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Abstract 
Background/Objectives: Glioma represents the largest entity of primary brain tumours in 
adults, with an overall survival of less than 20% over 5 years. Glioblastoma is the most frequent 
and aggressive glioma subtype. At present, there are few well-established pre-clinical 
predictors for glioma incidence. Due to the availability and size of prognostic studies in glioma, 
we utilised a Mendelian randomization framework to identify non-causal protein biomarkers 
which are associated with early-onset of glioma in the European population. 
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Methods: We generated polygenic risk scores (PRS) for glioma (n=12,496), glioblastoma 
(n=6,191), and non-glioblastoma (n=5,819) cases. We used reverse Mendelian randomization 
(MR) to examine the relationship between the genetic liability of glioma and 1,463 and 90 
proteins were measured using an Olink panel (UKBB, n=35,571 and SCALLOP, n=21,758), 
additionally 4,907 and 2,994 aptamers were assayed using SOMAscan assays (deCODE n=35,559 
and INTERVAL, n=3,301). We further performed a forward cis-MR and colocalization analysis 
leveraging the circulating protein markers in risk of glioma, glioblastoma and non-glioblastoma. 
 
Results: Reverse MR identified 161 unique proteins associated with the PRS of glioma, 79 
proteins associated with the PRS of glioblastoma, and 11 proteins associated with the PRS of 
non-glioblastoma. Enrichment analyses identified a proportion of plasma proteins to be 
associated with the PRS of glioma to be correlated with response to external stimulus. A group 
of plasma proteins linked to the PRS of glioma and glioblastoma were related to the immune 
system process. Forward MR of the putative relationships were found to have little or no 
evidence of association on the causal pathway. Candidate markers ETFA, RIR1 and BT3A1 are 
evidenced in glioma risk. 
 
Conclusion: Our findings identify a high genetic liability to glioma is associated with the immune 
system processes. Non-causal plasma biomarkers identified through PRS associations could 
indicate novel non-causal biomarkers of early glioma development.  
 

Background 
Central nervous system (CNS) and brain tumours lead to significant years of life lost compared 
to other cancer types, with an average of over 20 years of life lost(1). Gliomas are the largest 
group of intrinsic brain tumours, with age-adjusted incidence rates ranging from 4.67 to 5.73 
per 100,000(2). At present, the gold standard diagnostic tool to detect brain tumours are MRI 
scans(3). A blood-based liquid biopsy could provide a cheap, simple, and minimally invasive way 
to diagnose brain tumours and monitor for recurrence(4).  
 
Glioblastomas are the most common and malignant glioma subtype, representing around 55% 
of gliomas. Glioblastoma tumours are highly invasive malignant tumours with a survival rate of 
less than 5% after 5 years(5). In the 2021 World Health Organisation (WHO) classification of 
CNS tumours, non-glioblastoma gliomas are suggested to be less malignant and sometimes 
characterised by an isocitrate dehydrogenase mutation; the most common entities include 
astrocytoma and oligodendroglioma(6).   
 
Identification of novel biomarkers has relied heavily on laboratory-based liquid biopsy 
proteomic studies using clinical cohorts and small protein panels. However, recent advances 
have meant large genome wide-association studies (GWAS) of the plasma proteome are cheap 
and feasible to conduct. This has led to GWAS identifying genetic variants associated with 
thousands of circulating proteins, called protein quantitative trait loci (pQTL)(7-12). Generally, 
pQTLs have been used to proxy the effects of perturbed protein abundance on disease risk to 
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aid drug target identification(13), such as using forward Mendelian randomization (MR) which 
is a statistical method for causal inference which uses genetic variants to proxy the effects of an 
exposure, generally a modifiable risk factor, on an outcome, which is usually a phenotype or 
disease(14). However, recently a novel application of these data in a MR framework has been 
used to identify putative diagnostic biomarkers for the early detection of disease(15).  
 

For disease prediction, we consider the liability threshold (LT), this refers to the tendency for an 

individual to develop disease based on both environmental and additive genetic factors(16). In a 

normally distributed model for disease, there is a point, known as the threshold, at which all 

individuals below are considered unaffected and everyone above that point are affected(17). 

Liability is a continuous lifetime exposure, and as mentioned earlier manifests into disease in a 

small subset of the population but likely has accumulating biological consequences on all 

individuals, relative to their liability. Protein levels that respond to such processes may indicate 

individuals with a higher disease liability.  

 

To identify proteins related to disease liability, a novel approach conceived by Mohammadi-

Shemirani et al, which they called “reverse MR”,  this generates a PRS for disease liability and 

tests for associations with proteins levels in the population studied(15). The hypothesis behind 

the reverse MR framework is that the biological consequence of disease liability alters 

proteomic profiles of individuals pre-onset of disease, and these biomarkers can be useful tools 

for prediction and diagnostics(18). Proteins identified to be a consequence of disease liability 

will associate with all liability SNPs, and we hypothesize these will be identified in the reverse 

MR analysis. It is important to note that this evidence of association will likely not indicate 

proteins that are causal for disease liability, as contrary to a standard forward MR study certain 

assumptions which underpin the MR methodology are relaxed. Moreover, proteins measured in 

this two-sample reverse MR framework are from the population studied, e.g. Europeans, with 

whom almost all individuals (due to the rarity of the disease) are not diagnosed with glioma nor 

will not go on to develop it.    

 

In this paper, we aim to investigate if reverse MR can identify non-causal protein predictors for 
the early detection of glioma, and which processes these proteins may be involved in. We also 
aim to identify putative plasma protein biomarkers involved in glioma risk using forward MR.  
 

Methods 
Ethics 
Ethical approval is not required as this study is using previously published GWAS where ethical 
approval has already been granted. 
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Overview 
We weighted four polygenic risk scores from glioma, glioblastoma and non-glioblastoma 

entities and used genetically-proxied protein levels from four European cohorts to carry out the 

reverse MR. We used the same datasets, instead selecting instruments from the protein 

cohorts in the forward MR approach and carried out a colocalization analysis. For the MR 

methods we performed sensitivity analyses, and then a quantitative trait loci enrichment 

analysis. We also searched the literature for any pre-diagnostic protein biomarkers that 

associate with glioma entities which may provide more insight to our non-causal early markers 

found in the reverse MR. 

 

Polygenic risk score weights 
The glioma dataset is derived from a meta-analysis of 8 different GWAS; UK-GWAS, French-
GWAS, German-GWAS, MDA-GWAS, SFAGS, GliomaScan, GICC, and UCSF-Mayo. These studies 
total to 12,496 adult (aged >18 years) gliomas cases (6,191 glioblastoma and 5,819 non-
glioblastoma) and 18,190 controls with European descent. Cases were newly diagnosed with 
glioma and the controls were recorded as having no history of central nervous system tumours 
at the time of extraction (Supplementary Table 1)(19).  
 
We constructed four sets of polygenic risk score weights for glioma, glioblastoma and non-
glioblastoma using the traditional clumping and threshold (C and T) approach. This means the 
data is restricted by GWAS P-value and LD clumping thresholds. Each set of PRS weights was 
labelled P1 to P4, where P1 represented the most lenient threshold to P4 which represented 
the most stringent threshold (Table 1). Two PRS weights were used in our main analysis (P1 and 
P4), to ensure the PRS was robust across different weights, the other two were included in the 
sensitivity analyses (P2 and P3).  
 

Plasma proteome cohorts 
The UK Biobank cohort (UKBB) measured protein levels of 35,571 participants (between 40-69) 
of European ancestry using the Olink Explore 1536 platform(Supplementary Table 2) (20). The 
deCODE study measured 4,907 aptamers in 35,559 Icelanders using SomaScan version 4 assay, 
this is made up of the Icelandic Cancer Project (52%)(21) and deCODE genetics(Supplementary 
Table 2)(22). The SCALLOP study consists of 13 cohorts of European ancestry of 21,758 
individuals with 90 unique proteins measured using the Olink PEA CVD-I panel(Supplementary 
Table 2)(23). In the INTERVAL study, summary statistics for 3,301 individuals aged 18 years or 
over and of European descent had 2,994 cis-acting and trans-acting plasma pQTLs measured by 
SomaScan assay(Supplementary Table 2)(8). 
 

Reverse Mendelian Randomization 
To assess the associations between the genetic liability to glioma, glioblastoma, non-
glioblastoma and genetically-inferred circulating protein levels, we used reverse Mendelian 
randomization (MR). Our hypothesis of this statistical test is that the PRS of disease gives an 
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indication of disease liability (Figure 1). As we are using genetically proxied protein levels from 
European populations, the hypothesis is that reverse MR will identify non-causal markers which 
contributes to a high genetic liability in European individuals to glioma and that these markers 
may be better as diagnostic markers compared to causal markers. 
 
To carry out the reverse MR, we leveraged the polygenic risk scores for glioma, glioblastoma 
and non-glioblastoma (using both cis-acting and trans-acting genetic variants, to increase the 
proportion of variance explained by the variants on the exposure) and the proteome cohorts 
listed above. We used the TwoSample MR package (24, 25) with PRS for glioma, glioblastoma 
and non-glioblastoma as the exposures, and the proteome cohort as the outcome dataset.  
 
For the main analysis, we only looked at estimates generated by the inverse variance weighted 
method as all the exposures had multiple associated SNPs. For the P1 threshold, a false 
discovery rate (FDR) value was estimated for each protein to account for multiple testing. If an 
association from the P1 analysis passed q-value<0.05 and MR P-value<0.05 in the P4 analysis, 
this would be considered a strong association.  
 
We also assessed heterogeneity between the SNPs in the reverse MR effect estimates for P1, 
for this we performed a Cochrane’s Q-test. If Cochrane’s Q-test<0.05, this result could be 
deemed as potential heterogeneity. To avoid reporting results in which a single SNP was driving 
the association, for associations with potential heterogeneity we carried out a leave-one-out 
analysis. If the leave-one-out analysis contained SNPs which differed by >0.01 this was deemed 
as a highly heterogenous association and was not included in our main analyses. We performed 
independent replication by comparing the similarity of the effect estimate between the UKBB 
cohort against deCODE, SCALLOP and INTERVAL protein associations (this included any proteins 
which reverse MR was carried out) using a pairwise correlation plot. We also compared the 
expected versus observed signs of beta values generated in the reverse MR result between 
UKBB (as the discovery beta) and deCODE (as the replication beta). 
 

Forward Mendelian randomization 
We performed a two-sample forward MR analysis to estimate the causal effect between 
genetically proxied protein abundance and glioma risk in the same datasets as above. Hence in 
this analysis, proteome cohorts were the exposure datasets and the glioma, glioblastoma and 
non-glioblastoma datasets were the outcome datasets. Instruments were selected at a GWAS 
P-value threshold of <5.0x10-8 and clumped at a LD threshold of r2=0.001. pQTLs from the 
proteome cohorts were classified as cis-acting, which is defined as a SNP in the region of 1Mb 
window of the gene regulatory region, or trans-acting which is defined as a SNP located outside 
of the cis region. Only cis-acting SNPs were included in the two-sample forward MR analysis to 
mitigate the influence of horizontal pleiotropy in our results.  
 
We carried out the same multiple testing on the results as used in the reverse MR which 
generated an FDR value for each protein. If an association had a q-value<0.05 it is considered a 
strong association, and if a q-value was between 0.1 and 0.05 this would be considered a 
suggestive association.   
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Colocalization 
For putative proteins with a q-value<0.1 (q-value<0.1 a suggestive association and q-value<0.05 
a strong association) in the forward MR analysis, we carried out a pair-wise conditional and 
colocalization analysis using the PWCOCO package on Linux (26, 27). This involved selecting 
variants in a +/- 500kb window of the gene of interest for both the proteome and glioma 
dataset. Each of the five hypotheses are tested to see if both the exposure and outcome 
dataset has the same shared variant driving the association. A posterior probability (PP) is 
generated to suggest the relationship between variants. If the posterior probability of 
hypothesis 4 (PPH4) has the largest percentage, this proposes SNPs are colocalized and share 
the same variant. For this analysis, we considered PPH4>80% as strong evidence of 
colocalization, 80%≤PPH4≥50% as moderate evidence of colocalization, and PPH4<50% as weak 
evidence of colocalization. 
 

Reverse Mendelian randomization: sensitivity analyses 
We compared the putative proteins discovered in the forward MR against the proteins 
identified in the reverse MR. This is due to our hypothesis that reverse MR is best powered to 
generate non-causal markers for disease and forward MR is well powered to generate causal 
markers for disease. Therefore, these analyses should not have the same proteins evidenced 
with disease risk.  
 
We looked at the direction of effect for each association in MR-Egger and weighted median 
regression scores to further assess the validity of our findings. The two other PRS (P2 and P3) 
for glioma, glioblastoma and non-glioblastoma were also investigated as part of our sensitivity 
analysis, to see if these associations had an MR P-value<0.05. We also ensured each SNP 
included in the reverse MR analysis was not located in the MHC region on chromosome 6, due 
to the complex LD structure in this region.  
 

Forward Mendelian randomization: sensitivity analyses 
For all molecular traits with a q-value<0.1 We carried out a Steiger filtering test to assess 
directionality of the causal association. This is to determine whether there could be reverse 
causation between the protein and glioma entity which is driving the associations identified. If 
the Steiger filtering test was “True” in the direction of exposure to outcome this would pass the 
test, so the association would be considered the correct direction. If the Steiger filtering test is 
“False”, this would suggest the direction of effect is reverse causal. Tests for heterogeneity and 
effect estimates were followed up but as the associations that passed q-value<0.01 had 5 or 
less SNPs, these tests were not as robust as the tests presented in the reverse MR analyses so 
these are reported in supplementary section 1. 
 

Statistical analysis 
The reverse MR and forward MR analysis were supported by the IEU OpenGWAS database and 
‘TwoSampleMR’ R package which was carried out on RStudio(24, 25, 28-30). FDR was calculated 
using ‘stats’ package in RStudio(29). Pairs and lm function on base R was used to generate a 
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pairwise correlation plot comparing UKBB proteins with other cohorts(31). These packages 
were run using R version 4.0.3(31). 
 

Quantitative Trait Loci Enrichment Analysis  
For associations discovered in the reverse MR analyses we searched STRINGdb for the 

enrichment of these proteins to identify if these were co-expressed, and which pathways may 

be enriched(32). Similarly, we carried this out for proteins identified in the forward MR analysis. 

An enrichment p-value is generated in STRINGdb, so we sampled the same number of proteins 

as identified in our main analysis for glioma, glioblastoma and non-glioblastoma from the 

combined cohorts (UKBB, deCODE, SCALLOP and INTERVAL). We generated these randomly 

selected proteins 100 times and compared these values to the enrichment value from the main 

analysis. We then generated an empirical p-value for the main analysis depending on the 

position this value was within the 100 sampled p-values. For the glioma entity analysis, the p-

value is so low for the database it is considered as 0 in the API From the 100 generations of 

random proteins there were 5 scenarios where the enrichment p-value is 0, therefore we can’t 

decipher which p-value is lower between these and the enrichment from the main analysis. 

 

Literature Search  
We carried out a literature search of any markers identified in our reverse MR analysis to see if 
any of these markers have been previously identified in nested case control studies. This 
includes protein measures before glioma diagnosis, also known as pre-diagnostic markers.  

Results 
Reverse MR 
A total of 161 unique proteins were found to be associated with the glioma PRS, these proteins 
were made up of 70 in UKBB, 86 in deCODE, 5 in INTERVAL, and none were from the SCALLOP 
cohort (Supplementary Table 3-5). To note CAMP was present twice in deCODE, but these were 
two aptamers. There were 79 proteins which associated with the glioblastoma PRS, 35 in UKBB, 
42 in deCODE, 2 in INTERVAL, and none were identified in SCALLOP (Supplementary Table 6-8). 
Finally, 13 proteins were associated with the non-glioblastoma PRS 11 in UKBB, 2 in SCALLOP 
and none identified in deCODE or INTERVAL cohorts (Supplementary Table 9-10). 
 
Of these proteins discovered to be associated with glioma PRS, three proteins were removed 
for having potential high heterogeneity, these were EDA2R, FLT3LG and KLRB1 (Supplementary 
Table 11). These were originally UKBB proteins associated with glioma and glioblastoma PRS. 
Most of the associations were found to have a MR P-value<0.05 in P2 and P3 threshold, with 
the exception of 25 proteins associated with glioma PRS not passing P2 and 1 protein not 
passing P3. For glioblastoma, 17 proteins associated with glioblastoma PRS did not pass P2 MR 
P-value<0.05, but all passed P3. 
 
For the UKBB proteins discovered in the reverse MR, we looked to see if the betas of these 
proteins followed a similar pattern within deCODE and INTERVAL cohorts. For glioma and 
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glioblastoma, the cohorts follow the same effect pattern (Figure 2 and 3). We tested the 
concordance of beta signs between UKBB (as the discovery betas) and deCODE (as the 
replicated betas) were tested. Accounting for differences in power, we expected 39 out of 39 
UKBB discovery associations to have the same sign in deCODE, however we only observed 29 to 
have the same sign. For the glioblastoma subset we observed 28 to have the same sign 
compared to an expected 31 and for the non-glioblastoma subset we observed 7 to have the 
same sign of an expected 8. Non-glioblastoma estimates did not seem to associate as well 
between INTERVAL and the other cohorts, but this could be due to the smaller number of 
proteins included in the analysis (Figure 4). 
 

 

Protein enrichment analysis: 
Next, we used STRINGDB to see what processes are linked with proteins that are associated 

with a high genetic liability to glioma entities. We also wanted to see if the proteins associated 

with a high genetic liability to glioma entities were linked more than expected by chance, so we 

calculated an empirical p-value for the enrichment of these proteins. We were unable to 

include BAGE3 and protein isoform LL of CAMP in this analysis as they were not available in 

STRINGDB. 

 

We found a proportion of proteins associated with the glioma PRS to be associated with the 
keywords signal, glycoprotein, and disulfide bond. The gene ontology (GO) processes linked to 
proteins associated with the glioma PRS included response to external stimulus, immune 
system process, and defense response (Supplementary Table 11). STRINGDB enrichment for the 
160 proteins discovered in the glioma analysis is <1.06x10-16 (Figure 5), and the empirical p-
value is <0.05 which suggests the enrichment is more than expected by chance.  
 
We identified a number of proteins linked with the glioblastoma PRS to be associated with the 
keywords, signal, disulfide bond, and glycoprotein. The GO processes associated with the 
proteins linked to glioblastoma PRS were immune system process, cell adhesion, and defense 
response (Supplementary Table 12). STRINGDB enrichment for the 78 proteins discovered in 
the glioblastoma analysis is 7.26x10-13 (Figure 6), and the empirical p-value<0.01 which 
suggests the enrichment is more than expected by chance. 
 
We found 10 of the proteins associated with the non-glioblastoma PRS to be linked with the 
term signal, and 6 of the proteins to be linked with the GO component cell surface 
(Supplementary Table 13). STRINGDB enrichment for the 13 proteins discovered in the non-
glioblastoma analysis is 0.4803, and the empirical p-value was found to be 0.5 which suggests 
the enrichment could be due to chance. 
 

Forward MR 
There were 13 associations found in the forward MR analysis. The strongest association of 
these was genetically-proxied circulating pleckstrin homology like domain family B member 1 
(PHLDB1) and non-glioblastoma risk (Table 2). Genetically-proxied circulating PHLDB1, electron 
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transfer flavoprotein subunit alpha (ETFA), ribonucleoside-diphosphate reductase large subunit 
(RIR1) were found to have a strong association, hemoglobin subunit zeta (HBZ) and 
acetylcholinesterase (ACHE) were found to have a suggestive association with glioma risk. 
Genetically-proxied circulating RIR1 was the only protein to have strong evidence, and 
genetically-proxied circulating transcription elongation factor A2 (TCEA2) had suggestive 
association with glioblastoma risk. Genetically-proxied circulating PHLBD1, ETFA, RAC-gamma 
serine/threonine kinase (AKT3), trehalase (TREH), butyrophilin subfamily 3 member A1 (BT3A1) 
were found to have a strong association, and angiopoietin-related protein 3 (ANGPTL3) has a 
suggestive association with non-glioblastoma risk. No associations between glioma, 
glioblastoma and non-glioblastoma were identified in the INTERVAL and SCALLOP cohorts. 
 
In our colocalization analysis, associations with ETFA, RIR1 and BT3A1 had a PPH4>80% 
suggesting strong evidence of colocalization. AKT3 and non-glioblastoma PPH4=60.08% 
suggesting there is moderate evidence of colocalization and a variant is shared. However, 
associations with PHLDB1, TREH and ANGPTL3 were found to have a PPH2>80% which suggests 
causal variant is linked with the glioma entity dataset, and associations with ACHE had a 
PPH1>80% suggesting the causal variant is linked with the protein dataset. Associations with 
HBZ and TCEA2 had a PPH3>90% suggesting the variants are distinct in the protein and glioma 
datasets and are in LD. Steiger filtering suggested ETFA, RIR1, ACHE, HBZ and glioma risk, TCEA2, 
RIR1 and glioblastoma risk, BT3A1, AKT, ANGPTL3, TREH and non-glioblastoma risk were in the 
correct direction of exposure to outcome.   
 

Protein enrichment analysis 
As there were fewer than 10 proteins associated with each glioma entity in the forward MR, for 
the protein enrichment analysis we used results which reached genome-wide significance from 
the glioma GWAS(19) in which the PRS was derived to investigate potential pathways which 
may be implicated on the causal path. 
 
For the glioma GWAS, the following pathways were enriched; glioblastoma signaling pathways, 
head and neck squamous cell carcinoma, and regulation of G1/S transition of mitotic cell cycle. 
These same pathways were also found to be enriched in the glioblastoma GWAS. The non-
glioblastoma GWAS were found to have glioblastoma signaling pathways, cell cycle, and 
oncogene induced senescence.   
 

Observational data 
In our literature search, two proteins identified in our reverse MR analysis have been reported 
as pre-diagnostic markers for glioma entities. Elevated levels of EGFR were also identified as a 
pre-diagnostic marker for glioblastoma (OR=1.58, 95% CI=1.13-2.22)(33). Increased levels of 
GFAP were reported as a marker for brain cancer pre-diagnosis using the UKBB cohort (Hazard 
ratio=1.56, 95% CI=1.31-1.86)(34).  
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Discussion 
In this study, we aimed to see if reverse MR could identify non-causal biomarkers which may 
predict disease. We also carried out forward MR analyses to identify potential markers 
associated with the risk of glioma to ensure the proteins identified in the reverse MR were not 
on the causal pathway. We also looked at observational data of protein levels before glioma 
diagnosis to see if this followed the same trend as our results. 
 
Overall, we identified 161 proteins to be associated with the glioma PRS, 79 proteins with the 
glioblastoma PRS, and 13 proteins with non-glioblastoma PRS. Enrichment analyses identified a 
proportion of plasma proteins to be associated with the PRS of glioma and glioblastoma to be 
correlated with response to external stimulus and immune response. A nested case-control 
study investigated immunoglobulin E (IgE) levels before glioma diagnosis, which found risk of 
glioma to be inversely related to allergic sensitization, interestingly this was more notable in 
women(35). A similar nested case-control study also identified a positive total IgE (>100kU/L) 
was associated with decreased risk of glioma in both sexes, this was evidenced at least 20 years 
before diagnosis(36). For glioblastoma, this association was only identified in women with an 
allergen-specific IgE (>0.35kUA /L)(36). These two studies find IgE levels to decrease risk of 
glioma, our study finds similar results as we suggest immune system processes to be an early 
marker for glioma. We did not find any of the suggested proteins found in the forward MR to be 
associated with any of the proteins discovered in the reverse MR, suggesting these are non-
causal. 
 
In our forward MR analyses we suggest 10 unique proteins to be associated with risk of glioma 
entities. The associations which passed forward MR analyses and colocalization was genetically-
proxied circulating ETFA and RIR1 in glioma risk, RIR1 in glioblastoma risk, and ETFA, BT3A1, 
AKT3 in non-glioblastoma risk. AKT3 has previously been associated with the development of 
IDH-mutant gliomas, with higher levels of mRNA in lower grade gliomas(37, 38). PHLDB1, TREH, 
TCEA2 and ETFA have also previously been identified as risk loci (19, 39, 40). We identified 5 
putative proteins, RIR1, BT3A1 HBZ, ACHE, ANGPTL3, which have not been identified in glioma 
risk. However, HBZ, ACHE, and ANGPTL3 were not suggested to colocalize. 
 
We investigated the pathways involved in markers which reached genome-wide significance in 
the GWAS which the PRS of glioma entities were derived from(19). In this analysis glioma and 
glioblastoma was associated with glioblastoma signaling pathways, these include DNA repair, 
G1/S progression, cell cycle progression, and cell migration(41). This differs from the pathways 
found to be enriched in our reverse MR analysis which includes response to external stimulus 
and immune system process(41). This provides more evidence to our hypothesis that reverse 
MR may detect early markers for disease. 
 
We searched the literature for proteins which were assessed pre-diagnostically of glioma. Our 
search identified EGFR and GFAP(33, 34). Increased circulating levels of EGFR was associated 
with glioblastoma risk(33), and increased levels of GFAP were associated with brain cancer 
risk(34), both of which were assessed before diagnosis. Similarly, in our study we identified 
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reverse MR associations usually found increased circulating EGFR and GFAP in reverse MR 
associated with glioma, glioblastoma and non-glioblastoma analysis compared to the forward 
MR analysis (Table 3-4). This association differed in the forward MR which suggested these 
circulating markers would be decreased. 
 
Although there were many advantages to our study, there were also some limitations. The 
glioma GWAS cohort was split into glioblastoma (6,191 cases) and non-glioblastoma (5,819), 
which meant in the all glioma cases analysis, there could be a slight bias towards glioblastoma 
compared to non-glioblastoma patients. There is also a potential source of more bias in our 
results as we combined heterogenous tumours together (glioblastoma and non-glioblastoma) 
within the all glioma cases cohort, this makes it difficult to find appropriate associations in all 
glioma cases. This potential bias is also true for the non-glioblastoma cohort where glioma 
cases not classified as glioblastoma are put into the same heterogenous group. For future 
glioma studies, larger sample sizes and independent subtype analyses may be required to 
achieve more statistical power and reduce potential bias.  
 
We were also limited to sample size of the pQTL dataset. Only recently have large blood pQTL 
datasets been published which assay thousands of proteins, however these GWAS are limited 
to fewer individuals compared to eQTL studies (7-10). This leads to some results lacking 
statistical power as well as making it harder to replicate our findings. The deCODE study 
included individuals from the Icelandic cancer project (~52%) diagnosis with some individuals 
already diagnosed with cancer, although the size of the population included the chances are 
only one individual may be diagnosed(21, 22). There is a further issue of transportability of our 
results, as we only include individuals of European descent these findings may not be 
generalizable to different populations or individuals of other ethnic backgrounds. There is also 
an issue of temporality, protein levels are measured from the general population, most of 
whom will not have glioma or go on to develop glioma.  
 
Our criteria for each association reaching q-value<0.05 for P1 and an MR P-value<0.05 for P4 
may have excluded other potential biomarkers which may be associated with genetic liability 
for glioma. The reverse MR and forward MR also assumes no pleiotropy within the analysis, 
which is also known as the exclusion restriction criterion. Horizontal pleiotropy is when a SNP 
influencing both the glioma liability and circulating protein by independent routes. Vertical 
pleiotropy occurs due to a SNP influencing other traits which has an impact on circulating 
protein levels via the effect on glioma liability(42, 43). As we have a PRS approach, this analysis 
is less likely to have pleiotropic effects as we are looking at the effect of multiple SNPs. To 
further limit the potential effects of horizontal pleiotropy the glioma GWAS was clumped at an 
LD threshold of r2=0.1. However, in our forward MR approach horizontal pleiotropy can be a 
concern. For associations that are driven by a single SNP it was not possible to carry out MR 
sensitivity analyses, or heterogeneity tests. These associations can also be prone to horizontal 
pleiotropy and issues with statistical power.   
 
It is also important to note that our analysis presents reverse MR results, suggesting these 
putative proteins are associated with genetic liability to glioma. There has not been a 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 30, 2024. ; https://doi.org/10.1101/2024.03.29.24305009doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.29.24305009
http://creativecommons.org/licenses/by-nd/4.0/


prospective clinical study to provide more evidence of this association. Further studies will need 
to be carried out to delineate the association of the potentially predictive proteins as diagnostic 
blood biomarkers for glioma, as well as further research into understanding the role of these 
proteins in the context of glioma. 
 

Conclusion: 
Our findings identify a high genetic liability to glioma is associated with the immune system 
processes. Non-causal plasma biomarkers identified through PRS associations could indicate 
novel biomarkers of early glioma development. Candidate markers, including ETFA, RIR1 and 
BT3A1 were associated with risk of glioma entities using forward MR. Enrichment analyses 
suggest different pathways are enriched in potentially causal versus non-causal markers. 
 
Conflicts of Interest: 
JWR is employed at Boehringer Ingelheim for unrelated research. The other authors have no 
conflicts of interest to declare. 
 
Tables and Figures: 
 
Parameter P-value r

2 
One 1.00x10-5 0.1 
Two 1.00x10-5 0.01 
Three 5.00x10-8 0.1 
Four 5.00x10-8 0.01 
Table 1: The four parameters to generate each polygenic risk score for all glioma cases, 
glioblastoma and non-glioblastoma. 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 30, 2024. ; https://doi.org/10.1101/2024.03.29.24305009doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.29.24305009
http://creativecommons.org/licenses/by-nd/4.0/


 
 
Figure 1: Direct acyclic graph representing hypothesis of reverse Mendelian randomization in 

disease liability. 
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Figure 2: Proteins associated with glioma PRS in the UKBB cohort compared with these proteins 
in deCODE, INTERVAL and SCALLOP. 
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Figure 3: Proteins associated with glioblastoma PRS in the UKBB cohort compared with these 
proteins in deCODE, INTERVAL and SCALLOP. 
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Figure 4: Proteins associated with non-glioblastoma PRS in the UKBB cohort compared with 
these proteins in deCODE and INTERVAL. There were no proteins in the UKBB cohort associated 
with non-glioblastoma PRS that were measured in the SCALLOP cohort. 
 

b_ukbb

−
0.

01
5

−
0.

00
5

0.
00

5

0.018 0.022 0.026

−0.015 −0.005 0.005

b_decode

0.
01

8
0.

0
22

0.
02

6
−0.01 0.00 0.01 0.02 0.03

−
0.

0
1

0.
0

0
0.

0
1

0.
02

0.
03

b_interval

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 30, 2024. ; https://doi.org/10.1101/2024.03.29.24305009doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.29.24305009
http://creativecommons.org/licenses/by-nd/4.0/


Figure 5: STRINGDB evidence of co-expression in proteins associated with glioma PRS. 
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Figure 6: STRINGDB evidence of co-expression in proteins associated with glioblastoma PRS. 

 

 

Protein Dataset Glioma Entity Protein Method 
Number of 

SNPs 

Effect (95% 

Confidence 
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Q-value 
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UKBB 

Non-glioblastoma PHLDB1 Wald ratio 1 
-6.257 (-7.739 

to -4.775) 
2.40x10-13 

Non-glioblastoma AKT3 Wald ratio 1 
-2.303 (-3.177 

to -1.428) 
2.33x10-4 

Glioma PHLDB1 Wald ratio 1 
-2.770 (-3.889 

to -1.652) 
2.29x10-3 

Non-glioblastoma TREH 
Inverse variance 

weighted 
5 

-0.364 (-0.520 
to -0.208) 

2.94x10-3 

Glioma HBZ 
Inverse variance 

weighted 
5 

-0.150 (-0.226 
to -0.074) 

6.95x10-2 

Glioma ACHE 
Inverse variance 

weighted 
4 

0.247 (0.122 
to 0.372) 

6.95x10-2 

Non-glioblastoma ANGPTL3 
Inverse variance 

weighted 
3 

0.325 (0.155 
to 0.494) 

8.47x10-2 

deCODE 

Non-glioblastoma ETFA Wald ratio 1 
3.304 (2.394 

to 4.214) 
1.77x10-9 

Glioma ETFA Wald ratio 1 
1.724 (1.027 

to 2.421) 
1.95x10-3 

Glioma RIR1 Wald ratio 1 
1.421 (0.756 

to 2.086) 
2.23x10-2 

Non-glioblastoma BT3A1 Wald ratio 1 
2.151 (1.139 

to 3.163) 
2.43x10-2 

Glioblastoma RIR1 Wald ratio 1 
1.699 (0.900 

to 2.498) 
4.81x10-2 

Glioblastoma TCEA2 Wald ratio 1 
-0.644 (-0.969 

to -0.318) 
8.17x10-2 

Table 2: Associations between glioma entities and proteins in UKBB cohort in the forward 
Mendelian randomization analysis.  
 

Dataset 
Glioma 
Entity 

Protein Method 
Number 
of SNPs 

Effect (95% 
Confidence 

Interval) 
P-value 

UKBB Glioblastoma 

EGFR 

Inverse 
variance 
weighted 

3 
-0.064 (-
0.318 to 
0.190) 

0.620 

deCODE Glioblastoma 
Inverse 

variance 
weighted 

3 
-0.229 (-
0.568 to 
0.110) 

0.185 

UKBB Glioma 
Inverse 

variance 
weighted 

3 
-0.031 (-
0.283 to 
0.221) 

0.807 
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deCODE Glioma 
Inverse 

variance 
weighted 

3 
-0.226 (-
0.575 to 
0.123) 

0.205 

UKBB 
Non- 

Glioblastoma 

Inverse 
variance 
weighted 

3 
0.097 (-
0.219 to 
0.412) 

0.549 

deCODE 
Non- 

Glioblastoma 

Inverse 
variance 
weighted 

3 
-0.121 (-
0.467 to 
0.225) 

0.493 

UKBB Glioma 

GFAP 

Inverse 
variance 
weighted 

4 
-0.030 (-
0.350 to 
0.290) 

0.856 

UKBB Glioblastoma 
Inverse 

variance 
weighted 

4 
-0.092 (-
0.482 to 
0.298) 

0.644 

UKBB 
Non- 

Glioblastoma 

Inverse 
variance 
weighted 

4 
0.048 (-
0.371 to 
0.466) 

0.823 

Table 3: Associations between glioma entities and EGFR and GFAP in the forward Mendelian 
randomization analysis.  
 

Dataset Protein Glioma Entity Method 
Number of 

SNPs 

Effect (95% 
Confidence 

Interval) 
P-value 

UKBB 

EGFR 

Glioblastoma 
Inverse 
variance 
weighted 

85 
-0.002 (-0.016 

to 0.011) 
0.725 

deCODE Glioblastoma 
Inverse 
variance 
weighted 

83 
-0.006 (-0.019 

to 0.007) 
0.367 

INTERVAL Glioblastoma 
Inverse 
variance 
weighted 

87 
0.038 (0.002 to 

0.074) 
0.039 

UKBB Glioma 
Inverse 
variance 
weighted 

99 
0.011 (-0.003 to 

0.025) 
0.110 

deCODE Glioma 
Inverse 
variance 
weighted 

99 
-0.026 (-0.040 

to -0.011) 
7.45x10-4 

INTERVAL Glioma 
Inverse 
variance 
weighted 

99 
0.012 (-0.031 to 

0.054) 
0.592 
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UKBB 
Non- 

Glioblastoma 

Inverse 
variance 
weighted 

91 
0.019 (0.009 to 

0.030) 
3.20x10-4 

deCODE 
Non- 

Glioblastoma 

Inverse 
variance 
weighted 

92 
-0.016 (-0.027 

to -0.004) 
7.13x10-3 

INTERVAL 
Non- 

Glioblastoma 

Inverse 
variance 
weighted 

93 
0.033 (-0.002 to 

0.068) 
0.064 

deCODE 

GFAP 

Glioblastoma 
Inverse 
variance 
weighted 

83 
0.005 (-0.016 to 

0.011) 
0.427 

UKBB Glioblastoma 
Inverse 
variance 
weighted 

85 
0.020 (0.006 to 

0.033) 
5.93x10-3 

deCODE Glioma 
Inverse 
variance 
weighted 

99 
0.008 (-0.005 to 

0.020) 
0.233 

UKBB Glioma 
Inverse 
variance 
weighted 

99 
0.030 (0.016 to 

0.045) 
4.75x10-5 

deCODE 
Non- 

Glioblastoma 

Inverse 
variance 
weighted 

92 
0.005 (-0.005 to 

0.016) 
0.298 

UKBB 
Non- 

Glioblastoma 

Inverse 
variance 
weighted 

91 
0.015 (0.004 to 

0.026) 
8.45x10-3 

 
Table 4: Associations between glioma entities and EGFR and GFAP in the reverse Mendelian 
randomization analysis.  
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