 summarizes the mean value 

and standard deviation of transmission import index among all states as the GDP power law 

parameter varies. We note that the standard deviation is generally larger than the mean, 

indicating the distribution of transmission indexes among states is a long-tailed distribution.  

Table 1. Average and Standard Deviation of Transmission Import Index amongAll States with 

Varying Alpha 

 

The states with the largest month-to-month change of transmission import index over 

time are shown in Table 2 (largest increment) and Table 3 (largest decrement). For instance, 
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the row “April~May” in Table 1 represents the state with the biggest increase of index 

between the period ending in April and the period ending in May under four scenarios. 

Between these periods, North Carolina experienced the greatest increase in all scenarios, 

whereas New York experienced the greatest in all but one scenario. Over time, the import 

index both increased and decreased in various states as states were differentially affected 

by disease import and local transmission.  The change of index reflects relative changes in 

multiple factors – travel from proximate states, disease prevalence in proximate states and 

disease prevalence within the state.  The key factor is that vulnerability to disease import 

changed throughout 2020 in the United States  

Table 2. States with the Largest Increments in the Transmission Import Index 

 

Table 3. States with the Largest Decrements in the Transmission Import Index 

 

4.3.2 Varying the Distance Power Parameter 

Variation of the power-law parameter for distance may also affect the trip distribution and 

the model output. We fixed the power-law parameter for GDP to be one while changing the 

power parameter for distance from 0.5 to 2 with increments of 0.5. The heat map of the 

transmission import index for the three-example periods is shown in Fig. 11.  
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Fig. 11. Transmission import Index Heat Map in the US for three time periods with a changing 

distance power-law parameter 

When the power-law parameter for distance changes from 0.5 to 2, the marginal effect of 

distance increases as distance increases.  This can have the effect of trip destinations being 

closer to trip origins, resulting in states with a higher number of contiguous states 

experiencing a greater influx of travelers. Overall, our results show a relatively steady 

pattern in the transmission import index when the distance power-law parameter changes, 

representing the model’s robustness as the parameter varies. Table 4 summarizes the mean 

value and standard deviation of transmission import index among all states by time period 

as the distance power-law parameter varies.  As before, the standard deviation is large 

relative to the mean.   

Table 4. Average Transmission Import Index among All States with Varying Gamma 
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5 Discussion 

Many factors affected the spread of Covid-19 within and between states, including health 

policy, environmental factors (such as crowding in dwellings and public spaces), and 

personal behavior.  During the summer of 2020 large gatherings at festivals and political 

gatherings occurred in some states, causing travels and local disease transmission.  State 

and local policies surrounding work, schools, stores, restaurants, and masking also varied.  

Though individuals were never prohibited from traveling between states, airlines and other 

carriers reduced operations, as fewer people elected to travel.  These various factors affected 

both local community transmission and spread of disease between regions, as well as their 

relative risk. For policy makers, it is crucial to understand the effects of those factors on 

disease spreading to balance the planning of social events and pandemic control. Events 

that attract out-of-region visitors might risk new outbreaks, but if the disease is already 

prevalent, such events will be more consequential for community spread.  General travel 

restrictions are important when regions do not yet have outbreaks, but once the disease is 

prevalent, travel restrictions are less consequential.  Analysis of specific policies and events 

can provide a deeper understanding to guide public health policy making. 

6 Conclusions 

Investigation of disease transmission through spatial interaction, particularly region-level 

travel, provides insights into the complex dynamics that govern the spread of infectious 

diseases. By developing a multi-regional dynamic model with spatial interaction, we have 

captured the relationship between local transmission of disease within regions and the 

spread of disease from one region to another by travel.   

The transmission import index, which combines the local disease transmission and the 

potential for infectious travelers to spread diseases to new regions, is an important metric 

for assessing the risk of disease transmission between regions. By identifying high-risk 

areas, appropriate interventions, such as travel restrictions or quarantine measures, can be 

enacted to control disease spread and protect public health.  A wide range of factors, 

including state-level actions and public gatherings, may affect not just the local 

transmission of disease, but its spread to other regions. By examining the interplay between 

these factors, we can better inform future decision-making processes and guide public 

health policy. 

In conclusion, this paper has shed light on the role of spatial interaction via travel in 

disease transmission and the importance of understanding these dynamics for effective 

control. The methods and findings presented here can serve as a foundation for future 

research, policy development, and public health interventions aimed at mitigating the 

impact of infectious diseases both within and between regions.  While our analysis focused 

on the United States, the same methodology could be applied internationally.  Because 
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nations can directly control travel across their borders, they have greater capacity to reduce 

disease export and import, when data demonstrate that such actions are merited.   
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