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Summary 

Rare, germline loss-of-function variants in a handful of genes that encode DNA repair proteins have been 

shown to be associated with epithelial ovarian cancer with a stronger association for the high-grade serous 

hiostotype.  The aim of this study was to collate exome sequencing data from multiple epithelial ovarian 

cancer case cohorts and controls in order to systematically evaluate the role of coding, loss-of-function 

variants across the genome in epithelial ovarian cancer risk.  We assembled exome data for a total of 2,573  

non-mucinous cases (1,876 high-grade serous and 697 non-high grade serous) and 13,925 controls.  

Harmonised variant calling and quality control filtering was applied across the different data sets.  We 

carried out a gene-by-gene simple burden test for association of rare loss-of-function variants (minor allele 

frequency < 0.1%) with all non-mucinous ovarian cancer, high grade serous ovarian cancer and non-high 

grade serous ovarian cancer using logistic regression adjusted for the top four principal components to 

account for cryptic population structure and genetic ancestry.  Seven of the top 10 associated genes were 

associations of the known ovarian cancer susceptibility genes BRCA1, BRCA2, BRIP1, RAD51C, RAD51D, 

MSH6 and PALB2 (false discovery probability < 0.1).  A further four genes (HELB, OR2T35, NBN and MYO1A) 

had a false discovery rate of less than 0.1.  Of these, HELB was most strongly associated with the non-high 

grade serous histotype (P = 1.3x10-6, FDR = 9.1x10-4).  Further support for this association comes from the 

observation that loss of function variants in this gene are also associated with age at natural menopause 

and Mendelian randomisation analysis shows an association between genetically predicted age at natural 

menopause and endometrioid ovarian cancer, but not high-grade serous ovarian cancer. 
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Introduction 

Substantial progress has been made in the past 30 years in identifying inherited genetic variation 

associated with an increased risk of epithelial ovarian cancer. The “high-penetrance” genes BRCA1 and 

BRCA2 were identified by linkage studies in the 1990’s; protein truncating variants in these genes confer a 

substantial lifetime risk of epithelial ovarian cancer as well as breast cancer and other cancers.  Epithelial 

ovarian cancer is also known to be part of the Lynch Syndrome phenotype associated with protein 

truncating variants in the mis-match repair genes.  Rare coding variants in BRIP1, PALB2, RAD51C and 

RAD51D have been shown to confer more moderate risks by using candidate-gene case-control sequencing 
1-3.  Also, over the past 15 years, large-scale genome-wide association studies (GWAS) conducted by the 

Ovarian Cancer Association Consortium (OCAC) have identified more than 40 common susceptibility alleles 
4.   

There are five major histotypes of epithelial ovarian cancer - high-grade serous, low-grade serous, clear cell, 

endometriod and mucinous - which share a substantial fraction of their heritable component 5.  

Nevertheless, there are some notable differences in their genetic risk factors.  High- and moderate-

penetrance risk variants in BRCA1, BRCA2, BRIP1, RAD51C and RAD51D predispose to high-grade serous 

EOC whereas loss-of-function variants in the mis-match repair genes predispose to endometrioid and clear 

cell EOC.  There are also histotype specific differences in the risks conferred by common risk alleles with the 

mucinous histotype in particular being substantially different from the other histotypes 4. 

The uncommon and rare, high- and moderate penetrance alleles identified to date explain about one 

quarter of the inherited component of epithelial ovarian cancer susceptibility with a further 5  percent 

explained by the known common risk alleles.  Genome-wide heritability analyses have estimated that the 

set of common variants that are tagged or captured by the standard genome-wide genotyping arrays 

explains about 40  percent of the familial aggregation –the so-called chip heritability.  The characteristics of 

the alleles that account for the remaining familial aggregation are not known; analyses of whole-genome 

data suggest that a substantial portion is explained by rare variants.  Only a small fraction of genes, mostly 

those involved in DNA repair, have been examined for risk association using the large sample sizes needed 

to detect modest risks.  Hence, there could be many more genes conferring similar risks yet to be 

discovered.  The aim of this project was to identify genes with rare coding variants that confer loss of 

function (LoF) that are associated with risk of epithelial ovarian cancer. 

Methods 

Description of case and control datasets 

Germline whole exome sequencing (WES) data and whole genome sequencing (WGS) data as BAM or 

CRAM files from multiple epithelial ovarian cancer case series were collated from multiple sources (Table 

1).  Control sequencing data were sourced wholly from the UK Interval study; a set of healthy UK blood 

donors (https://www.intervalstudy.org.uk/).  All analyses restricted case histotypes to high grade serous, 

low grade serous, clear-cell, endometrioid, mixed, and other rare histotypes.  Mucinous ovarian cancer 

cases were excluded because it has previously been shown that the genetic etiology of this histotype differs 

substantially from the other histotypes.  In total, exome or whole genome sequencing data were available 

for 1,638 cases and 4,502 controls.  We also used the variant calls (as VCF files) for 1,099 EOC cases and 

9,423 cancer free controls from the WES sequencing released by UK Biobank (UKB) 

(https://www.ukbiobank.ac.uk/).  Cases were individuals with a diagnosis of invasive epithelial ovarian 

cancer (ICD10 code C56) with clear cell, endometrioid, papillary, other and serous histology codes.  Controls 

were age matched women without a cancer diagnosis and without a history of oophorectomy.  Up to ten 

controls were selected for each case.  Thus, the final sample size was 2,573 cases and 13,925 controls 
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before quality control.  All samples were from studies approved by a local ethical committee and all 

participants gave written informed consent. 

Table 1: Number of non-Biobank epithelial ovarian cancer patients by source of sequencing (total before 
sample QC 1,638; total after QC 1,474) 

Data source Case type Number 
(before/after QC) 

Reference Accession number 

Exomes     

UK Familial Ovarian 
Cancer Registry 

BRCA1/2-negative  
with family history 

53/42 Unpublished  

Leuven Unselected 45/44 Unpublished  

Gilda-Radner Ovarian 
Cancer Registry 

BRCA1/2-negative  
with family history 

96/80 Unpublished  

OCAC Positive family history  
or <50 years of age 

262/232 Unpublished  

Mayo Clinic Unselected 25/24 Unpublished  

Campbell BRCA1/2-negative  
high-grade serous 

536/493 6 EGAD00001006030 

Hannover Unselected 11/7 Unpublished  

TCGA High grade serous 413/361  phs000441.v2.p6 

Whole genomes     

Peter MacCallum 
Cancer Centre 

High-grade serous 93/92 7 EGAC00001000010 

Bowtell Long term survivors  
with high-grade serous 

48/46 8 EGAC00001002510 

BRITROC High grade serous 56/53 9 EGAD00001004189 

 

Table 2: Number of epithelial ovarian cancer patients by histotype after QC. 

Histotype Non-UKB UKB Total % of total 

High grade serous* 1,209 667 1876 72.9 

Low grade serous 51 0 51 2.0 

Clear cell 52 86 138 5.4 

Endometrioid 110 139 249 9.7 

Mixed 19 5 24 0.9 

Undifferentiated 16 27 43 1.7 

Other 17 175 192 7.5 

* includes those with carcinosarcoma and serous carcinoma of unspecified grade 
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Variant calling and filtering 

All BAM/CRAM files were aligned to human genome version hg19/GRCh37.  The original TCGA EOC BAM 

files had been aligned against human genome hg18/NCBI36, these data were lifted over to build hg19 with 

the CrossMap s/w 10 to match the rest of the WES/WGS data. All non-Biobank sequencing data were 

analysed in an identical way.  Duplicate sequence reads were removed with the picard sequencing tools 11.  

Sequence reads were partitioned per chromosome and general manipulation performed with the samtools 

s/w 12.  Variants were called with the Genome Analysis ToolKit (GATK) UnifiedGenotyper version 3.8-1 13, 

and following the best practices guide as appropriate to our data 14,15.  We restricted our risk variant 

discovery to substitutions and short indels (length <= 12 bp).  Variants were annotated with ANNOVAR 16 

referred to the UCSC RefSeq gene transcript set (https://genome.ucsc.edu).  Protein coding transcripts with 

an NM_* type identifier were used, with the transcript having the longest coding sequence being chosen 

for genes with multiple transcripts.  This yielded 19,092 gene transcripts at human reference hg19/GRCh37 

for variant annotation.  The averaged coverage of targeted bases at 10X for the non-UKB samples was 91 

percent for cases and 92 percent for controls. 

UK Biobank VCF calls were based on build GRCh38 17; in order to incorporate these data into our pipeline 

we lifted over these calls to build GRCh37 using picard and inserted the data at the appropriate step.  Only 

Biobank VCF calls with depth (DP) greater than or equal to 10 and genotyping quality (GQ) greater than or 

equal to 20 were retained.  

Variant calls from GATK were filtered with an in-house hard filter tuned for optimum sensitivity by 

comparison of WES calls with chip genotyping calls from multiple genotyping arrays [see Chip Genotyping 

Data for details]. Additionally for all call sets, variants were carried forward only if depth (DP) >= 10 and 

alternate allele frequency (AAF) >= 15 percent. A more stringent filter was also applied, assigning calls a 

high quality (HQ) having AAF >= 20 percent and number of alternate alleles >= 4. All variant sites with at 

least 1 occurrence of an HQ call were retained, whilst sites without any HQ calls were rejected. 

Rare variants, those with minor allele frequency (MAF) <= 1 percent, were visually inspected with the 

Integrative Genomics Viewer (IGV) software 18 and rejected if any doubts raised, e.g. not called 

bidirectionally.  Visual inspection of variants called for UK Biobank was only carried out for those variant 

sites not validated in the non-Biobank data. 

QC was applied to each rare variant site, rejecting sites with genotype frequencies showing significant 

deviation from those expected under Hardy-Weinberg equilibrium in either cases or controls (p-value < 1e-

15 and for UKB and non-UKB separately), and those with missingness > 20 percent (proportion of samples 

with depth<10).  We also tested each variant for association with epithelial ovarian cancer and excluded 

those with minor allele frequency <0.01 and test for association for variant p-value <= 1e-6 ; association p-

value <= 1e-7 and 0 rare control alleles; and association p-value <= 1e-10.  Pre-QC filtering was also applied 

to the TCGA calls to check for inconsistency with non-TCGA, since TCGA contained a higher rate of false 

positive calls. 

Variant classification 

Variants were defined as loss-of-function according to the following criteria: 1) Variants predicted to cause 

protein truncation, that is stopgain variants, frameshift indels, and canonical splice site variants.  2) Non-

canonical splice site variants and in-exon variation within 3 bp of the exon-splice boundary predicted by the 

MaxEntScan algorithm to disrupt splicing 19.  Qualifying variants with a wild-type MaxEntScan score greater 

than or equal to 3 and decreased by greater than 40 percent in comparison to the reference sequence were 

assumed to be deleterious. 3) Missense single nucleotide variants or in frame indels designated by multiple 

submitters to the NCBI Clinvar database (https://www.ncbi.nlm.nih.gov/clinvar) as either pathogenic or 

likely pathogenic with no conflicts between submitters. 
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Sample quality control and exclusion 

Samples were removed if they met any of the following criteria: i) low average depth of coverage (< 25 

percent at 10X) ii) excess LoF calls (>1000) iii) concordance of exome data variant calls and chip genotyping 

calls (see below) of < 97 percent iv) known duplicates or cryptic duplicate sample based on common variant 

calls. After exclusions, a total of 1,474 cases and 4,500 controls remained in the non-Biobank set and 1,099 

cases and 9,423 controls in the Biobank set (Table 1 and Table 2).   

Chip genotyping data 

We used chip genotype calls to tune filters for raw variant calling and check integrity of sample naming and 

also as an additional level of QC for any non-UKB samples overlapping chip manifests. Data were from four 

different Ovarian Cancer Association Consortium genotyping projects (OncoArray 4, iCOGS 20, exome chip 21, 

and an ovarian GWAS 22), and TCGA. The numbers of WES/WGS samples overlapping with each chip were 

323, 350, 81, 95, and 412, respectively.  

Association analysis 

We carried out a gene-by-gene simple burden test for association of rare loss-of-function variants with all 

non-mucinous ovarian cancer and high grade serous ovarian cancer.  Rare variants were defined as those 

with a minor allele frequency of less than 0.1 percent.  We classified each individual for each gene as a loss-

of-function variant carrier or non-carrier, depending on whether they had at least one rare variant (below 

the MAF threshold) in that gene or not.  Then we performed a logistic regression for each gene adjusting 

for the top four principal components to account for cryptic population structure and genetic ancestry.  

Principal component analysis for the non-UK Biobank data was carried out using data from 36,047 

uncorrelated variants (pairwise r2 < 0.1) with MAF >0.03 using an in-house program (available at 

http://ccge.medschl.cam.ac.uk/software/pccalc/).  Principal components for the UK Biobank samples were 

provided by UK Biobank 23.  We also adjusted for study stratum - non-UKB, UKB 50K sample set and UKB 

non-50K sample set.  The UK Biobank data were stratified on recommendation from UK Biobank, since 

different oligo lots had been used in the 2 stages of UK Biobank sample sequencing.   

We calculated a false discovery probability based on the methods of Benjamini and Hochberg 24 and a 

Bayes False Discovery Probability using the method proposed by Wakefield 25.  For the latter method we 

assumed a prior probability of association for any one gene of 0.005 – ~100 expected true number of genes 

truly associated with epithelial ovarian cancer – and a likely maximum effect size (log odds ratio) of 0.836. 

Results 

An initial analysis was performed for all genes in the non-UKB set of 1,474 cases and 4,500 controls that 

passed QC.  There were 12,761 genes with at least one case or control loss-of-function variant carrier with 

minor allele frequency of less than 0.1 percent, of which 4623 had sufficient pathogenic variant carriers to 

obtain a risk estimate.  There was little evidence of inflation of the test statistic (Figure 1).  Seven hundred 

and thirty-seven genes had a P-value for association of less than 0.05; these genes were selected for 

additional analysis in the UKB data in addition to candidate genes ATM, BARD1, CHEK2, FANCM, MLH1, 

MSH2, MSH6, PMS2, RAD51B, SLX4, TIPARP and TP53.   
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Figure 1: QQ plot for association analysis of genes with at least one case or control loss-of-function variant 
carrier in the non-UK Biobank data set (three genes with smalles P-values excluded)  

 

The results of the association analysis for each gene with non-mucinous ovarian cancer, high-grade serous 

ovarian cancer and non-high grade serous ovarian cancer are shown in Supplementary Table 1.  The 

association with the smallest P-value from the three histotype specific analyses was selected for each gene 

and the genes were then ranked by P-value.  Table 3 shows the top 20 associated genes based on ranked 

Bayes False Discovery Probability.  Seven of the top 10 associated genes were the known ovarian cancer 

susceptibility genes BRCA1, BRCA2, BRIP1, RAD51C, RAD51D, MSH6 and PALB2 (all with a False Discovery 

Rate < 0.1).  A further four genes (HELB, OR2T35, NBN and MYO1A) had a False Discovery Rate of less than 

0.1 with three more genes (NENF, MIGA1, STARD6) having a False Discovery Rate of less than 0.2.  BRCA1, 

BRCA2, BRIP1, RAD51C, RAD51D, PALB2, NENF, MIGA1 and STARD6 were more strongly associated with 

high-grade serous ovarian cancer whereas HELB, OR2T35, NBN, MSH6 and MYO1A were more strongly 

associated with the non-high grade serous histotypes (Supplementary Table 2).   
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Table 3: Genes most strongly associated with epithelial ovarian cancer 

Case type Gene Minor allele freq Odds ratio (95% CI) P-value FDR BFDP 

HGSOC BRCA2 0.0036 12 (8.3 – 18) 6.6x10-38 6.8x10-34 3.6x10-32 

HGSOC BRCA1 0.0010 39 (22 - 70) 7.0x10-36 3.6x10-32 1.1x10-28 

HGSOC BRIP1 0.0011 11 (5.4 - 20) 3.4x10-12 5.8x10-9 3.2x10-7 

HGSOC RAD51C 0.00057 12 (4.9 - 29) 5.2x10-8 6.7x10-5 0.0031 

NHGSOC HELB 0.00093 11 (4.3 – 31) 3.3x10-6 0.0014 0.052 

HGSOC RAD51D 0.00043 13 (4.3 - 36.4) 3.3x10-6 0.0030 0.12 

NHGSOC NBN 0.0015 8.6 (3.2 - 23.1) 2.2x10-5 0.016 0.29 

NHGSOC OR2T35 0.00072 15 (4.4 - 48.7) 1.1x10-5 0.009 0.31 

NHGSOC MSH6 0.0013 7.9 (2.9 - 21.2) 4.5x10-5 0.028 0.41 

HGSOC PALB2 0.0017 3.9 (2 - 7.8) 9.7x10-5 0.058 0.42 

NHGSOC MYO1A 0.0024 10 (3.2 - 28.2) 4.3x10-5 0.028 0.45 

HGSOC NENF 0.00050 7.8 (2.7 - 23.1) 1.8x10-4 0.10 0.69 

HGSOC STARD6 0.00050 7.1 (2.4 - 20.8) 3.7x10-4 0.18 0.79 

HGSOC MIGA1 0.00022 15 (3.5 - 65.2) 2.6x10-4 0.14 0.85 

HGSOC OR4A47 0.00036 8.5 (2.5 - 29.3) 6.6x10-4 0.26 0.87 

NMOC PLEKHG5 0.0019 3.9 (1.7 - 9) 0.0014 0.42 0.88 

HGSOC LIPT1 0.00050 5.4 (2 - 15) 0.0011 0.38 0.88 

HGSOC ACADM 0.0015 3.4 (1.6 - 7.3) 0.0020 0.49 0.90 

NMOC DQX1 0.0017 3.2 (1.5 - 6.7) 0.0022 0.49 0.90 

NMOC IFT172 0.0012 3.5 (1.6 - 7.9) 0.0023 0.49 0.91 

FDR – Benajmini-Hochberg false discovery rate 

BFDP – Bayes false discovery probability 

HGSOC – high grade serous ovarian cancer 

NMOC – non-mucinous epithelial ovarian cancer 

NHGSOC –non-high grade serous ovarian cancer (non-mucinous) 

 

Discussion 

We have assembled whole exome sequencing to generate a large epithelial ovarian cancer case-control 

study in order to investigate the role of rare, loss-of-function coding variation in the germline and risk of 

epithelial ovarian cancer.  The exome sequencing of the non-UK Biobank cases and controls was carried out 

in different centres with the potential for false positive associations that are due to technical artefacts 

resulting in differential variant calls between cases and controls.  We attempted to limit such bias by 

harmonising the variant calling across the different data sets with careful visual inspection of many variants 

using the Integrative Genomics Viewer.  The lack of inflation of the test statistics for the gene-based 

association tests within the non-UK Biobank data suggests that any technical bias was small (if present). 

Perhaps the major limitation of this study was the limited power to detect rare variants with modest 

effects. Figure 2A shows the power of the available sample size to detect loss-of-function alleles by carrier 

frequency and effect size.  Power to detect alleles with effects similar to the known genes is good, but 

power to detect alleles conferring odds ratios between 2 and 5 is limited.  Much larger sample sizes are 
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needed to detect more modest effects (Figure 2B).  Power may be further limited by disease heterogeneity, 

as histotype specific sample sizes are even smaller.   

Figure 2: Power to detect risk alleles by carrier frequency and effect size (odds ratio) at a type 1 error 
probability of 5x10-4.  A) 2,630 cases and 15,000 controls - the carrier frequency and effect size 
corresponding to BRCA1, BRIP1 and RAD51C are shown for reference. B)  20,000 cases and 20,000 controls 

 

Nevertheless, we have confirmed the association of six genes known to be associated with high-grade 

serous ovarian cancer and have found evidence for the association with the same histotype for protein 

truncating variants in another three genes.  However, the strength of the statistical evidence for these 

three genes is only moderate; while the  Benjamini-Hochberg False Discovery Rate was less than 0.2, the 

Bayes False Discovery Probability was greater than 0.5.  NENF encodes a neurotrophic factor that may play 

a role in neuron differentiation and development.  In addition, circulating NENF levels have been shown to 

be decreased in subjects with polycystic ovary syndrome compared to controls 26.  MIGA1 encodes 

mitoguardin 1 which enables protein heterodimerization activity and protein homodimerization activity 

and is involved in mitochondrial fusion. The gene is expressed in the ovary and mitoguardin-1 and -2 

promote maturation and the developmental potential of mouse oocytes by maintaining mitochondrial 

dynamics and functions 27.  STARD6 encodes the StAR related lipid transfer domain containing 6 protein 

which is involved in the intracellular transport of sterols and other lipids 28.  It is notable that of the nine 

genes associated with high grade serous ovarian cancer three (BRCA1, BRCA2, BRIP1) were also associated 

with the non-high grade serous histotype (P<0.05) with another two (NENF, RAD51D) having a risk of the 

non-high grade serous histotype that was similar in magnitude but not statistically significant.  Given the 

limited evidence for association of BRCA1 and BRCA2 with histoypes other than high-grade serous, this 

suggest some histotype misclassification in our data.  There were too few pathogenic variant carriers in the 

non-high grade serous cases to estimate risk for the other four genes (PALB2, RAD51C, MIGA1, STARD6). 

We have also confirmed the known association of the mis-match repair gene, MSH6, with the non-high 

grade serous histotype, with another four genes associated at a False Discovery Rate of less than 0.1.  HELB 

encodes DNA helicase B which catalyzes the unwinding of DNA necessary for DNA replication, repair, 

recombination, and transcription 29 and rare damaging variants in the gene are associated with later age at 

natural menopause.  Given the association of damaging variants with both age at natural menopause and 

non high grade serous ovarian cancer we used Mendelian randomisation to investigate the associations of 

genetically determined age at natural menopause with ovarian cancer by histotypes.  Genome wide 

association studies have identified 290 common genetic variants associated with age at natural menopause 
30.  Summary statistics for the association of 234 of these variants with epithelial ovarian cancer by 

histotype were available to use as the instrumental variable.  We applied Mendelian randomisation using 
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five different methods implemented in the R package TwoSampleMR (MR Egger, weighted median, inverse 

variance weighted, simple mode and weighted mode).  Five methods were used because each method is 

susceptible to different possible biases and consistent finding using different methods provides stronger 

evidence for any observed association  A strong association was observed for endometrioid ovarian cancer 

(P < 0.05 for all five methods, Supplementary Table 3), with limited evidence for clear cell ovarian cancer (P 

< 0.05 for two methods) and little evidence for the other histoypes.  Four of the six ovarian cases that were 

found to carry a loss-of-function variant in HELB were the endometriod histotype, with the other two being 

low-grade serous.  Furthermore we analysed the data from whole-genome sequencing of tumour DNA from 

59 high-grade serous, 35 clear cell and 29 endometrioid ovarian cancers 31 for point mutations in HELB. 

Only one pathogenic variant was identified in one of the endometrioid cases.  The histotype specificity of 

the germline and somatic association of protein truncating variants in HELB together with the histotype 

specificity of the genetically predicted age at natural menopause association provides strong evidence that 

the association of protein truncating variants in HELB with non-high grade serous ovarian cancer is a true 

positive association. 

NBN is also a good candidate ovarian cancer susceptibility gene.  It encodes nibrin, a member of the 

MRE11/RAD50 double-strand break repair complex involved in DNA double-strand break repair and DNA 

damage-induced checkpoint activation.  Protein truncating variants in this gene are associated with 

Nijmegen breakage syndrome, an autosomal recessive condition characterized by microcephaly, growth 

retardation, immunodeficiency, cancer predisposition, and premature ovarian failure in females 32.  NBN 

has previously been studied using candidate-gene sequencing and no significant association was found for 

non-high grade serous ovarian cancer based on 444 non-high grade serous cases of which just 72 were the 

endometrioid histotype 1. 

There is little evidence to link the OR2T35 or MYO1A to the biology of ovarian cancer.  OR2T35 encodes 

olfactory receptor family 2 subfamily T member 35 and MYO1A encodes myosin 1A, an unconventional 

myosin that functions as actin-based molecular motors.  This suggests the observed association with non 

high-grade serous ovarian cancer are likely to be false positives.   

We have confirmed the histotype specific associations of rare protein truncating variants in the known 

epithelial ovarian cancer susceptibility genes and found two novel associations for protein truncating 

variants in HELB and NBN with risk of non-mucinous, non-high grade serous ovarian cancer.  The relative 

risk estimates for these genes are likely to be inflated by the winners curse effect and may also be biased by 

the case ascertainement.  Large case-control sequencing studies will be needed to obtain more precise, 

unbiased estimates of the associated risks as well as to obtain more specific risks for the three main 

histotypes that comprise non-mucinous, non-high grade serous ovarian cancer.  Given our data it is unlikely 

that any additional susceptibility genes exist for either epithelial ovarian cancer of all histotypes or high-

grade serous ovarian cancer with the risk-allele frequency and effect-size characteristics of the known 

susceptibility genes.  It is possible there are genes with very rare risk alleles or modest effect sizes or genes 

specifically associated with the less common histotypes that we have not identified.  Much larger studies 

will be needed to identify robustly such genes. 
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