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Abstract

Identifying the factors responsible for variability of treatment response is a central objective of

clinical research. Specially designed pharmacogenomic studies have identified a handful of

individual mutations modulating the effect of specific drugs. However, the extent to which drug

response variability is driven by genetics is largely unknown, partly due to the small sample

sizes of prospective pharmacogenomic trials. In this work, we develop a framework to study the

genetic architecture of response to commonly prescribed drugs in large biobanks coupled with

electronic health records. Our framework leverages concepts from gene-environment interaction

testing, including novel interaction models at the level of genes, polygenic scores (PGS), and

genome-wide heritability. We quantified the heritability of response to statins, metformin,

warfarin, and methotrexate in 342,257 UK Biobank participants. Our results show that genetic

variation modifies the primary effect of statins on LDL cholesterol (9% heritable) as well as its

side effects on hemoglobin A1c and blood glucose (10% and 11% heritable, respectively). Next,

we identified dozens of specific genes that modify drug response, which we then replicated in a

retrospective pharmacogenomic study. Finally, we found that PGS accuracy varies up to 2-fold

depending on treatment status, showing that the current approach of building PGS using mostly

healthy individuals is likely to underperform in clinical contexts. Together, our results provide a

framework for characterizing the genetic architecture of drug response using cross-sectional

data.

Main

Initiation of drug treatment poses a risk for adverse reactions and long term side effects,

sometimes without guaranteed effectiveness for an individual patient1–6. Genetic testing holds

promise for safer and more effective treatment by predicting each individual’s specific drug
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response7–10. To date, several large-effect pharmacogenomic genes have been identified11–17;

these genes are commonly tested in the clinic to guide administration and dosing of certain

medications18–21, which dramatically reduces the incidence of certain severe adverse drug

reactions15,17,22,23.

More recently, genome-wide genetic data have been considered for clinical biomarkers of

disease risk in the form of polygenic scores (PGS)24–28. PGS predict disease risk by aggregating

many risk alleles identified by genome-wide association studies (GWAS)29. For some diseases,

PGS have comparable performance to current clinical risk-prediction algorithms, at least in

European ancestry individuals 30–32. However, genome-wide predictions for treatment response

have not been developed, although they have been discussed extensively33–36.

Here, we build a framework to study genome-wide genetic effects on the primary and side

effects of common drugs. Our approach leverages recent and novel methods for

gene-environment interaction (GxE). Crucially, our methods apply to passively-obtained EHR

data, enabling analyses of sample sizes far exceeding randomized controlled trials. We apply

our approach to four of the most common drugs in the UK Biobank: statins, metformin, warfarin,

and methotrexate. Our methods quantify genome-wide heritability of drug response, identify

specific genes modifying drug response, and characterize the implications for clinical use of

PGS. We replicate many of the gene-drug interactions in a longitudinal pharmacogenomic study

of statins’ effects on LDL cholesterol37,38. Overall, our framework characterizes the genetic

architecture of individual-level response to modifiable risk factors in passively-obtained EHRs.

Results

Study overview
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We apply our framework to 342,257 unrelated white British individuals in the UK Biobank39

(Supplementary Material). We focus on four of the most commonly prescribed drugs in this

dataset: statins, metformin, warfarin, and methotrexate. For each drug, we study phenotypes

related to its primary effect as well as phenotypes related to its possible side effects (Table 1).

We first define and develop a novel approach to estimate the aggregate impact of common

genetic variation on treatment response ( ). is the SNP heritability of theℎ
𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒
2 ℎ

𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒
2

phenotype change after treatment (Fig. 1A, Methods). We estimate this parameter by

post-processing results from GxEMM40, which was developed to estimate GxE-based

heritability. GxEMM explicitly models treatment-dependent heteroscedasticity, which is essential

for unbiased estimates of treatment-dependent heritability. Because this approach aggregates

across the genome, it is powerful but does not identify specific genes.

Next, we develop a new method called TxEWAS to identify specific genes that modify drug

response. TxEWAS is a GxE extension of transcriptome-wide association studies (TWAS41,42).

TxEWAS genetically imputes gene expression levels using reference transcriptomics data, as in

TWAS, and then tests whether the imputed expression interacts with an environmental (“E”)

variable (Fig. 1B, Methods). A major challenge in TxEWAS is accounting for

treatment-dependent heteroscedasticity which we accomplish using the sandwich variance

estimator (SVE)43 (Fig. 1C, Supplementary Fig. 1, Methods). Compared to SNP-level tests of

GxE, TxEWAS improves power and interpretability.
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Fig. 1: Schematic of the GxE framework to analyze treatment response in cross-sectional data. (A) We
use GxEMM to estimate the heritability of treatment response ( ) based on the genetic (v) andℎ

𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒
2

nongenetic (w) variances specific to treatment status (Methods). (B) We identify genes that modify
treatment response using TxEWAS, a new method to estimate gene-level GxE interaction. TxEWAS
genetically imputes gene expression and tests if this gene’s effect interacts with some “E”. (C) Statistical
interactions with treatment status induce treatment-dependent heteroscedasticity that must be modeled in
GxEMM and TxEWAS.

Like all existing gene-environment interaction models, GxEMM and TxEWAS are susceptible to

endogeneity bias because individuals’ treatments depend on their baseline phenotypes. We use

theory, simulations, and additional data to characterize and account for this bias (Methods,

Supplementary Material). Importantly, we test the statins-gene interaction effects on LDL in a
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retrospective longitudinal pharmacogenomic study, which validates these specific results as well

as our cross-sectional approach.

Finally, we study the impact of treatment status, which varies significantly between individuals,

on the performance of polygenic scores. We evaluate changes in PGS prediction accuracy by

varying the proportion of treated individuals in the training and/or validation data.

Primary effects and side effects of commonly-prescribed drugs are heritable

We estimated for statins’ effects on LDL cholesterol at 9% (Table 2). This is consistentℎ
𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒
2

with a prior estimate of 12% (SE=9%) derived by comparing first-degree relatives37. The

heritability of statins’ effects on A1c and blood glucose were estimated at 10% and 11%

respectively (Table 2). For comparison, the statin-independent heritabilities for these traits ( )ℎ
ℎ𝑜𝑚
2

are 21%, 29% and 11% for LDL cholesterol, A1c and blood glucose, respectively (Table 2).

We next found that the for metformin’s effects on LDL cholesterol and BMI are 2% andℎ
𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒
2

17% respectively (Table 2), and the metformin-independent heritabilities are (11% and 28%

respectively). However, we did not find significant heritability of response to warfarin or

methotrexate, which was expected as we have lower power for less common drugs

(Supplementary Table 1).

We next separately evaluated heritabilities in statin users vs non-users. We observe that the

heritability of LDL cholesterol is much higher in individuals who do not take statins (41% vs

27%, Supplementary Table 2). This suggests that statins mitigate the genetic effects on LDL

cholesterol present in untreated individuals (Supplementary Table 3). We found a qualitatively
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different pattern for the side effect of statins on A1c and blood glucose, where statin users had

comparable or higher heritability. This suggests that statins activate or amplify genetic effects on

blood sugar compared to untreated individuals. For metformin users, we found significantly

higher heritability for BMI (51% vs 31%) and lower heritability for LDL cholesterol (11% vs 23%).

Identifying gene-drug interactions for primary and side effects

We next sought to identify specific genes that modify drug response. We found 156 genes that

modify statins’ effects on LDL cholesterol (hFDR<10%, Fig. 2A, Supplementary Material). These

genes include PCSK9, which is an LDL cholesterol-lowering drug target and has also been

implicated in response to statin therapy44,45. Loss-of-function and gain-of-function variants in

PCSK9 are known to reduce and elevate LDL cholesterol levels respectively46,47; statin therapy

has been shown to increase serum PCSK9 levels, which can buffer statin LDL

cholesterol-lowering effects. Consistent with these observations, we found that genetic effects

that increase PCSK9 expression reduce the effect of statins (Fig. 3A).
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Fig. 2: Manhattan plots of gene-statin interactions for low-density lipoprotein (LDL) cholesterol (primary
effect), and hemoglobin A1c and blood glucose (side effects). (A) Manhattan plot of gene-statin
interaction effects for LDL cholesterol. Each point represents a single gene, with physical position plotted
on the x axis and standardized effect size plotted on the y axis. The most extreme effect across tissues is
shown for each gene. Significant associations are highlighted in red, and the strongest associations on
each chromosome are labeled. (B) and (C) follow (A), but for A1c and blood glucose.
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Of the 156 genes significantly interacting with statins, 131 also have significant additive effects

(hFDR<10%). Interestingly, all 131 interaction effects have opposite signs to the main effects

(Fig. 3A and Supplementary Fig. 2). That is, statins uniformly buffer these genetic effects on

LDL cholesterol. This is consistent with our observation that LDL cholesterol has higher

heritability in statin non-users than users (Supplementary Table 2).

Fig. 3: Gene-statin interaction effect sizes for low-density lipoprotein (LDL) cholesterol, hemoglobin A1c,
and blood glucose. (A) Estimated effect sizes of selected genes on LDL cholesterol in statin users,
non-users, and from a standard additive model. The top 10 genes have significant interaction effects; for
comparison, the bottom three genes are only additively significant. (B) and (C) are similar to (A), but for
A1c and blood glucose.

We next tested which genes modify the side effects of statins on A1c and blood glucose, and we

identified 53 and 6, respectively (Fig. 2B and 2C). 28 of the 53 genes with statin-dependent

effects on A1c lie in the highly complex MHC region, and it is likely that many of these are not

causal48. One example gene outside the MHC is GIPR, which is known to regulate insulin levels

in the presence of elevated glucose in mice49 and is associated with increased risk of

hyperinsulinemia after an antipsychotic treatment50. All six genes that modify statins’ effects on

glucose overlap the statin-dependent A1c loci (Fig. 2C).
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Of the 53 genes with statin-dependent effects on A1c, 36 have significant additive effects.

However, unlike the genes modifying statins’ effects on LDL cholesterol, only four of them have

an interaction effect with opposite sign to the primary effect (Fig. 3B and Supplementary Fig. 3).

Similarly, only three of the six genes with statin-dependent effects on glucose exhibit significant

additive effects, and all have the same sign as the corresponding interaction effects (Fig. 3C).

Broadly, this suggests that some genetic effects on A1c and glucose are amplified by statins,

while others are dampened.

We next analyzed metformin, warfarin, and methotrexate for gene-drug interactions. Although

these have many fewer users (Table 1), we identified three gene-warfarin interactions effects on

reticulocyte count (HIF3A, implicated in the response to hypoxia51; ITGA1, shown to be

upregulated at high oxygen levels in the environment52; and AL049542.1) and one

gene-methotrexate interaction effect on C-reactive protein levels (C6orf164).

The results are highly concordant if we exclude individuals who take combinations of the

aforementioned drugs (Supplementary Table 4, Supplementary Material).

Replicating gene-drug interactions in a pharmacogenomic study

The UK Biobank EHR data is passively obtained from an observational cohort and may suffer

from confounding due to endogeneity in treatment status–sick individuals are more likely to be

on treatments, and this may be driven in part by genetics. Therefore, we validated our approach

by replicating the gene-level interactions for statins’ primary effect in a pharmacogenomic

study37,38 (Methods). Of the 156 significant genes that we identified from cross-sectional data,

155 could be studied in the replication cohort (Supplementary Material). We found that 36/155
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genes replicated (hFDR<10%), and that the remaining genes were significantly enriched for low

P values<0.1 (binomial test p=0.002).

Gene-drug interactions impact polygenic prediction accuracy

Gene-drug interactions violate underlying assumptions of PGS because they assume that

genetic effects are independent of treatment status. We assessed the impact of this bias on

PGS performance by varying the proportion of individuals on a drug in the training and/or testing

cohorts, keeping the training sample size fixed. We focused on statins and metformin because

they had treatment response heritability (Supplementary Table 5 and Methods).

First, we evaluated PGS for A1c as a function of statin use (Table 3). We find that statin users

are better predicted by PGS trained on statin users, and vice versa for statin non-users.

Concretely, prediction accuracy of PGS for A1c in statin users increases by 31% when it is

trained in treated vs untreated individuals. While this is intuitive, it need not hold in general. For

example, if two groups share identical genetic effects but have different levels of non-genetic

noise, the PGS should always be trained in the less-noisy group. Indeed, we observe this

pattern for LDL cholesterol, which has higher heritability in statin non-uses than users, and we

find that training PGS in non-users is optimal for predicting in users (Table 3). We performed

extensive simulations to confirm these results (Supplementary Table 6, Supplementary

Material). Finally, we evaluated an “agnostic” PGS built from a mix of users and non-users

without accounting for statins, and we found that this PGS performed worst of all (Table 3). This

illustrates an unappreciated limitation of standard approaches to building PGS in biobanks.

We found qualitatively similar results for PGS dependence on metformin, though they had

smaller sample size and were weaker: BMI for users were better predicted using PGS built from
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users, while LDL cholesterol was always better predicted using non-users (Table 3). Overall,

PGS blind to drug use will have heterogeneous accuracies between treated and untreated

patients.

Discussion

We quantified the genome-wide contribution of genetic variation to drug response ( forℎ
𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒
2 )

four of the most commonly prescribed drugs worldwide. We identified specific genes driving this

variation, and we validated the gene-statin interaction effects on LDL cholesterol in a

longitudinal pharmacogenomic study. We found that such genetic effects on drug response have

downstream implications for PGS, which are moving toward clinical use. In particular, we

showed that current PGS will often underperform in the clinic because they are biased toward

untreated individuals. While our paper focuses on drug treatments, we note that our novel

framework can characterize the genetic basis of any covariate’s effect, including sex/gender,

age, or modifiable risk factors.

Our results suggest that genome-wide genetic variation broadly modifies drug response. This is

an important extension of pharmacogenomic studies, which usually focus on large-effect genes

directly involved in drug metabolism. This extension is consistent with the overall arc of human

genetic studies, where first large-effect genes are identified and then, as sample sizes grow and

methods mature, genome-wide signals are identified53,54. Importantly, our results identify an

unappreciated limitation of the clinical use of PGS, which are systematically less predictive in

treated individuals than healthy controls. This complements other known limitations of PGS,

including limited transferability across socio-economic status, age, sex55,56, and ancestry57,58,

which could also be driven in part by gene-environment interactions59. On the other hand, our
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results pave a path to developing context-aware PGS60, which could directly predict an

individual’s response to common drugs.

Our study has several limitations. First, it has focused on the UK Biobank, which is a

cross-sectional cohort with non-random allocation of drugs. This raises the possibility of

endogeneity biases causing false positives or false negatives, where our results reflect causes

of drug prescription rather than its consequences. Nonetheless, we have validated many of our

results in a longitudinal pharmacogenomic study, which took steps to reduce biases from dosing

and baseline LDL cholesterol levels. More importantly, for many traits, the results are

inconsistent with simple endogeneity-driven biases because we observed both positive and

negative interaction effects. A related limitation is that our cross-sectional approach to estimate

heritability only provides a lower bound to (Supplementary Material). In the future,ℎ
𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒
2

methods to formally account for such endogeneity would give more precise estimates of

treatment response heritability. Second, statistical genetic interactions need not reflect

biochemical interactions between a gene and drug. This contrasts with large-effect

pharmacogenomic genes, which typically encode enzymes that directly metabolize the drug.

Third, the TxEWAS method is liable to detect genes or tissues that are merely correlated with

causal genes of tissues. In the future, established TWAS methods to fine-map causal genes48 or

tissues61–63 could be adapted to the TxEWAS setting. Fourth, due to biases in available data, we

only analyzed individuals of European ancestry; more ancestrally diverse data are needed to

obtain more generally applicable results.

In conclusion, we provided evidence for substantial polygenic contributions to drug response,

and showed how large-scale cross-sectional studies like the UK Biobank can be used to

estimate genetic effects on drug response. Although validation with randomized controlled trials
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is needed before drawing definitive conclusions about causal genetic effects on treatment

response, our results demonstrate that cross-sectional data can generate compelling

hypotheses on genetic modifiers and statistical predictions for treatment response. It is

important, as advances in pharmacogenomics cannot be made with sole input from randomized

controlled trials64, which have strict inclusion and exclusion criteria, cannot always be performed

due to ethical issues, and are limited to small sample sizes due to high cost. Based on these

results, we envision that novel PGS approaches incorporating treatment information will provide

actionable clinical guidelines for optimizing primary effects and minimizing harmful side effects

of drugs.

Methods

UK Biobank Data

Analyses presented in this work were performed in the UK Biobank population of 342,257

unrelated white British individuals (Supplementary Material).

For heritability and PGS analyses, we used 579,566 UK Biobank variants with minor allele

frequency (MAF) larger than 0.01, Hardy-Weinberg equilibrium (HWE) test P value below 10-10,

and imputation INFO score of 1. For the TxEWAS analysis, UK Biobank SNPs that matched

eQTLs trained in the GTEx consortium were used.

UK Biobank fields used to retrieve phenotypes can be found in the Supplementary Material. For

non-binary outcomes, we discarded measurements greater than five standard deviations from

the mean, with the assumption that such extreme levels were results of non-modeled

circumstances. The only exception was C-reactive protein levels, which were inverse normally
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transformed. For disease outcomes, we only retained diagnoses recorded after the date of the

initial assessment with the UK Biobank initiative (when the information about medication use

was collected).

The main analyses reported in this work were performed using the following covariates: age,

sex, birth date, Townsend deprivation index, and the first 16 genetic PCs57. We additionally

accounted for the measuring device type when an outcome required it, which was the case for

hematocrit, plateletcrit, and reticulocyte count. All non-binary covariates were standardized

(transformed to mean-zero, variance 1) before calculating interaction variables.

Quantifying the heritability of treatment response

GxEMM quantifies the heritability contributed by genome-wide additive effects and

genome-wide GxE effects. The general GxEMM model for phenotype in environment k (i.e.𝑦
𝑖

) is:𝑧
𝑖
= 𝑘

.𝑦
𝑖
|𝑧

𝑖
= 𝑘 ∼ ∑

𝑞
𝑋
𝑖𝑞
α
𝑞
+ σ

ℎ𝑜𝑚
∑
𝑠
𝐺
𝑖𝑠
β
𝑠
+ 𝑣

𝑘
∑
𝑠
𝐺
𝑖𝑠
γ
𝑠𝑘
+ 𝑤

𝑘
+ σ

ϵ
2ϵ

𝑖

In this model, X are covariates with fixed effects , and G is the genotype matrix, with additiveα

effects . We assume that and the noise, , are i.i.d. standard normal, and the additiveβ β ϵ

heritability is determined by the genetic and noise variances, and . GxEMM additionallyσ
ℎ𝑜𝑚
2 σ

ϵ
2

captures SNP-environment interaction effects, , which are also assumed i.i.d. standard normal.γ

Further, GxEMM allows environment-specific genetic ( ) and noise ( ) variances. If the𝑣
𝑘

𝑤
𝑘

phenotype is scaled to variance 1, .σ
ℎ𝑜𝑚
2 = ℎ

ℎ𝑜𝑚
2
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Here, we use treatment status as the “environment” in order to quantify the heritability due to

treatment-specific effects. We approximate the heritability of treatment response,

, by:∆𝑦
𝑖
= 𝑦

𝑖
(𝑧

𝑖
= 1) − 𝑦

𝑖
(𝑧

𝑖
= 0)

,ℎ
𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒
2 ≔

𝑣
0
+𝑣

1

𝑣
0
+𝑣

1
+𝑤

0
+𝑤

1
≤

𝑣
0
+𝑣

1

𝑣
0
+𝑣

1
+𝑤

0
+𝑤

1
−2𝑤

𝑟
= ℎ2(∆𝑦)

where captures the covariance in effect sizes for unmodeled risk factors between𝑤
𝑟

treated/untreated states (Supplementary Material).

For warfarin, methotrexate, and metformin, we studied a sample of 30,000 individuals that

included all users of that drug and an accordingly-sized random draw of non-users. To assess

stability of our results, we repeated the analysis five times by randomly resampling non-users,

and reported results from the sample with median additive heritability ( , Supplementary Fig.ℎ
ℎ𝑜𝑚
2

4). Because statins are much more common, we instead randomly split all 342,257 individuals

into 11 non-overlapping subsets and meta-analyzed the results. This is a common approach

employed in biobank-scale datasets to reduce computational complexity65.

Identifying genes responsible for variable drug response

TxEWAS extends transcriptome-wide association studies (TWAS41,42) to test gene-environment

interactions. The TxEWAS framework involves two major steps: First, gene expression levels of

each gene are genetically imputed using a reference dataset. Second, the interaction effect, ,γ

between imputed gene expression and the drug is tested in the regression model:

,𝑦
𝑖
= β

0
+ ∑

𝑗
β
1𝑗
𝑋
𝑖𝑗
+ ∑

𝑗
β
2𝑗
𝑧
𝑖
𝑋
𝑖𝑗
+ ∑

𝑗
β
3𝑗
𝑔
𝑖
𝑋
𝑖𝑗
+ β

4
𝑔
𝑖
+ β

5
𝑧
𝑖
+ γ𝑔

𝑖
𝑧
𝑖
+ ϵ

𝑖

where ; and are the drug use indicator and imputed expression of some geneϵ
𝑖
∼ 𝑁(0, σ2) 𝑧

𝑖
𝑔
𝑖

for individual i, respectively, and X is a matrix of covariates.
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For binary phenotypes, the interaction effect is tested in the logistic regression model with the

same covariates (Supplementary Material). In both models, the variance of the effect size

estimates is estimated with the robust sandwich variance estimator to control for

heteroskedasticity and/or misspecification of the functional form of the environmental factor66,67

(Supplementary Material).

In this study, we imputed gene expression into the UK Biobank using the 48 tissues from the

GTEx consortium, and we used hierarchical FDR68–70 (hFDR<10%) to account for multiple

hypothesis testing across genes and tissues (Supplementary Material).

Replication in a pharmacogenomic study

We initially discovered gene-drug associations in cross-sectional data using TxEWAS. To

validate these discoveries, we performed ordinary TWAS on the change in LDL cholesterol after

statin initiation in an external pharmacogenomic study (we term this analysis PGx TWAS). More

concretely, we used data from a longitudinal study of 28,616 individuals with European

ancestries from the Kaiser Permanente GERA cohort (Genetic Epidemiology Research on Adult

Health and Aging)37,38. For every TxEWAS interaction gene identified in the UK Biobank cohort,

we calculated the PGx TWAS statistic in all available GTEx tissues, and employed an hFDR

correction to call statistically significant genes at FDR<10% (Supplementary Material).

Assessing implications for polygenic scores in clinical practice

PGS are weighted sums of risk alleles optimized to predict some training dataset. This makes

PGS depend on characteristics of the training data, such as ancestry58, age55, or sex56. We

assessed the accuracy of PGS as a function of drug use, including PGS trained in users and

18

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 30, 2024. ; https://doi.org/10.1101/2024.03.29.24305093doi: medRxiv preprint 

https://www.zotero.org/google-docs/?Vn900y
https://www.zotero.org/google-docs/?N349G5
https://www.zotero.org/google-docs/?GLj6eI
https://www.zotero.org/google-docs/?cs3NgF
https://www.zotero.org/google-docs/?8TUQq6
https://www.zotero.org/google-docs/?TDoU80
https://doi.org/10.1101/2024.03.29.24305093
http://creativecommons.org/licenses/by-nc-nd/4.0/


tested in non-users and vice-versa. In the main analysis, we varied the proportion of individuals

on a drug in the training cohort, keeping the sample size fixed. We evaluated additional

scenarios in the Supplementary Material. We fit PGS using a fast implementation of penalized

linear regression with the lasso penalty57,71 and we measured prediction accuracy by the

incremental over baseline covariates. Standard errors around the estimates were calculated𝑅2

using bootstrap.
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Table 1: Drug exposures and responses examined in this work.

Drug exposure Number of users
(non-users) Description Primary effects Side effects

Statins 56,169 (286,088)

Low-density lipoprotein (LDL)
cholesterol lowering therapy
prescribed to prevent
atherosclerotic cardiovascular
disease (ASCVD) events

LDL cholesterol,
CVD72,73

Glucose, A1c,
Type 2 diabetes
(T2D)74–77

Metformin 8,606 (333,651) Antidiabetic therapy Glucose, A1c78–81
Body mass index
(BMI)82,83, LDL
cholesterol,
CVD84,85

Warfarin 3,753 (338,504) Anticoagulant therapy
Reticulocyte count,
Hematocrit,
Plateletcrit86–88

None examined

Methotrexate 1,865 (340,392) Antirheumatic therapy C-reactive protein
(CRP)89,90 None examined

Table 2: Drug-independent heritability and heritability of drug response for aℎ
ℎ𝑜𝑚
2( ), ℎ

𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒
2( )

range of drug exposures and responses.

Drug exposure Response ℎ
ℎ𝑜𝑚
2 ℎ

𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒
2 P value

Statins

LDL cholesterol 0.21 0.089 1. 13 × 10−30

A1c 0.29 0.102 1. 79 × 10−6

Glucose 0.11 0.111 2. 26 × 10−4

Metformin
LDL cholesterol 0.11 0.023 0. 016

BMI 0.28 0.170 2. 51 × 10−4
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Table 3: Prediction accuracy of polygenic scores (PGS) trained in drug users, non-users, and a

50:50 mixture of both.

Training Prediction accuracy (Incremental [%])𝑅2

Statins Metformin

A1c LDL cholesterol LDL cholesterol BMI

On drug Off drug On drug Off drug On drug Off drug On drug Off drug

On drug 3.36
(0.23)

2.32
(0.18)

7.18
(0.30)

12.60
(0.36)

1.32
(0.37)

3.24
(0.54)

0.919
(0.286)

0.0040
(0.0592)

Off drug 2.56
(0.20)

5.79
(0.28)

7.98
(0.32)

14.87
(0.39)

2.75
(0.51)

5.43
(0.67)

0.041
(0.080)

0.0077
(0.0636)

Agnostic 2.60
(0.20)

3.75
(0.23)

5.86
(0.29)

10.49
(0.36)

2.25
(0.44)

5.00
(0.66)

0.255
(0.164)

0.0931
(0.1078)
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