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 Abstract 
 Investigating  the  genetic  factors  influencing  human  birth  weight  may  lead  to  biological 
 insights  into  fetal  growth  and  long-term  health.  Genome-wide  association  studies  of  birth 
 weight  have  highlighted  associated  variants  in  more  than  200  regions  of  the  genome,  but  the 
 causal  genes  are  mostly  unknown.  Rare  genetic  variants  with  robust  evidence  of  association 
 are  more  likely  to  point  to  causal  genes,  but  to  date,  only  a  few  rare  variants  are  known  to 
 influence  birth  weight.  We  aimed  to  identify  genes  that  harbour  rare  variants  that  impact  birth 
 weight  when  carried  by  either  the  fetus  or  the  mother,  by  analysing  whole  exome  sequence 
 data in UK Biobank participants. 

 We  annotated  rare  (minor  allele  frequency  <0.1%)  protein-truncating  or  high  impact  missense 
 variants  on  whole  exome  sequence  data  in  up  to  234,675  participants  with  data  on  their  own 
 birth  weight  (fetal  variants),  and  up  to  181,883  mothers  who  reported  the  birth  weight  of  their 
 first  child  (maternal  variants).  Variants  within  each  gene  were  collapsed  to  perform  gene 
 burden  tests  and  for  each  associated  gene,  we  compared  the  observed  fetal  and  maternal 
 effects.  We  identified  8  genes  with  evidence  of  rare  fetal  variant  effects  on  birth  weight,  of 
 which  2  also  showed  maternal  effects.  One  additional  gene  showed  evidence  of  maternal 
 effects  only.  We  observed  10/11  directionally  concordant  associations  in  an  independent 
 sample of up to 45,622 individuals (sign test  P  =0.01). 

 Of  the  genes  identified,  IGF1R  and  PAPPA2  (fetal  and  maternal-acting)  have  known  roles  in 
 insulin-like  growth  factor  bioavailability  and  signalling.  PPARG,  INHBE  and  ACVR1C  (all 
 fetal-acting)  have  known  roles  in  adipose  tissue  regulation  and  rare  variants  in  the  latter  two 
 also  showed  associations  with  favourable  adiposity  patterns  in  adults.  We  highlight  the  dual 
 role  of  PPARG  in  both  adipocyte  differentiation  and  placental  angiogenesis.  NOS3,  NRK,  and 
 ADAMTS8  (fetal  and  maternal-acting)  have  been  implicated  in  both  placental  function  and 
 hypertension. 

 Analysis  of  rare  coding  variants  has  identified  regulators  of  fetal  adipose  tissue  and 
 fetoplacental  angiogenesis  as  determinants  of  birth  weight,  as  well  as  further  evidence  for  the 
 role of insulin-like growth factors. 
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 Introduction 
 An  improved  understanding  of  the  genetic  contribution  to  birth  weight  may  highlight 
 mechanisms  relevant  to  fetal  growth  restriction  or  overgrowth,  as  well  as  links  between  fetal 
 growth  and  later  disease  1  .  Studies  of  rare,  monogenic  forms  of  diabetes  have  highlighted  the 
 key  role  of  fetal  insulin,  since  rare  single  gene  mutations  in  the  fetus  that  reduce  insulin 
 secretion  are  generally  associated  with  a  reduced  birth  weight.  These  include  mutations  that 
 cause  neonatal  diabetes,  where  the  severity  of  the  insulin  secretory  defect  correlates  with  the 
 degree  of  reduction  in  birth  weight  2  .  In  babies  who  produce  no  insulin  at  all  due  to  pancreatic 
 agenesis,  or  to  complete  loss-of-function  (LoF)  mutations  in  the  insulin  gene,  birth  weights 
 are 50% of those of a healthy term baby  3  . 

 Family  studies  of  mutations  in  the  GCK  gene  have  demonstrated  the  role  of  maternal  genetic 
 variants,  which  may  influence  birth  weight  independently  of  variants  inherited  by  the  fetus. 
 Maternal  heterozygous  mutations  in  GCK,  which  reduce  glucose  sensing  and  cause  fasting 
 glucose  to  be  regulated  at  a  higher  set-point,  result  in  greater  maternal  glucose  availability  to 
 the  fetus,  as  glucose  crosses  the  placenta.  This  causes  the  fetus,  if  it  does  not  carry  the 
 mutation,  to  produce  more  fetal  insulin  and  grow  bigger  in  response  4  .  Conversely,  if  the  fetus 
 carries  a  GCK  mutation,  its  ability  to  sense  the  increase  in  glucose  is  impaired,  causing 
 reduced fetal insulin secretion and concomitant reduced fetal growth. 

 Genome-wide  association  studies  of  birth  weight  have  identified  >200  regions  of  the  genome 
 where  common  variants  (minor  allele  frequency  (MAF)  >1%)  are  associated  with  birth 
 weight  5,6  .  Variants  at  the  identified  loci  influence  birth  weight  by  direct  effects  of  the  fetal 
 genotype,  indirect  effects  of  the  maternal  genotype  acting  on  the  intrauterine  environment,  or 
 a  combination  of  the  two.  Most  of  these  variants  likely  influence  growth  via  mechanisms  that 
 are  independent  of  fetal  insulin  secretion  7  .  Parent-of-origin  effects  in  the  fetus  have  been 
 observed  at  several  birth  weight  loci  6  .  However,  the  causal  genes  at  the  vast  majority  of 
 identified loci are unknown. 

 Whole  exome  sequence  (WES)  data  in  biobank-scale  studies  offer  the  opportunity  to  identify 
 genes  that  are  causally  related  to  birth  weight,  and  the  potential  to  uncover  new  mechanisms 
 of  importance  for  the  regulation  of  fetal  growth.  We  performed  exome-wide  association 
 studies  (ExWAS)  of  rare  variant  (MAF  <0.01)  gene  burden  with  birth  weight  in  up  to  234,675 
 UK  Biobank  participants  who  reported  their  own  birth  weight  (fetal  variants),  and  up  to 
 181,883  female  UK  Biobank  participants  who  reported  the  birth  weight  of  their  first  child 
 (maternal  variants).  The  identified  genes  highlight  key  roles  for  adipose  tissue  regulation  and 
 fetoplacental  angiogenesis,  in  addition  to  the  role  of  insulin-like  growth  factor  bioavailability 
 and signalling, in regulating human birth weight. 

 Results 
 We  identified  8  genes  in  which  rare  (MAF<0.1%)  deleterious  LoF  fetal  variants,  defined  as 
 either  high-confidence  protein  truncating  variants,  or  missense  variants  with  a  CA  DD  score 
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 >=25,  were  associated  with  birth  weight  at  exome-wide  significance  (BOLT-LMM 
 P  <  1.64×10  -6  ):  ACVR1C  ,  IGF1R,  INHBE  ,  NOS3,  NRK,  NYNRIN,  PAPPA2  ,  PPARG  (  Figure  1, 
 Supplementary  Figures  1-3,  Supplementary  Table  1  ).  In  the  analysis  of  maternal  variants 
 and  offspring  birth  weight,  3  genes  showed  associations  at  exome-wide  significance 
 (BOLT-LMM  P  <1.58×10  -6  ).  These  included  2  genes  also  identified  in  the  fetal  analysis 
 (  IGF1R  ,  NOS3  )  and  additionally  ADAMTS8  (  Figure  1,  Supplementary  Figures  4-5, 
 Supplementary  Table  1  ).  We  also  confirmed  all  of  these  significant  associations  by 
 conducting  independent  analyses  using  REGENIE  (see  Methods)  and  we  did  not  observe 
 any method-related biases  (  Supplementary Figures  1, Supplementary Table 1  ). 

 Figure  1  |  Exome-wide  rare  (MAF<0.1%)  fetal  or  maternal  variant  gene  burden 
 associations  with  birth  weight.  (a)  Miami  plot  showing  gene  burden  test  results  from 
 BOLT-LMM  for  birth  weight,  with  the  fetal  exome-wide  analysis  (up  to  n=234,675)  on  the  top 
 panel  and  the  maternal  exome-wide  analysis  (up  to  n=181,883)  on  the  bottom  panel.  Gene 
 associations  passing  exome-wide  significance,  at  P  <  1.64×10  -6  in  the  fetal  analysis  and 
 P  <1.58×10  -6  in  the  maternal  analysis,  are  labelled.  The  two  variant  collapsing  masks  are 
 indicated  by  point  shapes.  (b)  QQ  plots  for  exome-wide  gene  burden  associations.  Results 
 for the exome-wide significant genes are included in Supplementary Table 1. 

 Since  maternal  and  fetal  genotypes  are  correlated  (r=0.5),  we  explored  whether  the  observed 
 associations  represented  fetal  effects,  maternal  effects,  or  both.  To  do  this,  we  used  a 
 weighted  linear  model  (WLM)  to  approximately  condition  the  fetal  effect  on  the  maternal 
 genotype,  and  vice  versa.  Five  out  of  nine  associations  (  ACVR1C  ,  INHBE  ,  NRK  ,  NYNRIN  , 
 PPARG  )  showed  evidence  of  only  fetal-genotype  effects.  IGF1R,  PAPPA2,  and  NOS3  were 
 classified  as  both  fetal-  and  maternal-acting,  with  rare  variants  in  all  three  genes  associating 
 with  a  lower  birth  weight  in  both  cases.  ADAMTS8  was  the  only  gene  classified  as  only 
 maternal-acting (  Figure 2a  ,  Supplementary Table 2  )  . 
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 For  fetal  genes  associated  with  birth  weight,  we  explored  whether  they  might  act  in  a 
 sex-specific  manner.  We  found  a  nominally  stronger  effect  for  fetal  PPARG  variants  on  birth 
 weight  in  females  (beta  Female  =-1.710  [0.340]  SDs)  than  in  males  (beta  Male  =-0.177  [0.592]  SDs, 
 p  het  =2.46×10  -02  ),  albeit  only  3  male  carriers  were  identified  (  Figure  2b  ,  Supplementary  Table 
 3  ). 

 Figure  2  |  Nine  genes  with  rare  variant  associations  with  birth  weight.  (a) 
 Weighted-linear  models  (WLMs)  approximately  conditioned  the  fetal  effect  on  the  maternal 
 genotype,  and  vice  versa.  Marker  opacity  indicates  gene  burden  associations  at  P  <0.05.  (b) 
 Sexually-dimorphic  effects  of  the  associated  genes  on  birthweight.  Markers  are  coloured 
 yellow  or  red  to  indicate  female-  or  male-only  models.  Marker  opacity  indicates  associations 
 with  sexual  dimorphism  (P<0.05).  Units  for  effect  estimates  and  accompanying  95%  CIs  are 
 SDs  in  both  panels.  Relevant  data  are  included  in  Supple  mentary  Tables  2  and  3, 
 accordingly. 

 Confirmation of exome associations 
 We  aimed  to  replicate  our  associations  in  independent  data  on  up  to  45,622  Icelandic 
 genomes.  Despite  the  substantially  smaller  sample  size  than  our  discovery  sample,  we 
 observed  supportive  evidence  for  the  same  type  of  rare  LoF  exome  variants  on  birth  weight 
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 for  the  majority  of  our  associations  (10/11  showed  directional  consistency;  Sign  test  P  =0.01), 
 with  three  genes  associated  at  P  <0.05;  INHBE  ,  NRK  and  PAPPA2  (  Supplementary  Figure 
 6  ,  Supplementary Table 4  ). 

 To  identify  whether  any  of  the  birth  weight  genes  identified  in  our  exome  analyses  are  also 
 supported  by  common  variant  associations,  we  examined  t  he  latest  maternal  and  fetal  GWAS 
 summary  statistics  for  birth  weight  6  and  looked  for  GWAS  signals  within  500kb  of  our 
 identified  genes.  We  observed  fetal  GWAS  signals  proximal  to  ACVR1C  ,  IGF1R  ,  and 
 PAPPA2  ,  and  there  was  also  a  maternal  GWAS  signal  proximal  to  NOS3  (  Supplementary 
 Figure  7  ).  In  all  cases  the  lead  associated  variants  were  located  within  these  genes 
 (  Supplementary  Table  5  )  and  proximity  has  been  shown  to  be  a  good  predictor  of  the  causal 
 gene  at  a  GWAS  locus  8,9  .  The  lead  SNPs  at  the  IGF1R  and  NOS3  loci  were  also  eQTLs  for 
 these  genes,  with  directions  of  effect  concordant  with  the  exome  associations,  i.e.  the  alleles 
 associated  with  lower  expression  (LoF-like)  were  also  associated  with  lower  birth  weight  10  .  Of 
 these  four  GWAS  signals,  IGF1R  ,  ACVR1C  ,  and  PAPPA2  were  classified  as  having  fetal  only 
 effects  by  Juliusdottir  et  al.  6  .  The  SNP  near  NOS3  was  not  classified  by  Juliusdottir  et  al.  6  ,  but 
 the  NOS3  lead  SNP  was  classified  by  Warrington  et  al  .  5  as  having  only  maternal  effects.  We 
 did  not  observe  attenuation  of  the  rare  variant  associations  with  birth  weight  when 
 conditioning  on  the  proximal  GWAS  sentinel  SNPs  (  Supplementary  Table  6  ).  Hence,  these 
 common  variant  associations  provide  independent  support  for  these  genes  in  the  regulation 
 of birth weight. 

 To  assess  evidence  for  additional  candidate  genes  influencing  birth  weight  at  GWAS  loci, 
 which  did  not  pass  our  stringent  exome-wide  significance  thresholds,  we  looked  at  all  genes 
 within  300  kb  of  a  reported  GWAS  locus  and  applied  a  Benjamini-Hochberg  correction  for 
 multiple  testing.  The  results  are  shown  in  Supplementary  Table  7  .  In  the  fetal  variant 
 analysis  we  identified  a  further  eight  candidate  genes  (  CDK6,  HGS,  PAPPA,  PHF19,  PLAG1, 
 PLCE1,  PTEN  and  SKP2  ),  and  in  the  maternal  variant  analysis  we  identified  one  additional 
 candidate  gene  (  LMNA  ).  At  six  of  these  genes  (  CDK6,  PAPPA,  PHF19,  PLAG1  ,  PLCE1  and 
 SKP2  )  a  GWAS  lead  SNP  was  located  within  the  same  gene,  while  the  lead  SNP  within 
 PLCE1  was  also  a  missense  variant,  further  adding  to  the  evidence  that  non-synonymous 
 coding variation in these genes affects birth weight. 

 Finally,  we  explored  whether  the  biology  implicated  by  the  exome-associated  genes  was 
 consistent  with  that  from  GWAS  studies.  To  do  this,  we  performed  a  pathway  enrichment 
 analysis,  using  genes  proximal  to  the  GWAS  signals  from  Juliusdottir  et  al.  6  .  We  saw 
 enrichment  for  185  GO  pathways  in  the  fetal  GWAS  of  birth  weight  and  41  pathways  in  the 
 maternal  GWAS,  with  21  pathways  being  enriched  in  both  GWAS  (fetal  and  maternal, 
 Supplementary  Table  8  ).  In  line  with  biology  implicated  by  our  exome  associations,  we 
 observed  significant  enrichment  for  genes  in  multiple  pathways  implicated  in  insulin  and 
 growth  factor  response  across  both  fetal  and  maternal  GWAS  genes  and  “circulatory  system 
 development” for fetal GWAS genes, among others. 
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 Gene burden associations with related traits 
 To  understand  the  wider  phenotypic  impacts  of  birth  weight-associated  rare  genomic 
 variation,  we  performed  phenotypic  association  lookups  in  birthweight-related  traits  using 
 data from the UK Biobank (see  Methods  ). 

 We  observed  associations  for  rare  LoF  variants  in  IGF1R  and  PAPPA2  ,  both  of  which  are 
 known  regulators  of  insulin-like  growth  factor  (IGF)  regulation  and  bioactivity  11–15  ,  with  adult 
 circulating  IGF-1  levels,  adult  height  and  childhood  height  and  body  size  (  Supplementary 
 Table  9  ).  The  INHBE,  NRK  ,  NOS3  and  NYNRIN  genes  were  also  associated  with  adult 
 height.  In  all  of  these  genes,  apart  from  INHBE  ,  carrying  a  rare  LoF  variant  was  associated 
 with  directionally  concordant  effects  on  birth  weight  and  adult  height,  i.e.  higher  birth  weight 
 and higher adult height or  vice versa  . 

 Furthermore,  we  observed  associations  between  variants  in  ADAMTS8  and  NOS3  and  adult 
 blood  pressure  (  Supplementary  Table  9  ).  For  both  of  these  genes,  rare  LoF  variants  were 
 associated with lower birth weight and higher blood pressure. 

 Finally,  several  of  the  birth  weight  associated  genes  were  also  associated  with  measures  of 
 adiposity  in  adulthood,  including  waist-hip  ratio  (WHR)  adjusted  for  BMI,  and  body  fat 
 percentage  for  rare  LoF  variants  in  ACVR1C  ,  INHBE  and  PPARG  (accordingly, 
 Supplementary Table 9  ). These are further explored  below. 

 ACVR1C  ,  INHBE  and favourable adiposity 
 ACVR1C  (birth  weight:  beta  fetal  =0.330  SDs,  p  =1.4×10  -6  ,  N=200  carriers,  Figure  3a  )  encodes 
 a  type  I  receptor  for  the  TGF-beta  family  of  signalling  molecules.  It  is  predominantly 
 expressed  in  adipose  tissue  10  and  its  primary  function  in  metabolic  regulation  is  to  limit 
 catabolic  activities  and  preserve  energy  16  .  Low-frequency  heterozygous  mutations  in  humans 
 have  been  linked  to  a  favourable  metabolic  profile  including  lower  WHR  adjusted  for  BMI  and 
 protection  against  T2D  17,18  .  INHBE  (beta  fetal  =0.218  SDs,  p  =3.5×10  -9  ,  N=687  carriers,  Figure 
 3b  )  encodes  the  inhibin  subunit  beta  E  of  activin  E,  a  growth  factor  belonging  to  the 
 TGF-beta  family.  While  this  gene  is  predominantly  expressed  in  the  liver  10  ,  it  does  not  appear 
 to  be  necessary  for  normal  liver  function  19  ,  but  rather  acts  as  a  negative  regulator  of  energy 
 storage  in  peripheral  adipose  tissue.  Similarly  to  ACVR1C  ,  a  candidate  receptor, 
 heterozygous  LoF  carriers  exhibit  lower  WHR  adjusted  for  BMI  and  a  favourable  body  fat 
 distribution  and  metabolic  profile  20,21  .  However,  recent  mouse  studies  22,23  showed  that 
 complete  ablation  of  INHBE  or  ACVR1C  leads  to  uncontrolled  and  pathological  levels  of 
 lipolysis  (see  Discussion).  We  found  that  rare  LoF  variants  in  ACVR1C  and  INHBE  are 
 associated  with  increased  birth  weight  and  decreased  WHR,  indicative  of  a  metabolically 
 favourable adiposity pattern in adulthood (  Supplementary  Table 9  ). 

 Two  genetics  studies  20,21  showed  that  the  association  between  rare  LoF  variants  in  INHBE 
 and  WHR  is  primarily  due  to  a  splice  acceptor  variant  (12:57456093:G:C)  that  substantially 
 reduces  the  expression  of  the  gene,  attributable  to  either  a  change  in  secretion  and/or  protein 
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 stability.  They  also  reported  that  the  favourable  adiposity  effect  of  this  gene  is  almost  entirely 
 attenuated  in  the  absence  of  this  variant  (gene-burden  p  =  2.01×10  −8  with  splice  variant, 
 p  =0.34  without  21  ,  which  we  also  observe  for  WHR  in  our  data  (  Supplementary  Table  10  ). 
 However,  while  this  variant  is  also  strongly  associated  with  higher  birth  weight  (  p  =5.4×10  -6  , 
 Figure  3b  ),  our  observed  birth  weight  association  with  INHBE  does  not  fully  attenuate  in  the 
 absence  of  this  variant  (gene-burden  p  =4.6×10  -9  with  splice  variant,  p  =6.3×10  -5  without, 
 Supplementary Table 10  ). 

 Figure  3  |  Rare  variant  associations  at  INHBE  and  ACVR1C  with  fetal  birth  weight  in 
 the  UK  Biobank.  Fetal  variant-level  associations  between  ACVR1C  (a),  INHBE  (b)  and  birth 
 weight.  Included  variants  had  a  minor  allele  frequency  (MAF)  <0.1%  and  were  annotated  to 
 be  damaging  variants  defined  as  high-confidence  protein  truncating  variants  (PTV)  or 
 missense  variants  with  a  CADD  score  ≥25.  Each  variant  is  presented  as  an  individual  line 
 extending  to  its  association  p  -value  (-log  10  )  in  the  direction  indicating  the  direction  of  effect  on 
 birth  weight  in  variant  carriers.  Dashed  lines  indicate  PTVs  and  solid  lines  indicate  missense 
 variants. The point size indicates the number of carriers of each variant (i.e. the allele count). 
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 PPARG  in birth weight, adipogenesis, and placental formation 
 PPARG  (birth  weight:  beta  fetal  =-1.416  SDs,  p  =1.2×10  -6  ,  N=11  carriers,  Figure  4b  )  encodes  the 
 peroxisome  proliferator-activated  receptor  PPAR-gamma,  which  acts  as  a  master  regulator  of 
 adipogenesis.  Heterozygous  LoF  variants  in  humans  have  been  linked  to  familial  partial 
 lipodystrophy  (FPLD)  characterised  by  loss  of  subcutaneous  fat  from  the  extremities  and 
 metabolic  abnormalities  such  as  insulin  resistance  and  hypertriglyceridemia  24–27  .  Individuals 
 with  FPLD  due  to  inherited  heterozygous  variants  have  also  been  shown  to  have  low 
 birthweight  for  their  gestational  age,  when  in  the  absence  of  maternal  diabetes,  hypertension 
 or  hypertriglyceridemia  (e.g.  when  the  PPARG  variants  are  paternally  inherited)  28  .  In  addition 
 to  being  highly  expressed  in  adipocytes,  PPARG  is  also  highly  expressed  in  trophoblasts  in 
 both  rodent  and  human  placentas  29  where  it  appears  to  play  an  important  role  in  placental 
 formation  and  angiogenesis  by  regulating  the  expression  of  proangiogenic  factors  such  as 
 proliferin  (  Prl2c2  )  and  vascular  endothelial  growth  factor  (VEGF)  30  .  Its  depletion  results  in 
 embryonic  lethality  in  mice  due  to  placental  dysfunction  31,32  ,  while  PPARγ  agonist  activity  was 
 reduced  in  the  blood  and  placentas  of  patients  with  severe  preeclampsia,  compared  to  those 
 with normal pregnancy  33  . 

 To  distinguish  if  our  observed  birth  weight  association  could  be  primarily  due  to  PPARG’s 
 function  in  fetal  insulin  resistance  or  placental  function,  we  characterised  rare  variants  in 
 PPARG  using  Missense  InTerpretation  by  Experimental  Response  (MITER)  score  data  34  ,  as 
 the  gold-standard  indicator  of  lipodystrophy-causing  PPARG  missense  variants.  Although 
 MITER  scores  are  not  available  for  PTV  variants,  for  which  we  observed  the  strongest  birth 
 weight  association,  we  note  that  8  out  of  our  included  9  PTV  variants  are  classified  as 
 pathogenic  based  on  ACGS  35  .  Missense  variants  with  a  lipodystrophy-level  MITER  score 
 (≤-2)  were  collectively  associated  with  a  decrease  in  adult  body  fat  percentage  of  similar 
 magnitude  to  other  prediction-based  missense  variant  collapsing  masks  (  p  =9.70×10  -5  ,  Figure 
 4a  ,  Supplementary  Table  11  ).  We  found  only  weak  evidence  of  an  association  between  the 
 MITER  score  variants  and  birth  weight  (  p  =0.06),  although  the  effect  estimate  on  birth  weight 
 was  not  significantly  different  from  the  other  missense  masks  (  Figure  4a  ,  Supplementary 
 Table  11  ).  There  was  also  no  discernible  correlation  pattern  between  PPARG  variant  effect 
 estimates  on  birth  weight,  body  fat  percentage  and  their  corresponding  MITER  scores 
 (Pearson  correlations  were,  R  BW-MITER  =0.026,  R  BF%-MITER  =0.187,  R  BF%-BW  =0.101,  Figure  4c  ). 
 Taken  together,  our  results  suggest  that  the  effects  of  rare  PPARG  PTVs  on  birth  weight 
 could be due to altered placentation, as well as the established role in adipogenesis. 
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 Figure  4  |  Associations  with  rare  LoF  variants  in  PPARG  .  (a)  Different  (fetal)  variant 
 collapsing  masks  and  their  associations  with  birth  weight  (top)  and  adult  body  fat  percentage 
 (bottom).  (b)  The  genomic  location  and  associations  with  birth  weight  for  all  qualifying  fetal 
 high  confidence  PTVs  within  PPARG  ,  in  the  discovery  analysis.  (c)  Scatterplot  of  association 
 P-values  for  birth  weight  (fetal  variants)  and  body  fat  percentage,  for  all  rare  missense 
 variants  in  PPARG  annotated  with  a  MITER  score  and  found  in  the  UK  Biobank  population. 
 Marker  colour  indicates  the  variants  MITER  score,  with  scores  ≤-2  indicating 
 lipodystrophy-level MITER scores.  Relevant data is  included in  Supplementary Table 11  . 

 As  with  PPARG,  the  ADAMTS8  ,  NRK  and  NOS3  genes  have  also  been  implicated  in 
 placental  function.  Specifically,  ADAMTS8  shows  strong  placental  expression  in  the  early 
 stages  of  gestation  and  has  been  implicated  in  endometrium  decidualization  and  trophoblast 
 invasion  36–39  .  NRK  encodes  a  serine/threonine  kinase  of  the  germinal  centre  kinase  family 
 and  is  expressed  in  skeletal  muscle  during  development  as  well  as  the  placenta,  specifically 
 the  spongiotrophoblast  layer,  a  fetus-derived  region  of  the  placenta  40–42  .  Nrk-deficient  mouse 
 fetuses  display  enlarged  placentas,  a  likely  result  of  enhanced  trophoblast  proliferation  due  to 
 upregulation  of  AKT  phosphorylation  43  ,  as  well  as  a  higher  birth  weight  and  delayed  delivery 
 through  yet  unknown  mechanisms  42  .  Finally  ,  common  variants  in  NOS3  have  been  previously 
 associated  with  the  risk  of  developing  preeclampsia  44  ,  although  no  association  was  found  at 
 this locus in a large-scale preeclampsia GWAS  45  . 
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 Comparison of burden test results with birth weight effects of pathogenic 
 GCK  variants 
 To  investigate  the  sensitivity  of  our  ExWAS  approach  to  detect  known  rare  variant  effects  on 
 birth  weight,  we  focused  on  the  GCK  gene.  In  the  UK,  pathogenic  variants  in  GCK  are  the 
 second  most  common  cause  of  monogenic  diabetes,  and  have  established  effects  on  fetal 
 growth  4,46  .  Mothers  with  pathogenic  GCK  variants  have  a  stably  raised  fasting  glucose  level, 
 which  results  in  greater  glucose  availability  to  the  fetus,  and  increased  birth  weight  due  to 
 fetal  insulin  secretion,  which  is  raised  in  response  to  higher  maternal  and  consequently  fetal 
 glucose.  Conversely,  fetal  growth  is  reduced  in  babies  who  carry  pathogenic  GCK  variants 
 due  to  their  reduced  insulin  secretion.  These  birth  weight  effects  are  masked  if  both  mother 
 and  fetus  carry  the  same  mutation  4  .  We  annotated  and  combined  pathogenic  variants  in  GCK 
 using  clinical  guidelines  35  and  observed  evidence  of  both  fetal  and  maternal  genetic 
 associations  with  birth  weight  in  the  expected  directions  (  beta  fetal  =-0.311  SDs,  p  =0.002,  N=86 
 carriers;  beta  maternal  =0.430  SDs,  p  =0.001,  N=53  carriers  ;  Supplementary  Figure  8; 
 Supplementary  Table  12  ).  In  comparison,  our  gene  burden  associations  with  rare  predicted 
 LoF  variants  in  GCK  were  more  modest  but  in  the  expected  directions  (  Supplementary 
 Figure  8;  Supplementary  Table  12  ).  We  found  63  of  the  known  pathogenic  GCK  variants 
 present  in  the  UK  Biobank  WES  dataset.  Out  of  16  variants  in  the  PTV  mask,  14  were 
 annotated  as  pathogenic  and  of  55  variants  in  the  Missense  +  PTV  mask,  33  were  annotated 
 as  pathogenic.  The  remaining  pathogenic  variants  were  annotated  as  non-deleterious  and 
 were not included in the masks. 

 Discussion 
 In  this  study,  we  used  whole  exome  sequencing  data  from  the  UK  Biobank  cohort  to 
 understand  the  influence  of  rare  genetic  variants  on  human  birth  weight.  We  aimed  to  identify 
 genes  harbouring  rare  variants  that  impact  birth  weight  when  carried  by  either  the  fetus  or  the 
 mother.  We  identified  a  total  of  8  genes  with  rare  fetal  LoF  variant  effects  on  birth  weight,  two 
 of  which,  IGF1R  and  NOS3  showed  some  evidence  of  maternal  effects.  We  identified  one 
 additional  maternal  effect  gene,  ADAMTS8  .  Findings  were  largely  consistent  in  an 
 independent  cohort  of  Icelandic  genomes,  and  four  of  the  identified  genes  harboured 
 independent  GWAS  lead  SNPs  in  the  largest  and  most  recent  birth  weight  GWAS 
 meta-analysis,  providing  additional  confirmation  that  the  genes  identified  in  this  study  are 
 involved in birth weight regulation. 

 Among  the  genes  associated  with  birth  weight,  several  have  well-established  links  with  fetal 
 growth.  IGF1R  and  PAPPA2  encode  key  components  of  IGF  bioavailability  and  signalling. 
 IGF1R  is  a  transmembrane  receptor  tyrosine  kinase  activated  by  IGF1  (and  also  IGF2  and 
 insulin),  which  mediates  anabolic  effects.  Rare  human  homozygous,  heterozygous  or 
 compound  heterozygous  mutations  in  IGF1R  cause  intrauterine  growth  restriction,  reduced 
 postnatal  growth,  short  stature  and  microcephaly  47  .  PAPPA2  encodes  a  metalloproteinase 
 that  regulates  the  bioavailability  of  IGFs.  Rare  homozygous  mutations  in  PAPPA2  are 
 reported  to  cause  severe  short  stature  but  with  unclear  effects  on  birth  weight  (reduced  in  4 
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 of  6  affected  children)  48  ,  while  the  protein    originates  primarily  from  trophoblasts  in  the  early 
 placenta  49,50  .  Our  findings  demonstrate  that  rare,  damaging  variants  in  IGF1R  and  PAPPA2 
 contribute to population variation in birth weight, as well as in childhood and adult height. 

 Consistent  with  the  fetal  insulin  hypothesis  51  ,  the  association  between  the  rare,  damaging 
 fetal  variants  in  IGF1R  and  greater  type  2  diabetes  risk  provides  a  potential  mechanistic 
 insight  into  the  well-documented  link  between  this  later-life  disease  and  lower  birth  weight. 
 IGF1R  is  central  to  the  development  of  several  key  tissues  for  glucose  metabolism,  including 
 pancreatic  islets,  adipose  tissue  and  skeletal  muscle  52  ,  and  in  addition,  loss  of  IGF1R 
 function  may  lead  to  compensatory  increases  in  growth  hormone  levels,  which  are 
 associated  with  insulin  resistance  53  .  The  mechanism  underlying  the  association  we  observed 
 between  maternal  rare,  damaging  IGF1R  variants  and  lower  offspring  birth  weight  after 
 adjustment  for  fetal  genotype  is,  however,  less  clear  because  we  would  expect  such  variants 
 to  increase  birth  weight  if  they  result  in  higher  maternal  insulin  resistance  with  concomitant 
 higher  glucose  availability.  However,  there  are  some  reported  cases  of  heterozygous  IGF1R 
 mutations  leading  to  hypoglycemia  54  .  We  recommend  that  this  result  is  confirmed  in 
 well-powered samples of mother-child pairs before potential mechanisms are investigated. 

 PPARG  ,  INHBE  ,  and  ACVR1C  displayed  fetal  effects  on  birthweight  and  are  involved  in 
 adipose  tissue  differentiation  and  regulation.  Recent  genetics  studies  implicated  rare  LoF 
 variants  in  INHBE  in  adult  favourable  adiposity  traits,  i.e.  lower  WHR  adjusted  for  BMI  20,21  . 
 They  also  highlighted  a  splice  variant  (12:57456093:G:C)  which  affects  either  protein 
 secretion  or  stability,  as  underpinning  the  favourable  adiposity  association  with  this  gene.  We 
 found  that  the  birth  weight  association  with  INHBE  largely  remains,  even  in  the  absence  of 
 this  splice  variant.  This  could  indicate  that  some  variants  within  INHBE  may  exert  a  role  in 
 early  (  in  utero  )  adipogenesis,  while  others  may  do  so  throughout  the  life  course,  but  further 
 studies need to confirm this hypothesis. 

 Our  identification  of  rare  LoF  variants  in  two  genes,  ACVR1C  and  INHBE  ,  that  have  fetal 
 associations  with  higher  birth  weight  and  also  a  more  metabolically  favourable  body  fat 
 distribution  in  adulthood  is  in  line  with  recent  findings  that  common  genetic  variants  in  the 
 fetus,  which  predispose  to  higher  metabolically  favourable  adiposity  in  adulthood,  are  also 
 associated  with  higher  birth  weight.  Variants  with  greater  effects  on  adiposity  have  greater 
 effects  on  birth  weight  55  and  we  therefore  hypothesise  that  the  birth  weight  effects  of 
 ACVR1C  and  INHBE  are  due  primarily  to  fetal  fat  accretion  rather  than  effects  on  lean  mass. 
 A  fetal  genetic  predisposition  to  greater  birth  weight  and  later  favourable  body  fat  distribution 
 may  underlie  epidemiological  associations  between  greater  skinfold  thickness  at  birth  and 
 favourable  metabolic  outcomes  in  early  childhood,  especially  when  controlling  for  exposure  to 
 maternal  glucose  levels  in  utero  56  .  Further  studies  should  assess  the  contributions  of  rare 
 variation in  ACVR1C  and  INHBE  to the fat and lean  mass components of birth weight. 

 More  generally,  the  effects  of  loss  of  INHBE  on  Alk7  (ACVR1C)  signalling  on  metabolic  health 
 appear  to  be  complex  and  dose-dependent.  Humans  haploinsufficient  for  either  of  these 
 genes  have  a  healthy  metabolic  profile  and  reduced  risk  of  cardiometabolic  disease 
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 accompanied  by  a  favourable  distribution  of  body  fat.  However,  it  has  been  shown  that  the 
 total  absence  of  either  INHBE  or  ACVR1C  from  conception  results  in  uncontrolled  adipocyte 
 lipolysis,  ectopic  fat  distribution  and  insulin  resistance,  at  least  in  mice  22,23  .  This  discrepancy 
 may  be  explained  by  the  fact  that  Alk7  signalling  in  adipose  cells  suppresses  the  expression 
 of  both  PPARγ  and  key  molecular  elements  of  the  lipolytic  machinery.  We  suggest  that  at 
 modest  levels  of  INHBE/Alk7  deficiency,  such  as  occurs  when  only  one  functional  allele  is 
 present,  the  effect  on  PPARγ  is  dominant  and  carriers  of  such  mutations  develop  more 
 subcutaneous  adipocytes  as  a  result  of  the  enhanced  PPARG  tone  during  development. 
 Ultimately,  this  is  metabolically  beneficial  as  it  will  tend  to  protect  the  individual  from  any 
 effects  of  any  caloric  overload  in  postnatal  life.  However,  in  the  total  absence  of  INHBE/Alk7 
 the  effect  on  lipolysis  becomes  dominant  with  consequent  build-up  of  ectopic  fat  and  insulin 
 resistance.  While  it  is  not  entirely  clear  why  subcutaneous,  rather  than  visceral  adipocytes 
 would  be  favoured  by  PPARγ  activity,  it  is  worthy  of  note  that  the  administration  of  drugs 
 activating PPARγ preferentially promotes subcutaneous fat deposition  57  . 

 Heterozygous  LoF  in  PPARG  has  previously  been  linked  to  familial  partial  lipodystrophy, 
 characterised  by  the  loss  of  subcutaneous  fat  from  the  extremities  and  metabolic 
 abnormalities  such  as  insulin  resistance  and  hypertriglyceridemia  24–27  .  However,  PPARG  has 
 also  been  linked  to  placental  development  and  angiogenesis  30  .  Here,  we  saw  a  poor 
 correlation  between  the  variants’  lipodystrophy-causing  potential  and  effect  on  birth  weight, 
 suggesting  the  birth  weight  effect  could  be  driven  by  another  mechanism.  Given  the  role  of 
 PPARG  in  placental  development,  it  is  possible  that  PPARG  LoF  variants  act  via  the 
 placenta  to  exert  an  effect  on  birth  weight.  Our  results  are  consistent  with  recent  observations 
 of  a  high  rate  of  small-for-gestational-age  birth  weights  in  patients  who  had  familial  partial 
 lipodystrophy  due  to  inherited  PPARG  mutations  and  who  were  not  exposed  to  maternal 
 diabetes  in  utero  28  .  PPARG  mutation  carriers  were  also  more  likely  to  be  born  preterm, 
 regardless  of  maternal  diabetes  status,  which  further  supports  the  role  of  fetal  PPARG  in 
 placental  development.  Data  on  gestational  duration  was  not  available  for  the  UK  Biobank 
 participants,  and  it  is  possible  that  shorter  gestation  in  rare  PPARG  variant  carriers 
 contributed  to  the  associations  we  observed  with  birth  weight.  We  note  that  the  common  fetal 
 variant  rs1801282  in  PPARG,  which  is  associated  with  type  2  diabetes  risk  in  adulthood  58  via 
 a  fat  distribution-mediated  form  of  insulin  resistance  59  ,  is  weakly  associated  with  lower  birth 
 weight  (p=0.0259  )  5  and  was  not  associated  with  gestational  duration  in  a  fetal  GWAS  of 
 gestational  duration  in  84,689  individuals  (p=0.487)  60  .  Our  observed  associations  between 
 birthweight  and  ADAMTS8  ,  NRK  and  NOS3  are  also  likely  driven  by  placental  mechanisms, 
 given  the  known  roles  of  these  genes  36–44  .  The  potential  mechanism  underlying  the  association 
 between birth weight and our other identified gene,  NYNRIN  , requires further study. 

 Our  study  has  several  strengths,  including  a  large  discovery  sample,  an  independent 
 replication  sample,  support  from  common  variant  associations  proximal  to  five  of  the  genes, 
 and  approximate  adjustment  for  correlation  between  maternal  and  fetal  genotype.  However, 
 there  are  limitations.  The  sample  size  available  for  replication  was  limited,  and  although  we 
 observed  strong  evidence  for  consistent  effect  estimates,  we  recommend  confirmation  in 
 larger  datasets  as  they  become  available,  along  with  proper  conditional  analyses  in 
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 sufficiently-powered  samples  of  mother-child  pairs.  The  approximate  adjustment  for  the 
 correlation  between  maternal  and  fetal  genotype  used  here  is  based  on  the  strong 
 assumption  that  all  variants  with  a  given  annotation  have  equal  effects  on  birth  weight  5  ,  which 
 may  not  be  the  case.  We  also  acknowledge  the  limited  diversity  of  our  samples.  Studies  of 
 rare  variants  in  well-powered  samples  of  diverse  ancestries  are  a  priority  for  future  research. 
 While  our  study  was  underpowered  to  detect  very  rare  pathogenic  variants  that  have  known 
 birth  weight  effects  2  ,  our  sensitivity  analysis  of  GCK  showed  that  the  known  maternal  and 
 fetal  associations  were  detectable  by  our  method,  despite  the  inevitable  lower  sensitivity  and 
 specificity  of  the  exome-wide  approach,  and  despite  the  lack  of  adjustment  for  opposing 
 effects of maternal and fetal genotypes. 

 Overall,  this  study  advances  our  understanding  of  the  fetal  and  maternal  genetic 
 underpinnings  of  birth  weight,  providing  strong  evidence  for  causal  genes  and  insights  into 
 biological  pathways  which  are  important  targets  for  future  research  aiming  to  understand  fetal 
 growth and its links with long-term health. 
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 Data availability 
 UK Biobank data are available on application via 
 https://www.ukbiobank.ac.uk/enable-your-research/register  . 

 Materials and methods 

 Exome wide association analyses in the UK Biobank 
 Analyses  of  the  UK  Biobank  data  were  performed  on  the  UK  Biobank  Research  Analysis 
 Platform  (RAP;  https://ukbiobank.dnanexus.com/  ).  Birth  weight  was  derived  in  the  453,505 
 UK  Biobank  participants  with  genetically  defined  European  ancestry,  as  follows.  Own  birth 
 weight  (fetal  genotype  analysis)  was  derived  using  self-reported  data  (field  20022),  while  birth 
 weight  of  the  first  child  in  UK  Biobank  women  (maternal  genotype  analysis)  was  taken  from 
 hospital  records  and  self-reports  (fields  41284  and  2744).  Data  from  each  field  were 
 converted  to  kg  (if  in  another  unit)  and  if  both  were  available,  hospital  records  were 
 preferentially  retained  for  maximum  accuracy.  For  both  phenotypes,  repeated  responses 
 across  the  assessment  centre  visits  were  combined  by  calculating  average  values. 
 Individuals  from  multiple  births  (field  1777),  who  reported  substantially  different  values 
 between  visits  (>1kg  difference),  or  extreme  birth  weight  values  (<1  or  ≥7kg)  were  excluded 
 from  downstream  analyses.  After  these  exclusions,  fetal  birth  weight  data  was  available  for 
 252,329  individuals  (234,675  with  exome  and  covariate  data)  and  maternal  birth  weight  data 
 was available for the first child of 195,653 women (181,883 with exome and covariate data). 

 We  conducted  gene  burden  tests  for  both  fetal  and  maternal  birth  weight,  by  combining 
 effects  of  all  rare  (MAF  <0.1%)  variants  with  predicted  deleterious  functional  consequences 
 across  all  protein-coding  genes,  as  described  in  detail  in  Gardner  et  al  .  53  .  Briefly,  we  queried 
 population-level  VCF  files  with  data  for  454,787  individuals  provided  from  the  UK  Biobank 
 study.  Using  bcftools  62  multi-allelic  variants  were  split  and  left-normalised,  and  all  variants 
 filtered  using  a  missingness  based  approach.  SNV  genotypes  with  depth  <7  and  genotype 
 quality  <20  or  InDel  genotypes  with  a  depth  <10  and  genotype  quality  <20  were  set  to 
 missing.  We  also  tested  for  an  expected  reference  and  alternate  allele  balance  of  50%  for 
 heterozygous  SNVs  using  a  binomial  test;  SNV  genotypes  with  a  binomial  test  p.  value 
 ≤1×10  -3  were  set  to  missing.  Following  genotype  filtering,  variants  with  >50%  missing 
 genotypes  were  excluded  from  further  analysis.  Variants  were  then  annotated  with  the 
 ENSEMBL  Variant  Effect  Predictor  (VEP  63  ,  v104)  with  the  ‘everything’  flag  and  the  LOFTEE 
 plugin  64  .  For  each  variant  we  prioritised  a  single  MANE  (v0.97)  or  VEP  canonical  ENSEMBL 
 transcript  and  most  damaging  consequence  as  defined  by  VEP  defaults.  For  the  purposes  of 
 defining  Protein  Truncating  Variants  (PTVs),  we  grouped  high-confidence  (as  defined  by 
 LOFTEE)  stop  gained,  splice  donor/acceptor,  and  frameshift  consequences.  To  define 
 ‘high-confidence’  PTVs  ,  we  used  the  LOFTEE  algorithm  64  .  All  variants  were  subsequently 
 annotated  using  CADD  (v1.6,  65  ).  We  then  assessed  the  association  between  rare  variant 
 burden  and  birth  weight,  using  BOLT-LMM  (v2.3.5,  66  )  and  a  set  of  dummy  genotypes 
 representing  per-gene  carrier  status,  under  two  overlapping  variant  collapsing  masks;  i) 
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 high-confidence  protein  truncating  variants  (denoted  PTV)  and  ii)  High-confidence  PTVs  plus 
 missense  variants  with  CADD  scores  ≥25  (denoted  Missense  +  PTV).  All  analyses  were 
 controlled  for  age,  age  2  ,  the  first  ten  genetic  ancestry  principal  components  as  calculated  in 
 Bycroft  et  al  .  67  ,  WES  batch,  and  sex  when  running  sex-combined  analyses.  We  excluded 
 genes with <10 carriers of variants per mask. 

 This  led  to  testing  16,735  genes  with  qualifying  Missense  +  PTV  variants  and  13,684  with 
 PTVs  for  fetal  birth  weight,  and  17,745  with  Missense  +  PTV  variants  and  13,968  with  PTVs 
 for  maternal  birth  weight.  The  exome-wide  significance  thresholds  were  thus  set  to 
 p  =1.64×10  -6  (0.05/(16735+13684))  for  fetal  birth  weight  and  p  =1.58×10  -6 

 (0.05/(17745+13968)) for maternal birth weight. 

 Confirmatory gene burden analyses 
 To  replicate  the  findings  from  the  above  analysis  and  account  for  potential  bias  arising  from 
 only  using  one  discovery  approach,  a  second  team  independently  derived  the  birth  weight 
 phenotypes  for  the  maternal  and  fetal  genetic  analyses  and  conducted  additional  burden 
 association analyses, specifically for the significantly associated birth weight genes. 

 Own  birth  weight  (fetal  genotype  analysis)  was  derived  using  self-reported  data  (field  20022), 
 excluding  individuals  who  were  part  of  a  multiple  birth  (field  1777).  Offspring  birth  weight 
 (maternal  genotype  analysis)  was  derived  from  self  reported  weight  of  first  child  (field  2744). 
 Where  individuals  reported  their  birth  weight  at  more  than  one  assessment  centre  visit, 
 reported  birth  weights  were  averaged  unless  the  weights  differed  by  ≥1  kg,  in  which  case 
 they  were  excluded.  Own  and  offspring  birth  weight  were  available  in  269,921  (232,876  with 
 exome  and  covariate  data)  and  216,798  (152,585  with  exome  and  covariate  da  ta)  individuals 
 respectively. 

 Multiallelic  variants  were  similarly  split  and  left-normalised.  Variants  flagged  for  exclusion  by 
 UK  Biobank  were  removed,  and  remaining  variants  were  annotated  with  their  functional 
 consequence  in  canonical  transcripts  using  the  Ensembl  Variant  Effect  Predictor  and  the 
 CADD  and  LOFTEE  plugins  (  https://github.com/konradjk/loftee  ).  Association  testing  was 
 performed  using  REGENIE  (v3.1.3,  68  ),  and  variants  were  grouped  according  to  two 
 collapsing  masks;  i)  loss  of  function  variants  defined  by  LOFTEE  as  high  confidence 
 (denoted  PTV  )  and  ii)  LoF  plus  missense  SNVs  or  inframe  insertions  or  deletions  with  CADD 
 scores  ≥25  (denoted  Missense  +  PTV  ).  All  analyses  were  controlled  for  maternal  age  at  first 
 birth  (field  3872)  or  year  of  birth,  sex  (for  fetal  birth  weight),  assessment  centre,  WES 
 sequencing batch, and the first ten principal components. 

 Exome-wide  significantly  associated  genes  from  the  above  BOLT-LMM  analysis  were  queried 
 in the REGENIE results. 
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 Follow-up analyses of identified genes 
 To  distinguish  between  fetal  genotyping-acting  (‘fetal-acting’)  and  maternal  genotype-acting 
 (‘maternal-acting’)  effects  at  each  birth  weight-associated  gene,  we  applied  a  weighted  linear 
 model  (WLM)  to  the  burden  test  results.  WLM  estimates  associations  of  fetal  genotype 
 conditional  on  maternal  genotype,  and  vice  versa,  without  the  need  for  data  from 
 mother-child pairs. The WLM approach has been described previously  5  . 

 To  investigate  potential  sexual  dimorphism,  we  performed  sex-stratified  burden  tests  using 
 generalised  linear  models  in  the  discovery  sample  and  for  the  most  strongly  associated 
 mask-gene  combination.  Sex-stratified  effect  estimates  for  each  gene  were  compared  using 
 two-sample  T-tests  .  Associations  were  deemed  dimorphic  if  the  p  -value  for  the  T-test  was 
 <0.05. 

 Where  described,  further  missense  variant  collapsing  masks  and  leave-one  out  analyses 
 were  tested  using  BOLT-LMM  or  linear  models  in  the  same  individuals  and  birth  weight 
 outcomes  as  the  discovery  analyses.  Such  masks  were  defined  using  a  combination  of 
 CADD  65  and REVEL  69  . 

 Conditional  analyses  where  the  effect  of  the  identified  rare  exome  variant  collapsing  masks 
 was  conditioned  on  the  genotype  at  common  birth  weight  GWAS  signals  were  also  tested 
 using  linear  models  in  the  same  individuals  and  birth  weight  outcomes  as  the  discovery 
 analyses.  Genotypes  at  GWAS  signals  (as  identified  in  6  )  were  extracted  in  this  discovery 
 sample  using  plink  (v1.90b6.18,  70  ).  Birthweight  outcomes  were  regressed  against  the 
 covariates  used  in  discovery  analyses  and  the  concurrent  effects  of  exome  variant  carriage 
 and  GWAS  signal  genotype  were  tested  against  the  residual  birth  weight  variance.  A  change 
 in  effect  estimate  of  more  than  10%  was  considered  to  show  significant  attenuation  in  the 
 presence of the GWAS variants. 

 Related trait PheWAS 
 For  all  identified  exome  associations  to  the  two  birth  weight  traits,  we  performed  small-scale 
 PheWAS on a few predefined relevant phenotypes. 

 For  BOLT-LMM  analyses,  phenotypic  outcomes  were  defined  as  follows.  BMI  raw  values 
 were  used  from  field  21001.  Body  fat  %  was  extracted  using  data  from  field  23099.  Data  from 
 subsequent  visits  were  used,  if  missing  for  a  given  instance.  Comparative  height  at  age  10 
 was  recoded  to  have  individuals  who  in  field  1697  reported  being  'Shorter'  as  0,  'About 
 average'  as  1,  and  'Taller'  as  2.  Individuals  who  reported  'Do  not  know'  or  'Prefer  not  to 
 answer'  were  set  to  'NA'.  Following  variable  recoding,  this  phenotype  was  run  as  a 
 continuous  trait.  Comparative  size  at  age  10  was  defined  as  above  using  data  from  field 
 1687.  Systolic  and  diastolic  blood  pressure  was  derived  using  data  from  fields  4079  and 
 4080,  accordingly.  For  each,  the  average  blood  pressure  at  each  assessment  visit  was 
 calculated  over  the  two  available  measurements  and  data  from  subsequent  visits  were  used, 
 if  missing  for  a  given  instance.  Individuals  indicating  the  use  of  blood  pressure  medications  in 
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 fields  6153  and  6177  were  adjusted  for  in  the  association  models.  Height  raw  values  were 
 used  from  field  50.  IGF-1  levels  were  derived  using  data  from  field  30770,  with  exclusion  of 
 individuals  >5  standard  deviations  from  the  mean.  T2D  was  derived  as  described  in  53  and 
 using  data  from  fields  4041,  10844,  2443,  6177,  6153,  20002,  20003,  41202,  41204, 
 40001and  40002.  WHR  adjusted  for  BMI;  WHR  was  calculated  using  data  from  field  48  and 
 49.  >4  standard  deviations  from  the  mean  excluded  following  initial  calculation  and  prior  to 
 adjusting  with  BMI  (field  21001).  Paired  BMI  and  WHR  data  from  subsequent  visits  were 
 used, if missing for a given instance. 

 For  REGENIE  analyses,  phenotypic  outcomes  are  as  follows:  BMI  was  taken  from  the 
 baseline  value  for  field  21001  and  residualised  on  age  at  assessment  (field  21003),  genetic 
 sex  (field  22001),  assessment  centre  (field  54)  and  PCs  1-5.  Blood  pressure  measurements 
 were  taken  from  the  automated  readings  for  diastolic  blood  pressure  (field  4079)  and  systolic 
 blood  pressure  (field  4080).  Where  two  blood  pressure  readings  were  available,  the  average 
 between  the  two  was  taken,  excluding  individuals  where  the  measurements  differed  by  >4.56 
 SD.  Individuals  with  a  blood  pressure  >4.56  SD  away  from  the  mean  were  excluded.  Blood 
 pressure  medication  was  accounted  for  by  adding  10  and  15  mmHg  to  diastolic  and  systolic 
 blood  pressure,  respectively.  Height  raw  values  were  taken  from  baseline  values  for  field  50, 
 where  people  whose  height  was  100  cm  and  sitting  height  (field  20015)  was  20  cm,  were 
 removed.  Raw  IGF-1  values  were  used  from  field  30770.  Size  at  age  10  was  based  on  a 
 continuous  simulation  of  childhood  BMI.  The  simulation  converted  the  categorical  variables 
 ‘thinner’,  ‘the  same  size’  or  ‘plumper’  in  field  1687  to  a  continuous  distribution  based  on  the 
 number  of  individuals  selecting  each  category.  The  full  methods  for  the  simulation  have 
 previously  been  reported  71  .  WHR  was  calculated  using  waist  circumference  (field  48)  and  hip 
 circumference  (field  49).  If  a  follow-up  visit  was  recorded,  the  WHR  was  taken  from  the 
 follow-up data. Otherwise, it was taken from the first recorded WHR measurement. 

 The  multiple  testing  threshold  was  set  at  p  <0.005,  after  correcting  for  the  above  10  queried 
 phenotypes. 

 GWAS associations at identified loci 
 GWAS  signals  for  fetal  and  maternal  birth  weight  were  accessed  from  Juliusdottir  et  al  .  6  . 
 These  signals  were  lifted  back  to  GRCh37  annotated  with  all  proximal  genes,  defined  as 
 those  within  500kb  up-  or  downstream  of  the  genes  start  or  end  sites,  using  the  NCBI  RefSeq 
 gene  map  for  GRCh37  (via  http://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/  ).  For 
 signals  proximal  to  the  exome-associated  genes  we  assessed  whether  the  exome-associated 
 gene  was  the  closest  gene  to  the  GWAS  signal.  These  signals  were  also  queried  using  eQTL 
 data from the GTEx study (V8,  10  ) and plotted using  LocusZoom  72  . 

 We  performed  gene-centric  biological  pathway  enrichment  analysis  using  g:Profiler  (via  the  R 
 client  “gprofiler2”  73  ,  v0.2.1,  accessed  on  23/11/2023  )  .  Pathway  enrichment  analyses  were 
 performed  using  the  genes  calculated  to  be  the  closest  per  signal  to  the  GWAS  signals  from 
 Juliusdottir  et  al.  6  .  Pathways  with  a  Bonferroni  corrected  p  -value<0.05  were  considered 
 significantly enriched in the birth weight GWAS. 
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 We  also  examined  all  genes  within  300  kb  of  the  previously  published  birth  weight  loci  from 
 Juliusdottir  et  al  .  6  .  For  this  restricted  set  of  loci  previously  shown  to  have  common  genetic 
 associations  with  birth  weight,  we  applied  a  Benjamini-Hochberg  procedure  to  identify  genes 
 with evidence of association. 

 Replication of exome associations in deCODE 

 Data preparation 

 The  genome  of  the  Icelandic  population  was  characterised  by  whole-genome  sequencing 
 (WGS)  of  63,460  Icelanders  using  Illumina  standard  TruSeq  methodology  to  a  mean  depth  of 
 35x  (SD  8x)  with  subsequent  long-range  phasing  74  ,  and  imputing  the  information  into  173,025 
 individuals  chip-genotyped  employing  multiple  Illumina  platforms  75  .  Variant  calling  was 
 performed using GraphTyper  76  (v2.6) and chip data  was phased using SHAPEIT4  77  . 

 We  used  Variant  Effect  Predictor  (VEP  63  )  to  attribute  predicted  consequences  to  the  variants 
 sequenced  in  each  dataset.  We  classified  as  high-impact  variants  those  predicted  as 
 start-lost,  stop-gain,  stop-lost,  splice  donor,  splice  acceptor  or  frameshift,  collectively  called 
 loss-of-function  (LOF)  variants.  Variants  of  moderate  impact  are  those  classified  as 
 missense, splice-region and in-frame-indels. 

 Information  on  birthweight  comes  from  the  Icelandic  birth  register  and  Primary  Health  Care 
 Clinics  of  the  Capital  area.  Individual’s  fetal  birth  weight  was  available  in  up  to  36,578 
 genotyped  and  11,184  WGS  participants,  while  maternal  birth  weight  was  available  in  45,622 
 genotyped and 17,177 WGS participants. 

 Gene burden associations 

 We  defined  different  models  to  group  together  various  types  of  variant:  (i)  only  LOF  variants, 
 filtered  with  LOFTEE  64  ;  (ii)  LOF  and  MIS  (as  described  on  Variant  annotation),  when 
 predicted  deleterious  by  CADD  65  score  ≥  25.  In  all  models,  we  used  MAF  <  0.1%  to  select 
 variants for analyses. 

 Quantitative  traits  were  analysed  using  a  linear  mixed  model  implemented  in  BOLT-LMM  66  .  To 
 estimate  the  quality  of  the  sequence  variants  across  the  entire  set  we  regressed  the 
 alternative  allele  counts  (AD)  on  the  depth  (DP)  conditioned  on  the  genotypes  (GT)  reported 
 by  GraphTyper  78  .  For  a  well  behaving  sequence  variant,  the  mean  alternative  allele  count  for 
 a  homozygous  reference  genotype  should  be  0,  for  a  heterozygous  genotype  it  should  be 
 DP/2  and  for  homozygous  alternative  genotype  it  should  be  DP.  Under  the  assumption  of  no 
 sequencing  or  genotyping  error,  the  expected  value  of  AD  should  be  DP  conditioned  on  the 
 genotype,  in  other  words  an  identity  line  (slope  1  and  intercept  0).  Deviations  from  the  identity 
 line  indicate  that  the  sequence  variant  is  spurious  or  somatic.  We  filter  variants  with  slope 
 less  than  0.5.  Additionally,  GraphTyper  employs  a  logistic  regression  model  that  assigns  each 
 variant  a  score  (AAscore)  predicting  the  probability  that  it  is  a  true  positive.  We  used  only 
 variants that have a AAscore > 0.8. 
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 Analysis of birth weight associations with pathogenic  GCK  mutations 
 We  used  a  similar  procedure  to  that  used  to  define  pathogenic  variants  in  GCK  in  a  recent 
 paper  79  .  We  reviewed  all  heterozygous  missense/PTV  variants  in  UK  Biobank  participants 
 with  whole  exome  sequencing  that  were  observed  at  minor  allele  frequency  (MAF)  <0.001. 
 We  included  variants  in  the  analysis  if  missense/PTV  variants  were  classified  as  pathogenic 
 or  likely  pathogenic  based  on  ACMG/AMP  guidelines  by  clinical  scientists  at  Exeter 
 Molecular  Genetic  laboratory  as  part  of  routine  clinical  diagnostic  care  (i.e.  previously  seen  in 
 the  MODY  probands)  35  and  were  ultra-rare  in  the  population  (maximum  allele  count  of  2  in 
 gnomADv2.1,  MAF  <1.4x10  -5  ).  We  manually  reviewed  sequence  read  data  for  all  the 
 pathogenic  variants  (missense  and  PTVs)  in  Integrative  Genomics  Viewer  (IGV)  to  remove 
 false-positive  variants.  We  used  linear  regression  to  assess  the  difference  in  birth  weight 
 associated  with  being  a  carrier  (separate  maternal  and  fetal  analyses)  and  adjusted  for 
 genotype,  sex,  mother’s  diabetes  status,  batch,  year  of  birth,  centre  and  principal 
 components  in  the  fetal  analysis  and  genotype,  batch,  age  at  first  birth,  centre  and  principal 
 components  in  the  maternal  birth  weight  analysis.  We  then  compared  the  estimated  effects 
 and  95%  confidence  intervals  for  the  pathogenic  variants  with  those  obtained  from  our  PTV 
 and PTV+missense masks in the REGENIE analyses. 
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