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Abstract 

Mapping electronic health records (EHR) data to common data models (CDMs) enables the 

standardization of clinical records, enhancing interoperability and enabling large-scale, multi-

centered clinical investigations. Using 2 large publicly available datasets, we developed 

transformer-based natural language processing models to map medication-related concepts from 

the EHR at a large and diverse healthcare system to standard concepts in OMOP CDM. We 

validated the model outputs against standard concepts manually mapped by clinicians. Our best 

model reached out-of-box accuracies of 96.5% in mapping the 200 most common drugs and 83.0% 

in mapping 200 random drugs in the EHR. For these tasks, this model outperformed a state-of-

the-art large language model (SFR-Embedding-Mistral, 89.5% and 66.5% in accuracy for the 

two tasks), a widely-used software for schema mapping (Usagi, 90.0% and 70.0% in accuracy), 

and direct string match (7.5% and 7.5% accuracy). Transformer-based deep learning models 

outperform existing approaches in the standardized mapping of EHR elements and can facilitate 

an end-to-end automated EHR transformation pipeline. 
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Introduction  

Data standards, such as the Observational Medical Outcomes Partnership (OMOP) common data 

model (CDM), play a crucial role in enabling collaboration across diverse health systems by 

providing a uniform data standard for organizing EHR (1-5). However, transforming EHR data 

to the standardized CDMs remains challenging. For instance, a key challenge is the semantic 

mapping of the EHR elements to their equivalent standard concepts in the CDM. These free-

form text elements are often represented in multiple ways in the EHR, limiting the possibility of 

a one-to-one string matching-based system, which is commonly used in mapping structured 

elements. Moreover, EHR elements such as drugs present with frequent variations in dosage and 

frequency, making mapping to the corresponding standardized concepts even more challenging. 

Several models have been developed to assist in the matching of EHR elements to CDM 

concepts, with varying degrees of performance and training requirements. For instance, Usagi is 

a commonly used software to map the terminologies from EHR to OMOP CDM, based on the 

term frequency - inverse document frequency (TF-IDF) algorithm (6). Advancements in this 

field led to the development of Text-based OMOP Knowledge Integration (TOKI) (3). TOKI 

generates sentence embeddings using deep Recurrent Neural Networks (RNN) and FastText, 

demonstrating a 10% improvement over Usagi in mapping accuracy (3). However, TOKI’s 

development relied on 83,000 manually verified mappings, and its performance might not be as 

good in settings without extensive supervised training data. TOKI was also focused on mapping 

diagnosis conditions alone(3). There have been no deep learning-based approaches developed 

explicitly for mapping drug concepts to OMOP CDM in settings without extensive training data. 
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In this study, we sought to develop transformer-based natural language processing models for 

mapping drug concepts in EHR to OMOP CDM (7). The performance of the mapping systems 

was applied to map drug concepts within the Yale New Haven Health System to OMOP CDM, 

and we contrasted its effectiveness with existing mapping approaches. 

 

Methods  

Data Sources 

We obtained concept names (of drugs, and all other domains, such as condition, procedure) 

(n=9,217,224) for model pre-training and their mappings relations (n=4,569,103) for model 

finetuning, from the Observational Health Data Sciences and Informatics (OHDSI) Vocabularies, 

accessed through Athena, a publicly available online repository for medical vocabularies (8). 

These mappings pair a non-standard concept or synonym with a standard concept (Figure 1). 

Non-standard concepts are concepts in a non-standard code system, where non-standard-to-

standard-mappings associates them into the ones in a standard code system. Synonyms, on the 

other hand, do not exist in code systems, and are alternative names or descriptions for concepts. 

Standard concepts refer to unified, normalized representations of medical terminologies for 

organizing and standardizing healthcare data. For instance, both the non-standard concept 

“IRON 325 MG TABLET” and synonym “FESO4 325 MG Oral Tablet” can be mapped to the 

standard concept “ferrous sulfate 325 MG Oral Tablet”. To pre-train models in a self-supervised 

style, we collected all unique concept names and concept synonym names from Athena 

vocabulary.  
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Additionally, we assembled medical acronyms and abbreviations from the Metainventor 

database for model finetuning (n=405,543).(9) Each record in Metainventor is also a mapping 

pair, where a medical concept is mapped to its acronym(s) or abbreviation(s). (Figure 1) 

To evaluate the effectiveness of the mapping approaches, we collected the drug concept 

names from the structured medication table from a cohort drawn from the EHR at YNHHS. 

YNHHS is the largest healthcare network in Connecticut, comprising five hospitals and a broad 

outpatient provider system. All unique drug concept names were sourced from the Clarity 

database, a comprehensive SQL-based reporting tool from Epic Systems Corporation, extracting 

data from the YNHHS EHR system’s medication table. 

Model Development 

We followed the sentence-transformer approach to develop our models. (10, 11) Sentence-

transformers typically consist of a pre-trained transformer encoder with an overlaying pooling 

layer. A drug concept is consisting of one or multiple tokens ��, ��, … , ��, where each token is a 

sub-word. The encoder generate an embedding (i.e., high dimensional vectors) 
�, 
�, … , 
� for 

each token ��, ��, … , ��. All sentence-transformer models in this study utilized a mean pooling 

layer to generate 
, a unified embedding for a drug concept, based on all token-level embeddings 

of the drug concept: 
 � �

�
∑ 
�
�
��� . There are publicly available sentence-transformer models, 

which are commonly already trained with sentence pairs to produce meaningful sentence-level 

embeddings. The model was trained to maximize the distance between embeddings of dissimilar 

concepts and minimize the distances between similar concepts. (10, 11) We trained models in a 

similar style, and clinicians in our team evaluated both off-the-shelf models and the models we 

trained. 
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In assessing readily available sentence-transformer models, we evaluated the accuracy of 

(1) an off-the-shelf leading general-purpose sentence-transformer (all-mpnet-base-v2) alongside 

(2) a premier off-shelf clinical sentence-transformer (BioLORD) (10, 11).  

To improve the embeddings generated by sentence-transformers and facilitate accurate 

clinical terminology mapping, we trained sentence-transformer models using publicly available 

clinical mapping relationships, yielding six models: (3) mpnet-drug (4) BioLORD-drug (5) 

mpnet-all (6) BioLORD-all (7) Gatortron-drug (8) Gatortron-all. The models were trained with 

multiple negatives ranking loss. The loss function minimized the distance between the 

embedding of mapping pairs, while maximizing the distance between the embedding of negative 

pairs. Within each batch containing N mapping pairs �a�, p��, . . . , �a�, p��, for a mapping pair 

�a�, p��, the negative pairs are all N � 1 �a�, p�� where i � k.  MultipleNegativesRankingLoss 

can be expressed as follows: 

MultipleNegativesRankingLoss � � 1N " log # e	
��������,������scale

∑ e	
���������,������scale�
���

$�

���

 

where f�·� is the transformer-based natural language processing model which turns a medication 

terminology into an embedding. We used cosine similarity (cossim) to calculate the distances 

between embeddings. scale is a hyperparameter for changing the sensitivity of 

MultipleNegativesRankingLoss towards inaccurate embeddings, and we used its default value 

of 20. 

By training the two aforementioned sentence-transformer models (1) all-mpnet-base-v2 

(2) BioLORD, respectively, using drug non-standard-to-standard-mappings (from Athena 

Vocabularies, with 1,005,741 training pairs), we created drug mapping models (3) net-drug (4) 
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BioLORD-drug. We also trained the off-the-shelf sentence-transformer models (1) all-mpnet-

base-v2 (2) BioLORD using our full supervised training set consisting of 4,569,103 mapping 

pairs (including both non-standard-to-standard-mappings and synonym relationships) from 

Athena Vocabularies and 405,543 medical acronyms and abbreviations from Metainventor. Such 

training resulted in two additional models: (5) mpnet-all and (6) BioLORD-all. These models 

were trained for 10 epochs, with a batch size of 96. 

We also developed two sentence-transformer models based on a BERT-like model by a) 

self-supervised pretraining and b) supervised training using mapping pairs. GatorTron-Base is a 

encoder-only public-available model with 345 million parameters pre-trained using deidentified 

clinical notes at the University of Florida (12). During the a) self-supervised pretraining step, we 

pursued continual pre-trained GatorTron-Base via masked language model objective using drug-

related concept names and synonyms (n=5,185,133 terminologies), or all concept names from 

OHDSI (n=9,217,224 terminologies) (12-14), yielding two encoder-only models. We continually 

pre-trained the models for 3 epochs, with a maximum input length of 64 and a default masking 

probability of 15%. We added a mean pooling layer to the continual pre-trained encoder-only 

models. These models can generate a respective embedding for each input. During the b) 

supervised training using mapping pairs phrase, we trained models with mapping pairs using a 

batch size of 48 for 10 epochs. The model continually pre-trained using drug vocabulary was 

trained with drug non-standard-to-standard-mappings (n=1,005,741 training pairs from Athena 

Vocabularies), and it’s called (7) Gatortron-drug. For the model continual pre-trained with all 

vocabularies, we trained it with all mapping pairs from Athena Vocabularies (n=4,569,103 

mapping pairs) and medical acronyms and abbreviations from Metainventor (n=405,543), 

yielding a model called (8) Gatortron-all.  
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We developed our models fully based on publicly available data and evaluated them on 

Yale’s EHR data in a secure environment without further training to demonstrate that the 

approaches developed may be applied in other healthcare systems as well. 

Mapping to OMOP CDM 

Sentence-transformer models can convert each drug concept name (i.e., terminology) into one 

high-dimensional vector (i.e., embedding). Cosine similarities were calculated between each 

embedding of terminology at YNHHS and embeddings of all standard drug concepts in OMOP 

CDM. The best mapping was the one that maximizes the cosine similarity (7, 15).  

Similarly, we evaluate the mapping outputs of an embedding approach using a large 

language model (LLM) (SFR-Embedding-Mistral) with over 7 billion parameters and state-of-

the-art performance in the Massive Text Embedding Benchmark (MTEB) benchmark (17, 18), a 

commonly used software (Usagi) for clinical concept mapping, and a string match approach 

(Python package RapidFuzz) as the baseline. SFR-Embedding-Mistral is an LLM based on 

Mistral 7B (16, 17). It appends a [EOS] token to the end of the input before feeding it to the 

LLM (17). The embedding was the hidden vector in the last layer corresponding to the [EOS] 

token, which has been finetuned using large-scale sentence pair datasets. Usagi is based on the 

TF-IDF algorithm (15). TF-IDF evaluates the similarity of medical terminologies by paying 

attention to the words with low occurrence in all terminologies (such as “Ibuprofen”) rather than 

common words (such as “gram”). Meanwhile, RapidFuzz converts drug concept names to token 

sets and computes the Levenshtein Distances between token sets to find the optimal mappings. 

Statistical Analysis 
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We identified the 200 most common medications given to the patients at YNHHS and 200 

random medications in the YNHHS EHR database (excluding those not in RxNorm format, 

which are the standard OMOP concept) and aligned them with standard concepts in the OMOP 

CDM. The outputs of the models were evaluated by clinicians (LSD and AA) independently. We 

report the number of model errors, distinguishing between incorrect ingredient identification and 

correct ingredient but incorrect dosage. We presented model accuracies alongside their 

confidence interval calculated using Python package “statsmodels”. Chi-squared tests were 

employed to detect if the differences in model performances were statistically significant 

(p<0.05). All statistical analyses were performed using Python 3.9. 

 

Results  

Study Population 

We used data from a cohort of 146,397 patients at the YNHHS. Across 12,543,715 rows of data 

in the medication dataset, there were 39,441 unique medications – 36,212 (92%) of which were 

not present in RxNorm – the standard medication code system in OMOP CDM. The most 

frequently prescribed 200 medications constituted 3,885,163 (31.0%) of all medication orders. 

Model Performance Across Most Common Medications 

We collected the 200 most common drug concepts that are not presented in OMOP CDM. 

Eleven approaches were deployed to map the drug concepts at YNHHS to OMOP CDM (Table 

1). Usagi (a commonly used software based on TF-IDF) reached 90.0% accuracy, while SFR-

Embedding-Mistral (the state-of-the-art off-the-shelf LLM) reached an accuracy of 89.5%. 
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Among off-the-shelf sentence-transformers, BioLORD, a clinical sentence-transformer, 

displayed an accuracy of 92.0%. Meanwhile, all-mpnet-base-v2, one of the best general-purpose 

sentence-transformers, displayed a lower accuracy of 62.0%. String match-based mapping 

yielded a low accuracy at 7.5%.  

When trained with drug mapping collected from OHDSI vocabularies, all three 

transformer-based models outperformed SFR-Embedding-Mistral (the LLM) and Usagi (the 

commonly used software), reaching accuracies ≥95.0%. In particular, mpnet-drug reached the 

highest accuracy at 96.5%. It outperformed the state-of-the-art LLM-based embedding approach 

(p=0.011), the software based on TF-IDF (p=0.017), and the best off-the-shelf clinical sentence-

transformer (p=0.086). Compared to the off-the-shelf approaches, the mpnet-drug model was 

more accurate about the ingredient and dosage of drugs when mapping. However, after training 

with our full training set, which contains mapping relations other than medication, synonyms, 

acronyms, and abbreviations, the performance of transformer-based deep learning models did not 

outperform Usagi and LLM. 

Model Performance Across a Random Subset of Medications 

Models were applied to map a random sample of 200 unique drug concepts in YNHHS’s EHR 

that were not present in OMOP CDM, and model performances were evaluated (Table 2). 

Among off-the-shelf approaches, BioLORD (a clinical sentence-transformer, accuracy: 71.5%), 

Usagi (a commonly used software based on TF-IDF, accuracy: 70.0%), and SFR-Embedding-

Mistral (the state-of-the-art off-the-shelf LLM, accuracy: 66.5%) reached relatively high 

performance. Meanwhile, all-mpnet-base-v2, one of the best off-the-shelf sentence-transformer 

models for general settings, only reached 48.0% accuracy. The string matching had the same 

accuracy for these sets of drugs as the most commonly used ones, at 7.5%. 
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After training with drug mappings collected from OHDSI vocabularies, all transformer-

based deep learning approaches reach higher accuracies than the off-the-shelf approaches, with 

reduced error both in the ingredient and dosage of drugs when mapping. mpnet-drug, a model 

with all-mpnet-base-v2 as its backbone model, reached the highest accuracy (83.0%). It 

outperformed the best off-the-shelf clinical sentence-transformer (p=0.009), Usagi (p=0.003), 

and a state-of-the-art LLM (p<0.001). In addition, Gatortron-drug reached 82.0% accuracy, and 

BioLORD-drug reached 78.0%, both higher than the off-the-shelf approaches. Still, after training 

with the full complete training set (which contained mapping relations other than medications, as 

well as acronyms and abbreviations), the transformer-based deep learning models did not reach 

higher performance than the best off-the-shelf approach. 

 

Discussion 

In this study, we trained transformer-based natural language process models on publicly 

available datasets to enable the mapping of drug records at YNHHS to the OMOP CDM without 

need development on protected clinical EHR data. Our top-performing model achieved state-of-

the-art accuracies in mapping most common medications and a random subset of medication 

given to the patients, significantly  exceeding both Usagi (a commonly used software based on 

TF-IDF) and SFR-Embedding-Mistral (the state-of-the-art off-the-shelf LLM), with fewer errors 

due to both the dosages and ingredients. 

In this regard, our approach achieved the benchmark of outperforming Usagi met by 

TOKI, a previously developed supervised deep learning-based approach (3). Compared with 

TOKI – which was built on traditional deep learning techniques, including RNN and FastText, 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 24, 2024. ; https://doi.org/10.1101/2024.03.21.24304616doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.21.24304616
http://creativecommons.org/licenses/by-nc-nd/4.0/


our approach incorporates recent progress in deep learning, including embeddings from 

pretrained transformers encoders (7, 13). We further leveraged masked language model 

pretraining and trained the models with millions of sentence pairs to boost the model 

performance.  Leveraging superior model architecture and large-scale publicly-available datasets 

enables state-of-the-art accuracy without training on YNHHS’s data. Thus, the time-consuming 

and expensive annotation of supervised datasets is not needed before applying our approach to 

map private EHR to OMOP CDM. Of note, TOKI was evaluated only in condition mapping, 

whereas our model was developed to focus on drug records mapping, a key operational priority 

and a more complex task. Since the Athena vocabularies also contain mapping relationships for 

all other domains, spanning conditions, procedures, and measurements. In this way, our 

transformer-based approach might be expandable to additional domains (8), and similar models 

can be developed to facilitate automated end-to-end EHR to OMOP CDM to facilitate 

generalizability. 

In settings where automated mapping system to OMOP CDM is needed, a high-quality 

supervised training set, like the one for developing TOKI (3), may not always be readily 

available. Our approach was developed using publicly available data and evaluated on protected 

EHR at YNHHS. The models are robust despite the vocabularies only reporting some key 

relationships and no site-specific training names of the medications recorded within the EHR at 

Yale. We anticipate an increase in performance if further site-specific training on the distribution 

of words is sought, but by ensureing the models were not trained in YNHHS data, our approach 

would be more likely to generalize to other hospital systems without need for local development. 

Our study has certain limitations. We only evaluated the models on drug concepts at YNHHS. 

Therefore, our approach’s effectiveness in other domains (like conditions and procedures) and at 
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other hospital systems remains untested. However, conditions and procedures are often readily 

mapped using standard ontologies like ICD or CPT to SNOMED mapping. Also, our approach 

can be applied to map other domains, thanks to the availability of mapping pairs of other 

domains on Athena Vocabulary. Another limitation is we did not leverage LLMs with better 

performance, such as ChatGPT, into the workflow. Future studies may explore finetuning 

ChatGPT with the dataset described in this study to develop a reliable end-to-end mapping 

pipeline without human in the loop, and therefore aligning EHR in many hospital systems at a 

relatively low cost. 

Conclusion 

Sentence transformer-based natural language processing models can enable automated mapping 

concepts of drugs at YNHHS to counterparts in OMOP CDM automatically with significantly 

improved accuracy. Similar approaches can be applied in other domains and organizations (5). 
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 Figure 1. An overview of this study. Using data from the Athena vocabularies and mapping 
relationships on Metainventor medical acronyms and abbreviations database, we pretrained and 
finetuned off-the-shelf models. The clinician manually evaluated a total of 11 approaches to map 
medication concepts in YHNNS’s EHR to OMOP CDM.  
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Table 1. Comparison of model architecture, pretraining and training data sources, and 
error statistics in mapping the 200 most common drug concepts. 

Approach or 

Model 

Algorithm 

or backbone 

model 

Number of 

parameters 

Data sources for 

additional domain-

specific model pre-

training and training 

Errors on 

the 

ingredient 

Errors 

on the 

dosage 

Total 

errors 

Accuracy 

(95% CI) 

RapidFuzz 

String 

match, bag-

of-words 

0 

 

 

 

 

176 (88.0%) 9 (4.5%) 
185 

(92.5%) 

7.5% 

[3.8% - 

11.2%] 

Usagi 
TF-IDF, bag-

of-words 
0 

7 

(3.5%) 

13 

(6.5%) 

20 

(10.0%) 

90.0% 

[85.8%, 

94.2%] 

all-mpnet-

base-v2 

 

133M 
4 

(2.0%) 

72 

(36.0%) 

76 

(38.0%) 

62.0% 

[55.3% - 

68.7%] 

BioLORD 133M 
2 

(1.0%) 

14 

(7.0%) 

16 

(8.0%) 

92.0% 

[88.2% - 

95.8%] 

SFR-

Embedding-

Mistral 

7.11B 
0 

(0.0%) 

21 

(10.5%) 

21 

(10.5%) 

89.5% 

[85.3%, 

93.7%] 

mpnet-drug 
all-mpnet-

base-v2 
133M 

Pre-training: NA 

Training: drug mappings 

from Athena Vocabulary 

2 

(1.0%) 
5 (2.5%) 7 (3.5%) 

96.5% 

[94.0% - 

99.0%] 

BioLORD-drug BioLORD 133M 
2 

(1.0%) 
8 (4.0%) 

10 

(5.0%) 

95.0% 

[92.0% - 

98.0%] 

Gatortron-

drug 

GatorTron-

base 
345M 

Pre-training: drug 

concept and concept 

synonyms from OHDSI 

vocabulary 

Training: drug mappings 

1 

(0.5%) 
9 (4.5%) 

10 

(5.0%) 

95.0% 

[92.0% - 

98.0%] 

mpnet-all 
all-mpnet-

base-v2 
133M Pre-training: NA 

Training: all mapping 

pairs from Athena 

Vocabulary 

13 

(6.5%) 

13 

(6.5%) 

26 

(13.0%) 

87.0% 

[82.3% - 

91.7%] 

BioLORD-all BioLORD 133M 
13 

(6.5%) 

19 

(9.5%) 

32 

(16.0%) 

84.0% 

[78.9% - 

89.1%] 

Gatortron-all 
GatorTron-

base 
345M 

Pre-training: all concepts 

from Athena Vocabulary 

Training: all mapping 

pairs from Athena 

Vocabulary 

16 

(8.0%) 

26 

(13.0%) 

42 

(21.0%) 

79.0% 

[73.4% - 

84.6%] 

CI: 95% confidence interval 
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Table 2. Comparison of model architecture, pretraining and training data sources, and 
error statistics in 200 random drug concepts across models.  

 

Approach or 

Model 

Algorithm or 

backbone 

model 

Number of 

parameters 

Data sources for 

additional domain-specific 

model pre-training and 

training 

Errors on 

the 

ingredient 

Errors on 

the 

dosage 

Total 

errors 

Accuracy 

(95% CI) 

RapidFuzz 

String match, 

bag-of-

words 

0 

 

 

 

 

183 (91.5%) 2 (1.0%) 
185 

(92.5%) 

7.5% 

[3.8% - 

11.2%] 

Usagi 
TF-IDF, bag-

of-words 
0 35 (17.5%) 

25 

(12.5%) 

60 

(30.0%) 

70.0% 

[63.6% - 

76.4%] 

all-mpnet-base-

v2 

 

133M 
36 

(18.0%) 

68 

(34.0%) 

104 

(52.0%) 

48.0% 

[41.1% - 

54.9%] 

BioLORD 133M 23 (11.5%) 34 (17%) 
57 

(28.5%) 

71.5% 

[65.2% - 

77.8%] 

SFR-

Embedding-

Mistral 

7.11B 
29 

(12.5%) 

38 

(20.5%) 

67 

(33.5%) 

66.5% 

[60.0% - 

73.0%] 

mpnet-drug 
all-mpnet-

base-v2 
133M 

Pre-training: NA 

Training: drug mappings 

from Athena Vocabulary 

12 

(6.0%) 

22 

(11.0%) 

34 

(17.0%) 

83.0% 

[77.8% - 

88.2%] 

BioLORD-drug BioLORD 133M  
17 

(8.5%) 

27 

(13.5%) 

44 

(22.0%) 

78.0% 

[72.3% - 

83.7] 

Gatortron-drug 
GatorTron-

base 
345M 

Pre-training: drug concept 

and concept synonyms 

from OHDSI vocabulary 

Training: drug mappings 

14 

(7.0%) 

22 

(11.0%) 

36 

(18.0%) 

82.0% 

[76.7% - 

87.3%] 

mpnet-all 
all-mpnet-

base-v2 
133M 

Pre-training: NA 

Training: all mapping pairs 

from Athena Vocabulary 

55 (27.5%) 
21 

(10.5%) 

76 

(38.0%) 

62.0% 

[55.3% - 

68.7%] 

BioLORD-all BioLORD 133M  56 (28.0%) 
26 

(13.0%) 

82 

(41.0%) 

59.0% 

[52.2% - 

65.8%] 

Gatortron-all 
GatorTron-

base 
345M 

Pre-training: all concepts 

from Athena Vocabulary 

Training: all mapping pairs 

from Athena Vocabulary 

52 (26.0%) 
36 

(18.0%) 

88 

(44.0%) 

56.0% 

[49.1% - 

62.9%] 

CI: 95% confidence interval 
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