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Abstract

Over 30 international research studies and commercial laboratories are exploring the use of

genomic sequencing to screen apparently healthy newborns for genetic disorders. These

programs have individualized processes for determining which genes and genetic disorders

are queried and reported in newborns. We compared lists of genes from 26 research and

commercial newborn screening programs and found substantial heterogeneity among the

genes included. A total of 1,750 genes were included in at least one newborn genome

sequencing program, but only 74 genes were included on >80% of gene lists, 16 of which

are not associated with conditions on the Recommended Uniform Screening Panel. We used

a linear regression model to explore factors related to the inclusion of individual genes

across programs, finding that a high evidence base as well as treatment efficacy were two of

the most important factors for inclusion. We applied a machine learning model to predict how

suitable a gene is for newborn sequencing. As knowledge about and treatments for genetic

disorders expand, this model provides a dynamic tool to reassess genes for newborn

screening implementation. This study highlights the complex landscape of gene list curation

among genomic newborn screening programs and proposes an empirical path forward for

determining the genes and disorders of highest priority for newborn screening programs.
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Introduction

At least 34 groups worldwide are exploring genomic sequencing as a way to expand

newborn screening and identify children at high risk for hundreds of actionable genetic

disorders.1 Stakeholders, including diverse groups of parents,2,3 rare disease specialists,4

primary care physicians,5 genetic counselors,4,6 and the public7 support the implementation

of genomic newborn screening for at least some genetic disorders. However, many clinical,

ethical, and technological barriers to implementation remain.1,8,9,10 One ongoing challenge is

determining which specific genes should be queried and which variants should be reported

in apparently healthy infants.

The criteria for disease screening developed by Wilson and Jungner11 in the 1960s has

historically provided a framework for the disorders included in public newborn screening

programs. These criteria emphasize the inclusion of childhood-onset disorders that are

treatable if diagnosed in their early stages. However, current newborn screening practices

have recently begun to depart from this paradigm. For example, the additions of infantile

Pompe disease and X-linked adrenoleukodystrophy to the Recommended Universal

Screening Panel (RUSP) in the United States in 2015 and 2016 have led to the identification

of conditions, such as late-onset Pompe disease or adrenomyeloneuropathy, that do not

develop until adulthood or have attenuated forms.12,13 As such, there is now a precedent to

consider a broader number of disorders for inclusion in newborn screening, including those

that do not develop in the newborn period. Over 700 genetic disorders that present

throughout the lifespan now have targeted treatments,4,14 and consensus guidelines for

long-term surveillance and management have been developed for many others. Early

diagnosis of these conditions has the potential to improve the lifelong health of infants who

receive positive genomic screening results.

3

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 5, 2024. ; https://doi.org/10.1101/2024.03.24.24304797doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.24.24304797


At present, each research and commercial newborn screening program uses an

independent process to design the list of genes that they analyze. Determining which genes,

and associated disorders, have high concordance across research studies and commercial

products related to genomic newborn screening could support the development of a list of

high concordance genes that could be used for pilot screening by public newborn screening

laboratories. Prior studies have identified discrepancies across four gene lists curated by

commercial genomic newborn screening products15, as well as five research studies,16 but

little is known about the concordance of gene lists used by other programs.

Here we compare the content of gene lists from 19 research studies and seven commercial

genomic newborn screening programs, using a linear regression model to determine the

gene and disease characteristics that are most strongly associated with inclusion among

multiple lists.17,4,18,19 We then use a machine learning random forest model to identify

characteristics of genes that predict their inclusion across studies, which can serve as a

dynamic resource for determining the acceptability of additional genes to be included in

genomic newborn screening in the future.

Materials and methods

Identification of lists of genes from research studies and commercial products

Research studies and commercial laboratory gene panels related to genomic newborn

screening were identified based on inclusion in the International Consortium on Newborn

Sequencing (ICoNS) and through an online search using terms related to genomic

sequencing of newborns. In total, 34 programs were identified, of which 26 provided gene

lists (Table 1, Figure S1). Only genomic newborn screening programs with independently

constructed gene lists that include >100 genes were included in our analysis.

We included gene lists from 19 research studies: BabyDetect20, BabyScreen+16, BabySeq217,

BeginNGS18,21, Chen et al. 202322, Early Check23, FirstSteps, the Generation study,

4

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 5, 2024. ; https://doi.org/10.1101/2024.03.24.24304797doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.24.24304797


gnSTAR24,25, GUARDIAN study, Jian et al. 202226, Lee et al. 201927, Luo et al. 202028,

NeoExome29, NeoSeq30, NESTS31, NewbornsInSA, Progetto Genoma Puglia, and Wang et

al. 202332. In two studies (GUARDIAN study and Early Check23), participants receive testing

for a gene list focused on conditions with effective treatments and have the option to be

tested for an expanded gene list. For both of these studies, we included only the core gene

list focused on treatable genetic conditions. A total of seven lists of genes from commercial

firms that offer products related to genomic newborn screening were included: FORESITE

360, Fulgent, Igenomix, Mendelics, Nurture Genomics, PerkinElmer33, Sema4.20 Of note, the

Sema4 product is no longer commercially available.

For several gene lists that were included, information on inclusion criteria was obtained from

publicly available documents (Table S1).

Merging of gene lists

Gene names were converted to the current nomenclature set forth by the HUGO Gene

Nomenclature Committee (HGNC) based on an available online multi-symbol checker.34 For

purposes of analysis, each gene was linked to one condition.

The multistep process for linking genes to a single disorder began by first identifying the

disease names associated with each gene on Online Inheritance in Man (OMIM).35 If only

one disease name was associated with the gene on OMIM, a gene-disease pair was formed.

If the gene was known to be associated with multiple OMIM disorders, we used the ClinGen

Gene-Validity Resource to select only the disorder with definitive validity when available.36

For genes with more than one disorder with definitive validity or for genes without any

disorder with definite validity, one disorder was selected based on the highest number of

programs in this study that indicated it as screening target. For example, for RYR1, which

has a definitive association with both susceptibility to malignant hyperthermia and

myopathy,36 susceptibility to malignant hyperthermia was selected as the target disorder.
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Susceptibility to malignant hyperthermia was indicated as a target disease by five of seven

programs with disease information available screening for this gene, compared with

myopathy which was listed as a target disease by only two of seven programs. Each gene

and associated condition was also assigned to a clinical area, such as neurology or

cardiovascular disease, by a medical geneticist (S.B., N.G.).

A total of 42 genes were not associated with any disorders on OMIM or ClinGen, possibly

because they were candidate genes or had very recently been substantiated as disease

genes. For genes not associated with a disorder, the disorder name with the highest number

of programs indicating it as a screening target was assigned. Two gene names, GTM and

CD1, which could not be linked to HGNC approved gene names, were omitted from the

analysis.

Characteristics of genes and associated disorders

In order to determine which genes were associated with disorders on the Recommended

Uniform Screening Panel (RUSP), genes derived from a list published by Owen et al.21 were

cross-referenced with the disease entities listed in the RUSP section of the United States

Health Resources and Services Administration (HRSA) website

(https://www.hrsa.gov/advisory-committees/heritable-disorders/rusp). A gene was

determined to be associated with a specific disease on the RUSP if it was listed under the

"Cause" section of the pertinent disease-specific HRSA webpage.

Using information from previously published studies, most genes were then matched with

metrics related to a range of characteristics including: disease penetrance,17,19,37 disease

severity,19,37 acceptability and efficacy of treatment,19,37 age of onset,19,37 evidence base

(which refers to the level of knowledge about the natural history of the condition and

treatments),17,19,37 prevalence,4 and existence of an orthogonal diagnostic test (such as a

biochemical biomarker that can be found in blood).4 Similarly, information about the

6

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 5, 2024. ; https://doi.org/10.1101/2024.03.24.24304797doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.24.24304797


inheritance pattern were drawn from previously published studies.17,19,37 When two modes of

inheritance were implicated for the same gene and disease in these studies, such as for

MYO6, a cause of non-syndromic deafness, dominant inheritance was selected as it was

expected to lead to the most inclusive reporting criteria.

Additionally, the age-based semi-quantitative metric (ASQM) score,19,37 a previously

published metric which assigns a number between 0 and 15 to a gene-disease pair to

denote overall appropriateness for newborn screening, was applied to genes for which it was

available. For a majority of genes, the category in the BabySeq study17 was also encoded.

BabySeq Category A is designated as the category of genes most amenable to newborn

screening, while Category B is considered less amenable to newborn screening. Finally, the

proportion of 238 rare disease experts that recommend screening for a gene in an online

survey was included for 649 of the genes.4 A description of all metrics can be found in Table

S2. Each of these metrics was available only for a subset of genes included in this study

(Figure S2).

Statistical analysis

Descriptive statistics for each gene list, including the length of the list, proportion of genes in

each clinical category, and the number of genes associated with RUSP conditions were

calculated. The distribution of genes across BabySeq categories, average ASQM, and

percentage of survey respondents recommending inclusion for the gene in Gold et al (2023)4

were calculated within each study for all genes for which these metrics were available.

To provide information on the concordance across all lists of genes, Jaccard similarity

indices were calculated. This index measures the number of genes in the intersection set

divided by the number of genes in the union set of two gene lists.
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A linear regression model was used to identify factors associated with inclusion in multiple

gene lists. Two types of regressions were performed: (1) regressions in which the outcome

variable is the proportion of gene list inclusion across all genomic newborn screening

programs and the independent variables are factors related to each gene and its associated

condition (Table S4, S6), and (2) regressions in which inclusion of a gene for each individual

study was explored (Table S5, S7-S9).

Prediction analysis

A machine learning algorithm was developed to predict the number of gene lists in which

each gene was included. We used the observed overall proportion of the gene lists in which

each gene was included as the outcome measure. Predictors were nearly identical to those

used in the linear regression model, but the inheritance pattern was excluded as it is unlikely

to be a criterion by which newborn screening programs select diseases and genes to

assess.

Missing variables were handled by adding dummies in the regression model and setting the

variable to zero, and by setting the value to a negative value in the random forest model.

Model parameters used in the random forest algorithm were number of trees (100), variables

at each node (four), and limits to tree length (none). We tuned one parameter (variables at

each node) using the Caret package using 3-fold cross validation in R version 4.3.1 (Vienna,

Austria).

An ensemble machine learning algorithm was constructed. The final prediction is the

average of the predictions of a linear regression model and a random forest prediction

algorithm, similar to standard methods in machine learning for numerical data.38 To measure

the out-of-sample R-squared of the prediction, we trained the algorithm on 70% of the

sample, and measured its accuracy on the hold-out set of 30% of genes. The algorithm was

8

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 5, 2024. ; https://doi.org/10.1101/2024.03.24.24304797doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.24.24304797


then trained on the entire sample, and variable importance measures and the predictions

were obtained in Stata 18 (College Station, TX).

Results

Description of genomic newborn screening research programs and commercial products

We identified 34 research and commercial genomic newborn screening programs (Table 1).

Of these, 11 are located in North America, 10 in Asia, eight in Europe, four in Oceania and

one in South America. A total of 12 of these research studies have resulted in a publication.

A total of 11 studies are ongoing and 11 are scheduled to begin. Across the research

studies, the number of enrolled or intended participants varies from 48 to 100,000, with the

combined total intended sample size being 399,910. The most frequently used methods to

sequence DNA in the genomic newborn screening programs are panel sequencing (17

programs) and whole genome sequencing (13 programs). We did not record which programs

used proband-only genetic testing, versus dyad or trio sequencing with parental samples. In

the following analyses of this paper, we included lists of genes that were publicly available or

provided by study authors, which included 19 research programs and seven commercial

programs.

Information on several of the studies' inclusion criteria, obtained from publicly available

documents, is listed in Table S1. Nearly all studies indicated the intent to include early-onset,

severe, treatable conditions in their associated publications or websites.

List of gene characteristics

In total, 1,750 genes were included in at least one of the 26 gene lists (Table S3). The

number of genes included in each list ranged from 134 to 889 (median = 284) (Figure 1).

Commercial panels included fewer genes (median 268 vs. 385 for research studies).

Cumulatively, genes linked to inherited metabolic (38.1%), immunological (13.0%),

endocrinologic (12.0%) and neurological (8.1%) disorders constituted the largest share
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across the gene lists. Dermatologic (0.3%), orthopedic (0.5%) and ophthalmological (1.0%)

disorders accounted for the lowest percentage of disorders across studies. Commercial

newborn screening programs had a greater number of genes associated with oncological

disorders (median 9 vs. 2 for research studies) and ENT/dental disorders (median 12 vs. 3

for research studies) than research studies. On the other hand, commercial programs had

fewer genes related to hematological (median 8 vs. 44 for research studies), immunological

(median 26 vs. 35 for research studies), and neurological diseases (median 18 vs. 36 for

research studies).

Gene list concordance and discordance

Many of the gene lists included in this analysis contain unique genes that are not shared

among other studies (Figure 2A). For example, the lists of the four research studies with the

largest intended sample size (BabyDetect, the Generation Study, the GUARDIAN study and

NewbornsInSA) share only 98 genes (12%) out of a total of 807 genes. Across these four

programs, 322 (40%) genes were included in just one of the four studies. However, among

the most recently curated gene lists, from BabyScreen+, the Generation study and Nurture

Genomics, a larger proportion of 238 genes (28%) is shared (Figure S5C). Commercial

panels from Fulgent, PerkinElmer and Sema4 have substantially overlapping content, with

almost the entire gene list of Sema4 incorporated in the larger gene lists of Fulgent and

PerkinElmer (Figure S5D).

To compare the content of each of the 26 gene lists with one another, we used a pairwise

Jaccard Index, a calculated measure of concordance between two gene lists (Figure 2B).

We demonstrated that several other pairs of gene lists used in genomic newborn screening

programs have highly similar content. Genomic newborn screening programs with shorter

gene lists generally have a higher proportion of genes that appear on at least 21 (>80%) of

gene lists. We found that the proportion of high-concordance genes on a gene list is
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negatively correlated with the number of genes included (Pearson correlation coefficient:

-0.84) (Figure S4A).

Overall, most genes screened for in various genomic newborn screening programs have

little concordance. Of the 1,750 genes included in at least one list, the large majority

appeared on only a handful of gene lists. 1,500 (86%) genes appear on 10 lists or fewer, and

1,230 (70%) genes appear on five lists or fewer. A large proportion of genes are included

only in three or fewer lists: 610 (35%) out of 1,750 genes were represented on only one

gene list, 240 (14%) on two gene lists, and 172 (9%) on three gene lists (Figure S3).

Importantly, there is concordance on a small number of genes: 17 genes (1% of 1,750) are

included in all lists. In total, 74 (4% of 1,750) genes appear on at least 21 or >80% of gene

lists. Of these genes, 58 are associated with diseases on the RUSP. Although the RUSP has

been constructed with the American health care setting in mind, European, Asian and

Australian sequencing programs screened at a similar rate for RUSP diseases (Table S3).

Among genes not associated with disorders that are already on the RUSP, 16 appeared on

21 or more (>80%) lists, and 31 genes appeared on 19 or more lists (Figure 3).

Disease factors associated with inclusion in multiple gene lists

We investigated the factors related to each gene and its associated condition that are most

frequently associated with inclusion on multiple lists of genes. Genes associated with RUSP

core conditions were 70.2% (se=2.5%) more likely to be included in the list of genes than

genes not on the RUSP. Genes associated with secondary conditions on the RUSP were

55.1% (se=2.8%) more likely to be included (Figure 4A).

Many other characteristics were correlated with gene list inclusion. The proportion of rare

disease experts recommending screening for a gene on a previously administered survey4

was found to be strongly correlated with gene list inclusion (Pearson correlation coefficient =
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0.66) (Figure S8). Similarly, the ASQM Score17,19,37 for a gene-disease pair was positively

correlated with gene list inclusion (Pearson correlation coefficient = 0.47). There was a

strong association between gene list inclusion and previously defined category BabySeq

Category A17 (median of 23.9% inclusion vs. median of 10.8% inclusion for genes in

Category B), which is designated as the category of genes most amenable to newborn

screening (Figure S7).

Linear regressions combine data from different datasets to assess the factors that could

explain why some genes were more frequently included in genomic newborn screening than

others (Figure 4A, Table S4). The gene and disease-related factor that was most strongly

associated with gene list inclusion is the evidence base for the gene-disease pair, with

conditions previously defined as having the highest evidence base score17,19,37 being 31.4%

(se=2.5%) more likely to be included in lists of genes. Other factors associated with inclusion

across gene lists include high treatment efficacy (16.4%, se=2.4%), high disease penetrance

(16.0%, se=2.9%), high disease severity (15.2%, se=3.2%), high acceptability of treatment in

terms of the burdens and risked placed on the individual19,37 (14.9%, se= 2.4%), a neonatal-

or infantile-onset (14.3%, se=2.3%) of the condition, and the existence of an orthogonal test

(13.1%, se=2.3%). Additionally, genes that were recommended for inclusion in newborn

screening by ≥80% rare disease experts in a recent survey,4 were 44.0% (se=3.1%) more

likely to be included than genes that were recommended by fewer experts.

To evaluate whether different gene characteristics may drive the inclusion of a gene in the

lists of gene queried by each research program and commercial product, regressions for

each genomic newborn screening program were reported separately (Figure 4B and Tables

S5, S7-S9). The evidence base of a gene-disease pair was highly predictive of gene

inclusion for studies such as BabySeq2 and FORESITE 360 (73.9%, se=5.2% and 53.9%,

se=5.0%, respectively), compared with an average of 31.4% (se=2.5%). Other programs

such as BabyScreen+ put more weight on early-onset conditions (35.4%, se=5.0% vs.
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average of 14.3%, se=2.4%). While the coefficients on all these characteristics vary between

programs (Figure 4B), the vast majority of the associations are positive, suggesting that all

programs mostly value genes with each of these characteristics for genomic newborn

screening, yet weigh these characteristics differently when curating gene lists.

Random forest prediction model

Because the information related to gene and disease-related characteristics such as disease

prevalence, penetrance, and treatment type may change over time, we used a machine

learning algorithm to determine how these and other factors predict inclusion across gene

lists (Figure S9). The relative importance of all variables for prediction purposes is shown in

the random forest prediction, a proxy for how much variation is explained by each variable

(Figure 4C). The evidence base, recommendation proportion and the treatment acceptability

are the three most important predictors of list of genes inclusion. Our prediction model was

able to explain up to 79% of the variation in gene list inclusion with the characteristics in our

dataset (out-of-sample R2 of the linear regression = 0.74, random forest algorithm R2 = 0.81).

As more information about these genes becomes available, novel gene-disease associations

are discovered, and new therapeutics emerge, these metrics may provide information about

whether a gene is a good candidate for genomic newborn screening.

Discussion

At least 34 programs and commercial products worldwide are exploring genomic newborn

screening, but the specific genes and associated genetic conditions queried by each

program vary widely. In this study, we explored heterogeneity across gene lists and

determined which genes are of highest concordance across studies and commercial

products. We then identified the characteristics of genes and genetic disorders that predict

their inclusion across multiple research and commercial newborn screening programs.
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The size and content of the gene lists used for newborn screening vary among the programs

we assessed, but they all share a common emphasis on some clinical areas and specific

genes. Beyond the genes associated with conditions on the RUSP, the programs in this

study each include a large proportion of genes associated with inherited metabolic,

immunologic, and endocrine disorders, many of which are early-onset and treatable. More

specifically, OTC, associated with ornithine transcarbamylase deficiency, had 96%

concordance across lists and the genes associated with glycogen storage disease types Ia

and Ib had 96% and 92% concordance respectively, similar to findings from a survey of rare

disease experts.4 These genes lack biomarkers that can be accurately assayed on a

population scale and are therefore obvious candidates for ascertainment by genetic testing.

Several genes associated with primary immunodeficiencies, including CYBB, associated

with chronic granulomatous disease and BTK, associated with X-linked

agammaglobulinemia, also had high concordance. The ascertainment of these disorders

using genomic sequencing is a natural extension from the identification of severe combined

immunodeficiency using T cell receptor excision circles.39 Importantly, genes associated with

secondary conditions on the RUSP, such as those associated with 3-methyl-crotonyl-CoA

carboxylase deficiency, were widely included across lists. Many such conditions do not

conform to the historic Wilson-Jungner criteria, suggesting that some newborn sequencing

programs have upheld the status quo in testing even when the disorders are not early-onset

or highly treatable.

Several factors may contribute to the variability of the gene lists. First, treatment accessibility

and reimbursement criteria may differ from country to country. For example, several drugs

that aim to produce exon-skipping in disease genes are available in the US but not in the

European Union. Accordingly, the definition of which disorders are actionable or treatable

may differ. Conditions with high concordance across lists, such as metabolic disorders in

which dietary changes can prevent catastrophic hypoglycemia or metabolite intoxication,

seem ripe for inclusion in newborn screening now. Yet, the benefit of including other
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disorders is not as clear, as reflected by inconsistent inclusion across gene lists. The

causative genes related to tuberous sclerosis (TSC1 and TSC2), for example, appear on 14

of 26 lists. For this condition, early anti-epileptic treatment can mitigate the devastating

effects of West syndrome, but only in the minority of patients who present with an abnormal

electroencephalogram.40 Finally, cultural differences may play a role in the breadth of the

gene lists, as some treatments are not available in every country or some disorders may not

be perceived as sufficiently actionable by every study team. Interestingly, in this study, the

median length of gene lists from US-based research programs was 263, compared to 405

from research studies based in Europe.

Most research and commercial genomic newborn screening programs report that they

sought to include genes associated with disorders that are childhood-onset and treatable. In

this study, we determined whether other characteristics of genes and diseases predicted

their inclusion within individual genomic newborn screening programs and across lists of

genes from multiple programs. To do so, we used data from prior studies to classify each

gene and its associated disorders more deeply across several axes. Unsurprisingly, the

linear regression model demonstrated that the most important factor for inclusion was

whether or not a gene is associated with a disorder that is already included in the RUSP.

Commercial programs in particular included predominantly genes associated with disorders

on the RUSP and were therefore highly concordant with one another. Genomic sequencing

would be an important adjunct to biochemical screening of these disorders, as the two

methodologies have been demonstrated to be complementary.41,42 Unexpectedly, 42 genes

without a disease association on OMIM or ClinGen were included on several lists,

demonstrating that some programs were willing to include candidate genes or those with

new associations with disease.

Similar to prior studies,4 genes associated with relatively common and treatable hematologic

disorders, such as G6PD deficiency and hemophilia type B were also found to be included
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across the majority of lists. Notably, however, F8, the gene associated with hemophilia A,

which shares similar genetic and clinical characteristics to hemophilia B, was included only

in a minority of lists. This discrepancy perhaps points to the technical challenge of identifying

the two most common variants in F8, which are inversions, and are difficult to detect using

genomic sequencing.43 Of note, in contrast to the results from prior studies, genes

associated with pediatric hereditary cancer predisposition syndromes, such as RB1, were

not highly concordant across gene lists.

In both the linear regression model and machine learning prediction model, gene and

disease characteristics found to be of high importance were the evidence base, disease

penetrance; the acceptability of treatment; and the presence of an orthogonal diagnostic

test. These metrics are likely to change for individual genes over time as new clinical

information and therapies emerge. The penetrance of each disorder, in particular, may not

be well-understood until population-wide genomic screening becomes routine.44,45

Unexpectedly, despite the stated intent of many newborn screening programs, age of onset

of a disorder and disease severity were not strong predictors of inclusion across lists,

perhaps because these are in fact subjective designations.

This study has several limitations. First, due to the rare nature of many genetic disorders,

often there is imperfect knowledge about disease characteristics such as penetrance, age of

onset, and available therapies. With limited evidence, individuals curating the gene lists

might make disparate selections even when intending to apply the same selection criteria.

Additionally, these programs are based in different countries where the population

frequencies of some genetic disorders may vary. International health care systems may also

offer different specialists or disease treatments, which may influence gene inclusion.

The international interest in genomic newborn screening has prompted urgent questions

about which genes and disorders should be evaluated in infants. In total, 74 genes (of which
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16 are not related to RUSP disorders) appeared in 21 of 26 lists. It seems reasonable that

these genes should be prioritized for population-wide implementation. In the future,

knowledge about a genetic condition, its available treatment, and presumed penetrance are

important characteristics to consider when identifying its suitability for screening. Rather than

design a static list of genes for population-wide implementation, the predictors generated by

this model might be best used to shape an updated form of the Wilson-Jungner criteria

suited for genomic newborn screening. These criteria could be applied to a centralized

database of genes that is routinely updated to prioritize new genes for screening.
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Table 1. Research and commercial genomic newborn screening programs. Gene lists from
26 of these programs were included in the analysis (denoted with an asterisk).
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Figures

Figure 1. Clinical areas represented on gene lists from 26 research and commercial genomic
newborn screening programs. Genes with no disease association on OMIM or ClinGen have
been excluded from this figure.
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Figure 2. Concordance of gene lists across research and commercial genomic newborn
screening programs.

A. UpSet plot46 of gene lists of 4 largest research studies. The matrix below the bar
graph represents each individual study and their intersections.

B. Jaccard similarity index for all gene list pairs.

A.

B.
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Figure 3. High concordance genes that are not associated with genetic disorders that are
already included on the US RUSP. The x-axis is each genomic newborn screening study and
y-axis are individual genes; the corresponding cell is colored if the gene is included on a
given list.
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Figure 4. Factors associated with gene list inclusion.
A. Regression coefficients associated with various gene and disease characteristics

predicting inclusion across gene lists.
B. Heat map with regression coefficients associated with gene and disease

characteristics for each individual genomic newborn screening program.
C. Variable importance in random forest prediction model of gene and disease

characteristics predicting inclusion across gene lists.

A.
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B.

C.
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