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Abstract
Genetic association studies have focused on testing additive models in cohorts

with European ancestry. Little is known about recessive effects on common

diseases, specifically for non-European ancestry. Genes & Health is a cohort of

British Pakistani and Bangladeshi individuals with elevated rates of

consanguinity and endogamy, making it suitable to study recessive effects. We

imputed variants into 44,190 genotyped individuals, using two imputation

panels: a set of 4,982 whole-exome-sequences from within the cohort, and the

TOPMed-r2 panel. We performed association testing with 898 diseases from

electronic health records. We identified 185 independent loci that reached

standard genome-wide significance (p<5x10-8) under the recessive model and

had p-values more significant than under the additive model. 140 loci

demonstrated nominally-significant (p<0.05) dominance deviation p-values,

confirming a recessive association pattern. Sixteen loci in three clusters were

significant at a Bonferroni threshold accounting for multiple phenotypes tested

(p<5.5x10-12). In FinnGen, we replicated 44% of the expected number of

Bonferroni-significant loci we were powered to replicate, at least one from each

cluster, including an intronic variant in PNPLA3 (rs66812091) and non-alcoholic

fatty liver disease, a previously reported additive association. We present novel

evidence suggesting that the association is recessive instead (OR=1.3,

recessive p=2x10-12, additive p=2x10-11, dominance deviation p=3x10-2, FinnGen

recessive OR=1.3 and p=6x10-12). We identified a novel protective recessive

association between a missense variant in SGLT4 (rs61746559), a

sodium-glucose transporter with a possible role in the

renin-angiotensin-aldosterone system, and hypertension (OR=0.2, p=3x10-8,
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dominance deviation p=7x10-6). These results motivate interrogating recessive

effects on common diseases more widely.
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Introduction

Recessive effects in humans have been primarily studied in the context of rare,

monogenic disorders, and little is known about recessiveness in common

diseases and complex traits 1. Identifying variants with recessive associations to

diseases could improve polygenic risk scoring, provide better insight into gene

and variant function, improve understanding of disease pathophysiology, and

allow for the identification of novel drug targets 2–4.

The effects of genetic variation on common complex phenotypes are typically

discovered through genome wide association studies (GWASes) 5–7, where an

additive model is predominantly tested. However, applying a recessive model

has allowed for the discovery of associations that would have been otherwise

missed under conventional additive testing. For example, Heyne et al. (2023) 8

performed recessive tests on 44,370 variants and 2,444 diseases in the

FinnGen project from Finland, and identified thirty-one loci at genome-wide

significance (GWS, p<5x10-8) where the associations were more significant in

the recessive model than in the additive model. Of the twenty findings further

validated, notably thirteen loci would have been missed with the additive model

alone. Similarly Guindo-Martinez et al. (2021) 9 performed non-additive

association testing in 62,281 subjects across twenty-two age-related diseases,

and amongst twenty-six novel loci, four were identified only with the recessive

model. Palmer et al. (2023) 1 systematically quantified the contribution of

dominance deviations (deviation from the additive pattern of inheritance) to

heritability across 1,060 common traits in UK Biobank (n = 361,194). They

identified non-additive effects of 183 phenotype-locus pairs across the
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phenotypic spectrum, but concluded that overall, non-additive effects contribute

very little to heritability. Collectively, these suggest that many recessive

associations on common traits still remain to be found through the application of

non-additive testing, including with rare variants, where the additive model

would be more likely to miss recessive effects.

With the construction of large-scale biobanks, it is now possible to study the

recessive contribution to common diseases 8,10. However, in outbred

populations, very large sample sizes are required for adequate power to test

recessive effects than additive effects, particularly for rare variants. Power to

detect recessive effects is expected to be increased in bottlenecked populations

like Finland, where recessive variants may rise in frequency due to founder

effects 8,11, or in populations enriched for consanguinity and therefore, increased

homozygosity. We showed in simulations that power to find recessive effects is

boosted both by explicitly testing a recessive model and by increased

homozygosity (Appendix-1).

Genes & Health (G&H) is a community-based cohort of currently ~60,000

individuals of British Bangladeshi and Pakistani ancestry with genetic data and

linked electronic health records (EHRs) 12. The cohort has a high rate of

consanguinity (32% are offspring of second cousins or closer). Furthermore,

British Pakistanis, who comprise 40% of the cohort, have been previously found

to have high levels of endogamy, due to the biraderi system, with multiple

bottlenecked subpopulations displaying elevated levels of identity-by-descent

(IBD) sharing, more than ten to twenty times than found in the Finnish 13,14. We

therefore hypothesised that the increased IBD-sharing within these subgroups
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in G&H might allow reasonable quality imputation of variants even from a

relatively small sample size of individuals from the same cohort. From this

imputation, we would be able to take advantage of the increased homozygosity

to test for recessive effects.

We leveraged genotype chip data on 44,000 G&H individuals, of whom around

5,000 also had whole-exome sequencing (WES) data. Firstly, we imputed

variants from the exome-sequenced individuals into the larger genotyped G&H

cohort. This was inspired by Barton et al. (2021) 15, who boosted power for

association testing of rare coding variants by building a within-cohort reference

panel from 49,960 WES samples in UK Biobank and imputing variants into the

larger genotyped cohort (n ~ 500,000). We also used an additional imputation

reference panel, the Trans-Omics for Precision Medicine (TOPMED-r2) panel

(97,256 individuals including 644 with South Asian ancestry) 16 to perform

whole-genome imputation to study recessive effects in the noncoding regions.

Using these two imputed datasets, we performed association testing with binary

phenotypes curated from the electronic health records, focusing on detecting

recessive effects.
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Methods
Preparation of genetic data
Preparation of the genotyped data

Detailed quality control (QC) of the genetic data is described in Appendix-3.

Genome-wide genotyping was performed with the Illumina Global Screening

Array (GSAv3EAMD, build 38), and these data were used as the imputation

backbone. Initial QC has been described in Huang et al. (2022) 17. From the

genotyped 44,396 individuals, we inferred 44,190 individuals to be either of

Bangladeshi or Pakistani genetic ancestry (Appendix-4), and downstream

analyses were restricted to these individuals. Another round of variant filters

was applied to include only autosomal, bi-alleleic SNPs with ≥99% call rate.

The Pakistani subgroup has high autozygosity and strong population structure,

while the Bangladeshi subgroup has minimal structure and much less

autozygosity 18, so to avoid excluding too many high-quality variants due to

failure on a standard test for Hardy-Weinberg Equilibrium (HWE) , the HWE test

was performed (using PLINK1.9) 19 only in the Bangladeshi subgroup and the

variants that failed a p-value threshold of 10-6 in Bangladeshis were then

excluded from the entire dataset. Variants with MAF>0.1% were included from

the imputation backbone, which resulted in 469,678 variants that were then

phased with EAGLE2 (Kpbwt=20,000) 20.

Preparation of the within-cohort imputation panel

Exome sequencing was performed using Agilent V5 capture kits on a subset of

5,236 individuals who self-declared as having consanguineous parents.

Mapping, calling and initial QC included excluding samples with sex

9
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discrepancies and <10X on-target coverage, and applying the following variant

filters using bcftools 21: "QD < 2.0 || FS > 30 || MQ < 40.0 || MQRankSum <

-12.5 || ReadPosRankSum < -8.0" for SNPs and "QD < 2.0 || FS > 30 ||

ReadPosRankSum < -20.0" for indels 22. We subsetted to the 5,073 individuals

who were genetically inferred to be of Bangladeshi or Pakistani ancestry from

their array data. Then we set to missing genotypes that had genotype quality

(GQ) <20, a p-value from a binomial test for allele depth at heterozygous sites

(binomAD) <10-2, or depth ≤7. Variants were excluded if they had a

post-genotype QC call rate <70%. 91 samples with high missingness or high

discordance with their array data were excluded, leaving 4,982 samples

(Appendix-5). The WES data were then merged with the SNP-array data and

phased with EAGLE2 (Kpbwt=20,000) to form a reference panel for imputation.

Imputation

We imputed the G&H data against two different imputation panels. Firstly,

variants were imputed from the within-cohort whole-exome reference panel

(described above) into the individuals without WES data with Minimac4 23. To

assess the imputation accuracy and determine an imputed R2 cutoff, ten

“leave-10%-out” trials were performed (Appendix-5). We retained variants with

imputed R2 ≥0.5 and at least three individuals with a homozygous genotype

(NHom ≥3). This is referred to as the “WES5Kimputation” dataset. The SNP-array

data were also submitted to the TOPMed-r2 Minimac4 1.5.7 Imputation Server

16,23,24 for whole-genome imputation against the TOPMED-r2 panel. The same

post-imputation filters were applied, and this is referred to as the

“TOPMEDimputation”.

10
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Variant annotation

Variants were annotated with Ensembl’s Variant Effect Predictor (VEP) v107.

For each variant, the worst consequence for any transcript was extracted for

subsequent analyses.

Phenotype curation

Two lists of phenotypes were curated from participants’ electronic health

records, and phenotype information was encoded as a binary with ‘1’ coding for

a case and ‘0’ coding for a control. A list of 237 custom phenotypes were

compiled manually, and a second set of 1,281 phenotypes were defined based

on International Classification of Disease (ICD10) codes. Further detail is

described in Malawsky et al. (2023) (Methods section on “Phenotypic data

harmonisation and preparation for G&H”) 18. We retained phenotypes with ≥30

cases and also classified them into those that affected both sexes or were

sex-specific (i.e. occurred only in females or males). For sex-specific

phenotypes, the cohort was filtered to the relevant sex for testing. This resulted

in 898 phenotypes.

Association testing

Association testing was performed using REGENIE 25 through its two-step

pipeline. In step 1, the model was fitted using variants from the SNP-array,

using the leave-one-out cross-validation (LOOCV) scheme and a genotype

block size of 1,000. Step 2 was performed under the additive model and the

recessive model, at a genotype block size of 1,000 and p-value threshold of

11
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0.05, below which the approximate Firth correction was applied. The covariates

included age, sex, age2, age x sex, age2 x sex and the first ten principal

components (PCs) from the principal component analysis on unrelated G&H

individuals (Appendix-4).

We defined significant recessive associations as tests with p-values <5x10-8

(GWS), and with a p-value lower under the recessive model than under the

additive model. We excluded the human leukocyte antigen (HLA) region due to

complex LD (chr6:25mb-35mb), and then defined independent loci with the

following steps: (1) For each phenotype with significant tests, we identified the

test with the most significant recessive p-value as the lead variant. (2) We

calculated the LD r2 using PLINK1.9 between the lead variant and variants

within a +/- 1.5Mb window of it. Variants with an LD r2 ≥0.25 with the lead

variant were defined as being part of the same locus, following previous work

from FinnGen8,11. (3) We then identified the next most significant variant

amongst the remaining variants that are not part of the locus defined in the

previous steps, and repeated the loop.

We calculated dominance deviation p-values to assess the evidence that our

significant associations detected under the recessive model were really

recessive. Specifically, for the lead variants of the significant recessive

associations, we ran logistic regression in R, controlling for the same

covariates, performing genotypic tests with 2 degrees of freedom as well as

additive and recessive tests for comparison. Description of how this was

performed and detailed comparisons of the results with those from REGENIE

are described in Appendix-9.
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Testing for replication in FinnGen and GERA

FinnGen is a public-private collaboration to profile the genomic and digital

healthcare data of ~500,000 Finnish individuals, with the goal to uncover novel

biological and therapeutic insights into human diseases. As a recessive testing

pipeline has been built in the cohort before 8, we used it as an independent

cohort to assess replication. More details of the cohort are described in

Appendix-12. Phenotypes were matched manually to FinnGen binary

phenotypes curated from Finnish health registers (Table-S7). The variants from

FinnGen release 10 were then tested with the phenotypes using REGENIE

under the recessive model, controlling for the covariates sex, age, 10 PCs and

genotyping batch, as described for release 10 on (https://www.finngen.fi/). 11

For each significant locus in G&H, we first identified proxy variants as variants

that are within the window described above (+/- 1.5Mb from the lead variant

with LD r2 ≥0.25. For a more stringent assessment of replicability, we applied

the locus definitions from Huang et al.17 and repeated the analysis (see

Appendix-10). We defined a locus as replicating (or ‘transferable’) in FinnGen if

any of the lead or proxy variants had the same direction of effect as observed in

G&H at a nominally-significant p-value <0.05, when tested in a recessive model

with a similar trait. To compare the number of loci that replicated to what we

might have expected to replicate given the power in FinnGen, we calculated a

power-adjusted transferability ratio 17. Specifically, for each locus, we used the

effect size of the lead variant in G&H, the allele frequency of the lead variant in

FinnGen, and the case rate and sample size in FinnGen to estimate the power

for the test with the genpwr R package 26. The expected number of transferable

13
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loci was calculated as the sum of the power estimates across all the loci. The

power-adjusted transferability (PAT) ratio was then calculated by dividing the

observed number of transferred loci by the expected number.

Publicly-available summary statistics from recessive testing in the Genetic

Epidemiology Research on Ageing (GERA) cohort by Guindo-Martinez et al.

(2021) 9 were accessed on 14 December 2023. Phenotypes were matched

manually (Table-S8) and the PAT ratio was calculated as described above,

using allele frequencies and case rates in GERA.

14
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Results

Recessive association testing identifies 185 loci

Using exome sequence data from 4,982 individuals from Genes & Health, we

generated a reference panel which allowed us to impute 605,263 variants,

including rare exonic variants, into the larger cohort of 44,186 individuals from

that cohort. Simultaneously, we carried out a whole-genome imputation of

10,045,406 variants using the TOPMED panel. We then tested these variants

for recessive associations with 898 phenotypes. We identified 185 unique loci

where the lead variant had a genome-wide significant recessive p-value

(<5x10-8) that is smaller than the additive p-value (Figure-1, Table-S5). At a

stringent Bonferroni cutoff (0.05/9,197,933,046 tests = 5.5x10-12, Appendix-6),

16 loci remained. 144 loci passed a more lenient Benjamini–Hochberg cutoff for

a false discovery rate of 5% (FDR 5%) (p< 3.7x10-8, so close to the

genome-wide significance threshold). Notably, the sixteen Bonferroni-significant

findings can be found in three clusters (Figure 1; Table 1), corresponding to (a)

Non-alcoholic fatty liver disease and steatohepatitis (NAFLD) (one locus; lead

SNP chr22:43939790), (b) disorders of porphyrin and bilirubin metabolism (one

locus, found with both imputation panels; lead SNP chr2:233763993), and (c)

thalassaemia and other hereditary haemolytic anaemias (13 loci, one of which

was found with both imputation panels; lead SNPs at chr11:4908482-5544800).

15
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Figure-1

The 185 loci identified at genome-wide significance in recessive

association tests. A: Manhattan Plot of the results from recessive tests

performed. Dashed horizontal lines represent the various p-value cutoffs:

genome-wide significance (p<5x10-8, “GWS”), for a false discovery rate of 5%

(p<3.7x10-8, “FDR5”), and the Bonferroni-corrected cutoff (p<5.5x10-12,

“Bonferroni”). Blue points represent recessive tests passing the genome-wide

significance threshold where the recessive p-value is more significant than the

16
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additive p-value, and diamonds represent lead variants defined as described in

Methods. The clusters containing Bonferroni-significant associations are

labelled with the phenotypes with which they are associated. B: For the lead

variants, the -log10p from additive testing against -log10p from recessive

testing. The horizontal line indicates the genome-wide significance threshold,

and the diagonal line is y=x. C: The effect size (beta) of the genotype encoding

from additive testing against the beta from recessive testing for the lead

variants.
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Of the lead variants at the 185 recessive loci, 152 (82%) were not genome-wide

significant in the additive test (Figure-1B), suggesting that they would have

been missed in conventional additive GWAS-es. The associations that were not

genome-wide significant in the additive test tended to be with rarer variants

(Figure-S14A). The effect sizes in the recessive tests for these lead variants

also tend to have a larger magnitude than in the additive tests (Figure-1C).

Seventy-six percent (140) of these lead variants had nominally significant

dominance deviation p-values.

These 185 recessive loci include loci that were significant in either or both of

the imputation panels. Twenty-nine of the lead variants were successfully tested

in both imputation sets. At these, effect sizes (Figure-2B) and allele frequencies

(Figure-2C) correlated well between the two imputation panels, though

interestingly, a small subset of findings significant with the WES5Kimputation

had much less significant p-values when their TOPMEDimputation genotypes

were tested (Figure-2A). These findings corresponded to variants with lower

imputed R2 values in the TOPMEDimputation compared to the

WES5Kimputation (Figure-2D), suggesting that higher confidence in the

imputation when using the in-house panel improved the sensitivity of the

testing through more accurate prediction of the genotypes.
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Figure-2

Comparison of results for variants tested using both imputation panels

and significant in one or both. Scatter plots show the (A) p-values (-log10p),

(B) betas, (C) allele frequencies (AFs), (D) imputed-R2 values of lead variants.
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Replication of significant findings in other cohorts

We sought to test how many of the 185 loci could be replicated in two other

cohorts suitable for recessive association testing, FinnGen and GERA. 133 loci

could be found in FinnGen, meaning the lead variant of the locus could be

tested with a comparable phenotype in FinnGen. Of these 133 lead variants, 82

had the same direction of effect in the recessive tests of both cohorts. This is

significantly more than the number expected by chance (one-sided exact

binomial test, p-value 0.0045).

Next, we calculated the power-adjusted transferability (PAT) ratio (Huang et al.

2022), a quantitative measure of replicability, measuring how many loci can be

replicated in FinnGen relative to the power in this independent cohort, taking

into account allele frequencies, case rates and sample sizes. We expected to

replicate 129 of the 133 examined loci at p < 0.05; of these, 30 loci replicated in

FinnGen, resulting in a power-adjusted transferability ratio of 28%. This

suggests that a p<5x10-8 cutoff for significance in Genes & Health is too lenient

given the number of phenotypes tested. Restricting to the Bonferroni-significant

findings, the power-adjusted transferability ratio increased to 44%. The loci

associated with NAFLD and disorders of porphyrin and bilirubin both replicated.

For the cluster of loci associated with thalassemia and other hereditary

haemolytic anaemia, four out of thirteen loci replicated, while eight of the

remaining nine loci had the same direction of effect in both cohorts (although

we note that we were not considering identical phenotypes in FinnGen since

they were not available - see Table-S7).
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We also assessed replication in the GERA cohort. The twenty-two phenotypes

tested by GERA restricted the number of phenotypes we could match, so only

eleven GWS loci could be evaluated. After accounting for AF, case rate and

sample size differences, we expected to replicate around eight loci. Three loci

replicated, resulting in a power-adjusted transferability ratio of 36%.

The Bonferroni-significant recessive associations

The Bonferroni-significant lead variants are listed in Table-1. We summarise

these significant associations below.

We found a recessive association between rs66812091

(chr22:43939790:TGG:T), an intronic variant in the gene PNPLA3 (Patatin-like

Phospholipase Domain-containing Protein 3), and NAFLD, with an odds ratio of

1.3 at a p-value of 2x10-12. This p-value is an order of magnitude more

significant in the recessive test than the additive test (2x10-11). The relationship

also had a significant dominance deviation p-value of 3x10-2 and was replicated

in FinnGen with a recessive test OR of 1.3 and p-value of 6x10-12. PNPLA3 is

involved in lipid and fatty acid metabolism and has high expression in adipose

and liver tissues 27,28. This gene’s role in fatty acid metabolism and liver function

has been further supported by functional knockout studies in mice 28,29. This

variant has also been shown in additive GWASes to be associated with NAFLD

30 and deranged liver enzymes (a marker of hepatitis) 31. However, to our

knowledge, this is the first study demonstrating that in fact one or more of the
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variants near this gene are likely to have recessive rather than additive effects

on NAFLD.

Next, an intronic SNP in the gene UGT1A6, rs6742078 (chr2:233763993:G:T),

identified with both imputation panels, was found to be associated with

disorders of porphyrin and bilirubin metabolism. UGT1A6 encodes a uridine

5'-diphospho-glucuronosyltransferase (UDP-glucuronosyltransferase, UGT).

UGTs are enzymes responsible for the glucuronidation of lipophilic molecules,

including bilirubin, into the conjugated, hydrophilic form that can be excreted in

the urine 32. UGT1A6 has been shown to be associated with bilirubin levels in

the GWASs on liver traits and bilirubin levels33,34. Mutations in UGTs, specifically

UGT1A1, cause the well-known autosomal recessive conditions Gilbert’s

syndrome 35 and Crigler-Najjar syndrome 35,36, in which patients present with

excess unconjugated bilirubin. The findings presented here demonstrate novel

recessive associations between another UGT not previously reported and

dysfunctional bilirubin clearance.

Thirdly, we found multiple Bonferroni-significant recessive hits in the genomic

region chr11:4908482-5544800 associated with thalassaemia and other

hereditary haemolytic anaemias. These variants are also associated with

multiple anaemia traits in additive GWASs 37,38. They span two haemoglobin

genes, haemoglobin epsilon locus (HBE1) and haemoglobin gamma a (HGB1),

as well as the gene MMP26 and a cluster of olfactory receptor genes. The two

haemoglobin genes HBE1 and HGB1 encode for embryonic and foetal

haemoglobin (HbF) subunits respectively. The gene HBG1 is well established to

be associated with beta-thalassemia and haemoglobin E disease 39.
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Beta-thalassaemia is an inherited anaemia caused by dysfunctional production

of the beta globin subunit of adult haemoglobin (HbA) 40, therefore, persistence

of elevated HbF past infancy as a compensatory mechanism is occasionally

observed 41. Genes encoding embryonic haemoglobin and HbF, including HBE1

and HGB1, have been targeted as part of possible therapies in thalassaemias,

where reactivating these alternative forms of haemoglobin expression may help

to supplement low HbA production 42–44. The variants that we find to be

associated with thalassaemia and anaemias near these genes may be involved

in the regulation of haemoglobin expression and inactivation.
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Gene Lead variant Panel AF CSQ Phenotype OR p delta
log10
p

DD
p

UGT1A6 2:233763993:G:T WES5K 0.53 intron E80[Disorders
of porphyrin
and bilirubin
metabolism]

6.4 5E-23 2.9 4E-3

TOPMED 0.53 6.4 5E-23 2.9 4E-3

. 11:5216054:A:G TOPMED 0.76 intergenic D56[Thalassae
mia]

0.6 5E-16 1.4 3E-3
OR52D1 11:5489111:C:T WES5K 0.81 synonymous 0.6 4E-13 1.5 5E-3
HBE1 11:5478732:G:C TOPMED 0.81 intron 0.6 2E-16 1.7 6E-4

11:5330439:C:T TOPMED 0.71 intron 0.4 2E-12 0.6 1E-2
11:5367606:A:C TOPMED 0.98 intron D58[Other

hereditary
haemolytic
anaemias]

0.3 6E-36 0.5 2E-3
HBG1 11:5247392:T:G TOPMED 0.61 downstream

gene
0.4 2E-19 5.1 9E-5

MMP26 11:4931228:C:A TOPMED 0.79 intron 0.4 6E-18 0.7 4E-3
OR51A7 11:4908482:G:A TOPMED 0.95 3 prime utr 0.3 1E-66 0.5 2E-8
OR51V1 11:5197578:AAT:ATOPMED 0.55 downstream

gene
0.2 1E-30 1.6 7E-7

OR52E1 11:5067264:A:G TOPMED 0.99 upstream
gene

0.1 9E-14
0

5.4 2E-14

OR52E2 11:5058716:C:T WES5K 0.99 synonymous 0.1 2E-14
7

7.2 8E-19

OR52H1 11:5544800:A:G WES5K 0.99 missense 0.3 4E-33 2.9 4E-4
TOPMED 0.99 0.3 3E-33 2.7 4E-4

PNPLA3 22:43939790:TGG
:T

TOPMED 0.61 intron Non-alcoholic
fatty liver

disease and
steatohepatitis

1.3 2E-12 0.9 3E-2

Table-1

Table of recessive findings that passed Bonferroni significance. “CSQ”:

consequence annotation of the variant. “OR”: Odds ratio, converted from beta

in the test output. “delta log10p”: The difference between the -log10p in the

recessive test and the -log10p in the additive test. “DD p”: Dominance deviation

p-value. The allele frequence (AF) and odds ratio (OR) presented are for the

alternate allele (second allele in the lead variant ID).
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Recessive findings implicating coding variants provided

insight into gene functions

We also found several recessive associations for coding variants that passed

our more lenient p-value threshold of 5x10-8. Since these coding variants seem

likely to be the causal variants at those loci, we discuss several examples here.

Firstly, we see a recessive association between a missense variant

(chr1:11796321:G:A, rs1801133) in methylenetetrahydrofolate reductase

(MTHFR) and folate deficiency (OR = 2.1, p-value = 5x10-9, dominance

deviation p-value = 10-3). This finding was also replicated in FinnGen (OR = 2.1

p-value = 0.02). MTHFR is an enzyme involved in folate and homocysteine

metabolism. After folate is converted to 5,10-methylenetetrahydrofolate

(5,10-MTHF), MTHFR reduces 5,10-MTHF to 5-methyltetrahydrofolate

(5-MTHF), which is then required as a cosubstrate for the conversion of

homocysteine to methionine 45. The missense variant we report (C677T) has

been shown to cause instability in MTHFR, resulting in the accumulation of

homocysteine 46. Indeed, there are reports that this C677T mutation has a

recessive effect on homocysteine levels, but with a mild heterozygous effect:

individuals heterozygous for the C677T mutation have mildly elevated

homocysteine levels, while the homozygous individuals have significantly

higher levels 47–49. Functional studies have shown that the enzyme’s reduced

efficiency from instability caused by the C677T transition can be compensated

with additional folate 48,50–52. This would result in low folate levels, providing a

possible biological explanation for our association. Multiple additive GWASes
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have reported associations between this variant and folate deficiency anaemia

30 or being on folate supplements 53. However, our study suggests that the

underlying pattern of inheritance may be recessive instead. Folate is essential

for DNA, RNA and protein methylation, and foetal neural tube defect is an

established consequence of low folate levels in pregnancy 54. Germane to this,

there are several reports (although conflicting) of recessive associations

between variants (including C677T) in MTHFR and neural tube defects 55–58.

As a second example, we have found a protective recessive association

between a missense variant in SLC5A9 (chr1:48228922:G:A, rs61746559)

hypertension (OR = 0.2, p-value = 3x10-8, dominance deviation p-value =

7x10-6). SLC5A9, solute carrier family 5 member 9, is also known as

sodium-glucose transporter 4 (SGLT4), and is a member of the solute carrier

(SLC) superfamily. Specifically, it is a sodium-dependent glucose transporter of

mannose, 1,5-anhydro-D-glucitol, and fructose 59. Another member of this

family is the well-studied sodium-glucose transporter 2 (SGLT2), a glucose

transporter largely expressed in the kidney, and is a target of gliofozins, drugs

used for lowering serum glucose levels in patients with type 2 diabetes 60. It

has been shown that a concomitant benefit of inhibiting SGLT2 in type 2

diabetes patients is lowering blood pressure 61–63, possibly from haemodynamic

changes in kidney glomeruli 64 and regulating the

renin–angiotensin–aldosterone system 65. SGLT4 may function in a similar

manner, as, like SGTL2, it is expressed in the kidneys 59. Missense mutations

may inhibit its function, explaining the relationship we detect with hypertension.

While there is limited information about this gene’s function currently 66 to
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support this hypothesis, there is an additive association between this variant

and renin levels 67, suggesting it may indeed be involved in the

renin–angiotensin–aldosterone system. Multiple widely-used classes of

antihypertensives work on the renin-angiotensin-aldosterone system, which

plays a key role in regulating blood pressure68.
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Discussion

After performing recessive association testing on variants imputed from both a

within-cohort exonic reference panel and the whole-genome TOPMED

reference panel, 185 unique loci were identified at genome-wide-significance,

where the recessive association was more significant than the additive

association. After Bonferroni multiple testing correction, sixteen loci in three

clusters remained. After adjusting for changes in case rates, allele frequencies

and sample size in the independent cohort FinnGen, we replicated 44% of the

expected number of Bonferroni-significant loci we would be powered to

replicate, including at least one locus from each cluster. We also identified

recessive associations at loci previously thought to be additive. Examples

include the association between rs66812091 and NAFLD, and between

rs1801133 and folate deficiency. Notably, we report a novel recessive

association between a missense variant in SGLT2 (rs61746559) and reduced

risk of hypertension.

In modelling binary traits, one usually assumes a liability threshold model, in

which an individual develops the disease once they pass a certain threshold on

a continuous, quantitative trait (the ‘liability’) that follows a normal distribution in

the population 69. Under this model, it is possible that a variant may have an

additive effect on the underlying liability but a recessive effect on disease

status. For example, it may be that rs66812091 in PNPLA3 has an additive

effect on liver enzyme levels, leading to the accumulation of fatty acids that

results in hepatic inflammation (i.e. the underlying quantitative trait), but a

recessive effect on NAFLD (p = 2.4x10-12). Supporting this, Barton et al.
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(2022)70 showed in UKBB that variants with known recessive associations to

disease can have milder heterozygous effects in related quantitative traits.

Therefore, characterising the underlying inheritance pattern in greater detail

could improve our understanding of disease pathophysiology and highlight

homozygous individuals as higher-risk groups to target during screening.

With G&H, we were able to perform imputation with a within-cohort reference

panel, and demonstrated the advantage of using this to improve sensitivity, as

previously reported by Barton et al. (2021) 15. We saw a subset of recessive

findings with p-values that were only significant with the WES5Kimputation and

not the TOPMEDimputation. We hypothesise from our evaluation of imputation

accuracy (Appendix-5) that this might be due to more accurate imputation of

these variants with the within-population reference panel. However, the

TOPMEDimputation provided a significantly larger set of variants to work with,

which could likely explain why most of our associations are from that panel.

Our recessive testing highlights the value of detecting novel recessive

associations that would have been missed under the additive model. For

example, the rs61746559 missense variant affecting SGLT2 was previously

reported to be additively associated with renin levels, and with the novel finding

that the homozygous genotype may be protective for hypertension, it may

provide a basis to consider the gene as a drug target. The majority of the GWS

findings (152 / 185) were not GWS under the additive model, illustrating the

importance of applying the recessive model of testing for finding recessive

effects. For example, we showed that an intronic variant

(chr13:109179501:G:C, rs2038707) in myosin 16 (MYO16), a gene involved in
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the musculoskeletal system 71,72, had a recessive association with the ICD10

code M85 “Other disorders of bone density and structure” (OR = 3.2, p-value =

2x10-8, dominance deviation p-value = 10-5). It would likely have been missed

under the additive model (OR = 1.3, p-value = 9x10-3). This example also

illustrates the value of applying recessive testing to a cohort enriched for

homozygosity. The AF for this variant in G&H is 0.17, which is similar to the AF

in non-finnish europeans (NFE) of 0.16 73. The NFE population has low levels of

consanguinity, therefore at a sample size of 44,000, one could estimate based

on the HWE that the number of homozygous individuals would be 1,126 and

the power to perform this recessive test in this population would be 57%. Due to

increased autozygosity, the observed number of homozygotes in G&H is 1,408,

giving 82% power. Therefore, it is possible that additive tests in larger outbred

cohorts have missed this recessive association. An exome-based study of

394,841 UK Biobank individuals and 4,529 phenotypes detected a

nominally-significant gene-based additive association between putative

Loss-of-Function variants in MYO16 with the same ICD10 code (OR = 1.1,

p-value = 5x10-4) 74. Furthermore, additive tests with FinnGen (release 6) report

nominally significant associations between our lead variant and related

phenotypes such as fibroblastic disorders (OR = 1.1, p-value = 10-3) and benign

neoplasms in the scapula and long bones of the upper limb (OR = 0.7, p-value

= 10-3) 30.

From another study within this cohort, Malawsky et al. (2023) 75 demonstrated

that increased homozygosity (higher FROH) was associated with multiple

common diseases. The primary hypothesis for these associations is that
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homozygous regions of the genome contained causal variants with recessive

effects on these phenotypes 76. From the meta-analysis of highly

consanguineous cohorts in the study, FROH was found to be associated with

twelve ICD10 subchapters (passing the FDR 5% multiple testing threshold).

Five of the twelve (42%) phenotypes significantly associated with FROH had

underlying single-variant recessive associations reported in this study,

compared to thirteen of the remaining forty-nine (27%) phenotypes tested in

that paper which were not significantly associated with FROH(Fisher’s Exact Test

p-value = 0.31). Manually relaxing the phenotype-matching for the twelve

phenotypes associated with FROH, we found variants with significant (p<5x10-8)

recessive associations to three more closely-related phenotypes (Appendix-11),

although none passed our more stringent Bonferroni correction threshold. This

supports the hypothesis that the association between increased autozygosity

and the prevalence of some common diseases is due to underlying genetic

variants with recessive effects.

There are several limitations to the project. Firstly, we have not carried out

fine-mapping of these recessive associations, because to our knowledge, there

are no established methods for fine-mapping which would help disentangle, for

example, a recessive hit that is in LD with a strongly additive hit. However, it is

worth noting also that LD diminishes with distance between non-additive

variants at a rate that is squared of the rate between additive variants 1, which

should, in theory, make it easier to pinpoint causal recessive variants due to the

lower LD. Next, there is limited replication of findings with p-values slightly

below the genome-wide significance threshold. This might be because this
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p-value cutoff is not stringent enough given the number of tests we performed.

Also, our power calculations, which were performed on a simple logistic

regression model, may have overestimated the power of the model fitted by

SAIGE and REGENIE. Furthermore, effect sizes used in the power calculation

might be overestimated in the discovery GWAS (winner’s curse), which could

also lead to overestimated power. Additionally, differences in the granularity of

disease classification and differing methods for phenotype curation are not

accounted for in the power calculation. For example, there is no thalassaemia

phenotype available for testing in FinnGen (or GERA), and the G&H

phenotypes of “thalassaemia” and “other hereditary haemolytic anaemia” were

matched to “other anaemia” and “haemolytic anaemia” in FinnGen, which may

have contributed to the poorer replication in that cluster of loci compared to the

other Bonferroni-significant loci. Lastly, the Finnish cohort and the GERA cohort

are composed of very different ancestries from British South Asians, and

differences in linkage disequilibrium patterns between populations could be

significant. In particular, the relatively poor replication of Bonferroni-significant

variants associated with thalassaemia and hereditary anaemias in FinnGen

may be because selection for resistance to malaria in South Asia has produced

complex LD patterns in that genomic region 77,78 which differ from the LD

patterns in European-ancestry samples; these are not accounted for in our

power calculation. Another limitation is that we only carried out single-variant

tests. In future, exome sequencing of the full G&H cohort would allow us to

identify rare variants which could be aggregated within a gene to try to boost

power to find genes with recessive effects, and reduce the need for

fine-mapping.
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In conclusion, with our whole-exome and whole-genome imputation sets, we

profiled the recessive landscape at single variants in this cohort of 44,000

British South Asians across a broad spectrum of clinical phenotypes, identifying

185 recessive associations. It is likely that many recessive findings remain to be

found, and this project provides a sound argument to expand the search to

other cohorts and phenotypes.
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Appendices

Appendix-1: The statistical power needed for recessive

analyses

We ran simulations to show that power to detect a recessive effect can be

boosted firstly by fitting a recessive rather than an additive model, and secondly

by increased homozygosity in the cohort.

We used the genpwr R package 26 for the simulations. We applied the following

parameters for all calculations: sample size = 44,000 (mimicking G&H), p-value

threshold = p<5x10-8, model = recessive (or additive), regression = logistic, and

assumed there was no gene-environment interaction. The power, allele

frequency (AF), case rate and odds ratio (OR) were modified depending on

what was being simulated. Since the package does not accept genotype

frequencies, but rather, takes the AF as input and assumes the Hardy-Weinberg

Equilibrium (HWE) to determine the genotype frequencies, to account for

increased autozygosity in G&H, we calculated the frequency at which one

would expect to see the number of homozygotes that we would actually see

under HWE, denoted below as “AFautozyg''. Specifically, we calculated:

𝐴𝐹
𝑎𝑢𝑡𝑜𝑧𝑦𝑔

= (1 − 𝐹) * 𝐴𝐹
𝑜𝑢𝑡
2 + 𝐹 * 𝐴𝐹

𝑜𝑢𝑡

𝐴𝐹
𝑜𝑢𝑡

:  𝐴𝐹 𝑜𝑓 𝑡ℎ𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑡 𝑖𝑛 𝑎 ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑡𝑖𝑐𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑎𝑡 𝐻𝑊𝐸

𝐹 = 𝑇ℎ𝑒 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑖𝑛𝑏𝑟𝑒𝑒𝑑𝑖𝑛𝑔 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑎𝑚𝑝𝑙𝑒
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The parameter F (commonly known in the scientific literature as the “inbreeding

coefficient”) corresponds to the average relatedness of parents of individuals in

the sample with each other. It also corresponds to the average fraction of the

genome homozygous in a given sample. 79

We assessed if we would have power to detect recessive findings with similar

ORs, AFs and case rates as those detected in FinnGen. The FinnGen

recessive hits were collated from Table 1 of Heyne et al. (2023) 8. We filtered

the thirty-one findings to the eighteen findings (Supplementary Table 3) that

were validated in release 6 11. The ORs, AFs and case rates were then

projected into the power calculations we performed.

Using an OR of 2 and a phenotype case frequency of 1%, we calculated the

power of a recessive versus an additive test across the AF spectrum, simulating

various levels of average autozygosity in the cohort, ranging from a cohort with

no autozygosity (F = 0), to a consanguineous cohort with an average inbreeding

coefficient of 10% (which corresponds to the average fraction of individuals

homozygous at any position in the genome). In practice, the average fraction of

the genome homozygous in individuals from G&H is ~2.2%. We first see that

the additive model had less power for detecting a truly recessive effect than the

recessive model, particularly at lower AFs (Figure-S1A,B). Next, we see that

power to detect this recessive effect increased with the average level of

autozygosity, and for this set of parameters, this was most noticeable around

the AF 0.2 - 0.5 range (Figure-S1A). This sample size and levels of

consanguinity simulated were not powered to detect an effect size of OR = 2 in

rare variants, therefore we increased the OR to 5 and reran the simulations for
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the rare and low frequency spectrum, and we still saw that power is higher with

increasing F (Figure-S1B).

We next wanted to evaluate the minimum OR we would be powered (80%

power) to detect in G&H. To do that we simulated varying case rates from 0.1%

to 25%. We projected the recessive findings reported in FinnGen by Heyne et

al. (2023) onto our simulations, and found that the majority of the findings had

ORs higher than the minimum that we are powered to detect at their

corresponding case rates and AFs (Figure-S1C). This suggested that G&H will

be well powered to detect very large ORs at rare variants i.e. effectively

Mendelian associations, and smaller recessive effects at common variants with

common traits.
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Figure-S1

Simulations to evaluate power to detect a recessive effect in G&H when

using a recessive versus additive model. A: Calculating power to detect an

association at p<5x10-8 for a range of allele frequencies and values for average

inbreeding coefficient (F). Sample size = 44,000, OR = 2, CR = 1%. B:

Calculating power for a range of rarer allele frequencies and values for F.

Parameters as per A, except OR = 5. C: Calculating the minimum odds ratio

G&H would be powered to detect at 80% power, and F = 2.2%. ”CR” : Case
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rate. Recessive hits reported in FinnGen 8 are indicated on the plot, showing

their OR and AF estimated in FinnGen.
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Appendix-2: Flowchart of methods

Figure-S2

A flowchart to visualise the methods of this project. This is intended to

serve as a directory to relevant sections.
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Appendix-3: QC of genetic data

SNP-Array Data WES Data
Initial QC Initial genotype QC 5,236 individuals after light sample

QC (exclude samples with low
coverage or sex discrepancies)

44,396 individuals
Variant QC in GenomeStudio
Sample QC (exclude samples with
low call rate or failed sex checks)

Genetically
infer ancestry

44,190 individuals assigned as
Pakistani or Bangladeshi

5,073 individuals with array data and
assigned as Pakistani or Bangladeshi

Genotype QC Set genotype as missing when: GQ
<20, binomAD <10-2, DP ≤7

Variant QC 534,806 autosomal SNPs 2,245,547 autosomal SNPs and
indels, after excluding:
For SNPs: "QD < 2.0 || FS > 30 || MQ
< 40.0 || MQRankSum < -12.5 ||
ReadPosRankSum < -8.0"
For indels: "QD < 2.0 || FS > 30 ||
ReadPosRankSum < -20.0"

534,531 variants with a call rate ³99% 1,645,161 variants with a
post-genotype QC call rate ³70%

533,362 variants with HWE p>=10-6 in
the Bangladeshi subgroup
533,166 biallelic variants

Evaluate Concordance
MAF cut-offs Keep 469,678 variants with MAF

>0.1%
Remove singletons

Resolve
Overlapping
Positions

Exclude 25 common palindromic
variants with MAF >40%

Keep, as no problem of
allele-switching

Exclude 515 variants with
overlapping positions but unmatched
alleles

Keep, as some are indels that have
been genotyped incorrectly on the
array

Keep 38,248 variants with matched
alleles and MAF >0.1%

Exclude, as the array has a higher
overall call rate
(Note: rare variants with MAF ≤0.1%
that overlapped with the array are
retained)

Final Sample
QC

4,982 individuals after excluding:
Pre-genotype QC call rate <4SD from
mean, Post-genotype QC call rate
<2SD from mean, Post-genotype QC
NRD >4SD from mean

Table-S1

QC steps for the SNP-Array and WES Data
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Appendix-4: Genetic inference of ancestry

We genetically inferred ancestry for the 44,396 individuals by merging the

SNP-array data with reference cohorts.

From the SNP-array had been through initial QC, we filtered to variants that

were autosomal, common (defined as a minor allele frequency, MAF>0.01), had

a call rate of ≥99%, and passed the HWE exact test (p>10-6) in self-declared

Bangladeshi individuals (Table-S1). This filtered dataset was then merged with

reference sequences of 3,433 individuals from the 1000 Genome Project

(1000G) 80 and Central and South Asian individuals from the Human Genome

Diversity Project (HGDP) 81. We excluded palindromic variants, and variants

with significant AF differences between G&H and 676 reference South Asians

curated from 1000G and HGDP (since these represented likely genotyping

errors). We defined variants with significant AF differences in the following

manner: Firstly, we calculated the residuals from the linear regression between

the AFs in both datasets. Next, we binned the variants into bins by frequency

(in intervals of 0.01), and selected variants for which the residual was >5

standard deviations (5SD) away from the mean of the residuals in that

frequency bin. (This choice seemed reasonable after testing various SD

thresholds, Figure-S3A). Lastly, we performed Fisher’s exact tests to compare

the genotype counts between the G&H data and the 676 reference South

Asians at the variants selected above and excluded those with a p<10-5. (Again,

we tested p-value thresholds ranging from 0.05 to a multiple testing correction

of <0.05/349,632 variants, and felt that 10-5 was reasonable, Figure-S3B). The
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various thresholds and the distribution of the outlier variants excluded are

graphically represented in Figure-S3C-D.
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Figure-S3

Excluding variants with significantly different AF in Genes and Health

(GH) and 676 South Asian samples from 1000 Genomes and HGDP

(reference SAS). Plotting the AFs in both cohorts for each variant,

colour-coding represents in A: the different standard deviation (SD) thresholds

applied to the mean of the residuals in 0.01 frequency bins, in B: the different

p-value thresholds for Fisher’s exact tests on the genotypes, and in C: the

variants that were included and excluded from the merged panel of variants. D:

The AF distribution of the variants excluded.
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After merging of G&H with the reference samples, LD pruning was performed

(window size 1000 kilobases (kb), step size 50, LD r2 0.1) with PLINK1.9 and

long LD regions were excluded. 82

Principal component analysis (PCA) was performed with PLINK1.9 on the

reference individuals, then the G&H individuals were projected into the

reference PC space (PCA1). We calculated uniform manifold approximation

and projection (UMAP) coordinates (umap R package) 83. We found that the

UMAP with 7 PCs was optimal to separate the reference individuals into

superpopulations. 44,320 out of 44,396 G&H individuals were inferred to be

South Asian at this stage (Figure-S4A), and carried forward for the downstream

analysis.

The PropIBD algorithm in KING 84 was run to estimate pairwise relationships up

to fourth degree within G&H, and we removed a minimal set of 14,727

individuals who had at least one relative (3rd degree and closer) in the dataset,

leaving 29,668 unrelated individuals.

We performed a second PCA (PCA2) on the unrelated G&H individuals,

projecting the related G&H individuals who we had inferred to be South Asian

into the PC space. The UMAP with 4 PCs identified distinct clusters that

corresponded well to self-declared Bangladeshi/Pakistani ancestry, and this

was used to genetically classify individuals as genetically Bangladeshi or

Pakistani (Figure-S4B).
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Figure-S4

Genetic inference of ancestry using the G&H SNP-array data. A: UMAP

with 7 PCs from the PCA of reference individuals (PCA1), with G&H individuals

projected into the PC space. B: UMAP with 4 PCs from the PCA of unrelated
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G&H individuals (PCA2), with related G&H individuals projected into the PC

space. C: Legends for both UMAPs.
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Appendix-5: Assessing genotyping and imputation accuracies

with concordance analyses

Before merging the SNP-array and WES data to build the reference panel, we

evaluated concordance of genotypes between them at overlapping sites.

Furthermore, after imputation, we assessed imputation accuracy by comparing

imputed genotypes to sequenced genotypes.

Evaluating concordance

Concordance was primarily evaluated by the non-reference discordance rate

(NRD) calculated using the following formula:

𝑁𝑅𝐷 = 𝑥𝑅𝑅+𝑥𝑅𝐴+ 𝑥𝐴𝐴
𝑥𝑅𝑅+𝑥𝑅𝐴+𝑥𝐴𝐴+𝑚𝑅𝐴+𝑚𝐴𝐴

*𝑅 : 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑎𝑙𝑙𝑒𝑙𝑒

*𝐴 : 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑒 𝑎𝑙𝑙𝑒𝑙𝑒

𝑥 : 𝑛𝑀𝑖𝑠𝑚𝑎𝑡𝑐ℎ𝑒𝑠

𝑚 : 𝑛𝑀𝑎𝑡𝑐ℎ𝑒𝑠

*Note that the ‘truth’ was defined by the array genotype when comparing

concordance between array and WES data, and defined by the sequenced

genotype when comparing concordance between sequenced and imputed data.

For example, “xRR” would mean that the truth dataset had a homozygous
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reference genotype while the other dataset did not, and “mRA” means that both

datasets had a heterozygous genotype.

When examining NRD stratified by allele frequency, the NRD was modified to

calculate a “minor allele discordance” (MAD) rate:

𝑀𝐴𝐷 =  𝑥𝑀𝑎𝑗𝑀𝑎𝑗+𝑥𝑀𝑎𝑗𝑀𝑖𝑛+ 𝑥𝑀𝑎𝑗𝑀𝑖𝑛
𝑥𝑀𝑎𝑗𝑀𝑎𝑗+𝑥𝑀𝑎𝑗𝑀𝑖𝑛+ 𝑥𝑀𝑎𝑗𝑀𝑖𝑛+𝑚𝑀𝑎𝑗𝑀𝑖𝑛+𝑚𝑀𝑖𝑛𝑀𝑖𝑛

*𝑀𝑎𝑗 : 𝑚𝑎𝑗𝑜𝑟 𝑎𝑙𝑙𝑒𝑙𝑒

*𝑀𝑖𝑛 : 𝑚𝑖𝑛𝑜𝑟 𝑎𝑙𝑙𝑒𝑙𝑒

Where relevant, Pearson correlation r2 between genotypes / dosages were

calculated as a secondary measure of concordance.

Concordance between the SNP-array and the WES data

QC on both the SNP-Array and WES datasets improved the overall NRD from

5.02% to 0.40%, with the WES GQ filter making the biggest difference

(Table-S2). We anticipated that the genotyping accuracy would be low for rare

variants in the SNP-array, but surprisingly the array data continued to

demonstrate good MADs of ~0.7-0.9% with the WES for variants with minor

allele counts (MACs) on the array of 3-6 (equivalent to MAF 0.03-0.06%,

Figure-S5). We decided to use variants with MAF>0.1% from the SNP array for

the imputation backbone.

Since minimac3 (Which is used to build the reference panel for imputation with

minimac4) does not tolerate missingness in the imputation reference panel, we
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needed to use the WES data without any genotype-level QC to minimise

missingness. To select for variants with a majority of high-quality genotypes, we

retained those that had <30% missing genotypes after applying the

genotype-level QC. Using the raw genotypes at those sites increased the NRD

to 1.26% (Table-S2). Note that this value is inflated by the discordance at sites

with MAC 0-2 (Figure-S5), but variants this rare were filtered out of the

SNP-array when building the imputation backbone, and instead retained in the

WES data, since we assume these are likely to be more accurate than the array

genotypes given the difficulties of genotyping uber-rare variants on arrays 85.
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Raw Genotypes
(GTs)

GQ >=20 Call rate >=70%
after:

GQ >=20
binomAD >=10-2

DP>7

With raw GT at
sites with call rate

>=70% after:
GQ >=20

binomAD >=10-2
DP>7

After initial
genotype QC

5.018%
(46,778 SNPs)

Call rate >=99%
HWE pval >=10-6

5.000%
(46,656 SNPs)

0.500 %
(46,401 SNPs)

0.398%
(38,249 SNPs)

1.258 %
(38,249 SNPs)

Table-S2

Overall non-reference discordance (NRD) between the array and WES

data with different QC filters applied to the SNP-array data and the WES

data. Row names describe stages of SNP-array filtering, column names

describe stages of WES filtering. “Initial genotype QC” is described in the first

row of Table-S1.
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Figure-S5

The Minor Allele Discordance (MAD) between the SNP-Array and the WES

at overlapping variants, stratified by the frequency on the array. Array

filters: After initial genotype QC + Call rate ≥99% + HWE pval ≥10-6. WES filters:

Call rate ≥70% after GQ ≥20 + binomAD ≥10-2+ DP>7. Here, the array

genotypes were treated as “truth”.
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Based on the concordance analysis, we decided to include only array variants

with MAF>0.1% in the imputation backbone. Overlapping positions with the

WES were resolved as follows:

● For SNPs at overlapping positions with matched alleles and with

MAF>0.1%, we retained these in the GSA data but removed them from

the WES.

● We excluded overlapping common palindromic variants (MAF>0.4)

where the strand could not be confidently determined.

● We excluded overlapping positions with unmatched alleles (including all

indels).

This resulted in 469,678 variants, which were then phased with EAGLE2

(Kpbwt=20,000) 20.

Based on the concordance of the SNP-array and WES, 91 samples that had

high missingness and/or high non-reference discordance (NRD) values were

excluded (Figure-S6B, Figure-S6C), leaving 4,982 samples. Specifically, we

excluded individuals who had any of the following:

● a raw WES call rate <4SD from the mean raw WES call rate,

● a post-genotype QC WES call rate <2SD from the mean post-genotype

QC WES call rate,

● an NRD based on the post-genotype QC WES and post-QC SNP-array

data of >4SD from the mean
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Figure-S6

Per-sample coverage, call rate, and non-reference discordance (NRD)

before and after QC of WES data. A: Distribution of average on-target

coverage across samples. The bimodality observed is because different

batches of samples were sequenced to either ~20X or ~40X. B: The distribution

of WES sample call rates pre-genotype QC (left) and post-genotype QC (right).

C: The distribution of NRDs across samples in the post-genotype QC WES. In

B and C, the bimodality is again likely due to the different sequencing coverage.
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To build the reference panel, we filtered the WES data to a subset of

high-quality variants that had ≥70% call rate after genotype-level QC, and

removed singletons. Since Minimac3 does not cope with missing genotypes, we

used the genotypes at those sites from the raw data (i.e. pre-genotype QC),

and replaced missing genotypes (~0.02% of the total genotypes, Figure-S7A)

with 0/0 if the reference allele was the major allele and 1/1 otherwise. The

distribution of raw per-variant missingness at sites that pass a post-genotype

QC call rate ≥70% is shown in Figure-S7B, with most variants having a raw

missingness of <1%.
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Figure-S7

Distribution of call rates pre and post QC in the G&H WES data. A: Average

call rate stratified across MAF bins. As the missingness is low in the raw WES,

when filtering to positions with a post-genotypeQC call rate ≥70%, the call rate

of the raw genotypes is >99% across the frequency spectrum. B: Distribution of

per-variant raw missingness at positions with a post-genotype QC call rate

≥70%. The y-axis has been transformed to a log 10 scale as an overwhelmingly

large number of variants have a raw missingness of 0-1%.
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Variants with MAF>0.1% that were also present on the GSA array and had

been included in the the imputation backbone were removed from the reference

panel, since they tended to have higher call rates in the array data. The cleaned

WES and cleaned SNP-array data from the 4,982 samples were then merged

to form the reference panel and phased with EAGLE2 (Kpbwt=20,000). The

reference panel consisted of 1,385,942 variants.

Evaluating imputation accuracy

After imputation, to assess the imputation accuracy, the imputed genotypes for

the 4,982 individuals with WES data were compared to their sequenced

genotypes. Genotype concordance was evaluated between the SNP-array and

the WES data at overlapping sites, and between the sequenced and imputed

variants.

Ten trials of imputation were performed using the WES5K panel, with each trial

leaving 10% of the WES samples out of the reference panel against which we

then evaluated concordance between the sequenced and imputed genotypes.

The total number of variants in each imputed dataset ranged from

1,325,855-1,327,697 across the 10 trials. Although the genotyped backbone is

imputed by Minimac4 as well, to evaluate imputation accuracy purely at

positions with no prior information, we excluded backbone SNPs resulting in

855,697-857,537 variants to compare in each trial. The overall NRD of the

imputed genotypes compared to the sequenced genotypes ranged from

7.44-7.69% across 10 trials (Figure-S8A).
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The confidence of the imputation is quantified by Minimac4’s imputed R2. By

convention, a minimum cutoff of ≥0.3 is applied to QC imputed data, which

should sufficiently filter out poorly-imputed variants based on the distribution of

imputed R2 scores (Figure-S8B). However the overall NRD was not found to

improve at this cutoff (Figure-S8A) (probably because we are including so many

rare variants) so we applied a more stringent cutoff of ≥0.5. As expected, the

rarer MAF bins had more variants with a lower imputed R2 (Figure-S8C).

MAD also increases with decreasing allele frequencies, as expected. Many of

these extremely rare variants will not be submitted for association testing as

they are both poorly imputed and not powered enough for recessive tests.

After applying imputed R2 ≥0.5 and NHom ≥3 to prepare for association tests, and

including the positions of the SNP-array backbone (which will be included in

association tests), the overall NRD improved to 1.78-1.84% across the trials

(Figure-S9).
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Figure-S8

Results of the leave-10%-out trials. A: The distribution of NRD(%) across 10

trials when different minimum imputed r2 cutoffs are applied. B: The distribution

of imputed r2 scores for a representative trial. C: The MAD before and after

applying an imputed r2 ≥0.5 cut-off, stratified by MAF. (Error bars are the

standard errors in %MAD across the 10 trials.)
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The TOPMEDimputation genotypes of the 4,982 samples with WES were

compared to their sequenced genotypes. The same cutoffs (imputed R2 ≥0.5

and NHom ≥3) were applied to result in 10,045,406 variants. Of these variants,

523,018 variants overlapped with the WES and at these, the overall NRD was

1.19%.

We then considered NRD at variants stratified by the number of homozygotes

as defined in the WES5Kimputation, the rationale being that the WES should be

considered “truth” in this case, and that the power of the recessive association

testing depends on the number of homozygotes rather than directly on the

allele frequency. First, we observed that the within-cohort WES5K reference

panel allowed for more variants to be imputed at the chosen level of accuracy,

especially at lower MAFs (Table-S3). Second, for NHom ≥9 up to a homozygous

frequency of 5%, the MAD is lower for the WES5KImputation compared to the

TOPMEDImputation, but the opposite is true for the lowest and highest MAF

bins. Thirdly, the lower overall NRD of the TOPMEDimputation (1.19% versus

~1.7% for the WES5K Panel) is driven by the improved accuracy of common

variant imputation with the TOPMED reference panel. (Figure-S9) As both

imputation sets carried their own strengths and weaknesses across the

frequency spectrum, it was decided to bring both sets forward to association

testing.
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Figure-S9

Minor allele discordance (MAD) of the TOPMEDimputation compared to

the WES, and the mean MAD across ten leave-10%-out trials compared to

the WES (represented as the WES5Kimputation for simplicity), stratified

by the number or frequency of homozygous genotypes in the WES data.

The variant counts contributing to each bin is tabulated below.
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n variants
(TOPMEDimputation)

n variants
(WES5Kimputation)

WES5Kimputation /
TOPMEDimputation

nHom 3 10,806 26,001 2.41
nHom 4 10,855 19,588 1.80
nHom 5 9,771 15,532 1.59
nHom 6 8,725 12,615 1.45
nHom 7 7,701 10,546 1.37
nHom 8 6,875 9,044 1.32
nHom 9 6,233 7,864 1.26
nHom 10 5,519 6,774 1.23
(nHom 10 –
nHom 20]

35,924 41,259 1.15

(nHom 20 –
nHom 30]

18,717 20,156 1.08

(nHom 30 –
HomFreq 0.1%]

17,065 17,907 1.05

(HomFreq 0.1%
- HomFreq 1%]

109,350 111,916 1.02

(HomFreq 1% -
HomFreq 5%]

106,049 109,146 1.03

(HomFreq 5% -
HomFreq 10%]

151,338 173,978 1.15

Table-S3

Number of imputed variants (that can be compared to WES positions for

concordance analyses) binned by the number or frequency of

homozygous genotypes in the WES data.

61

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 3, 2024. ; https://doi.org/10.1101/2024.04.03.24305256doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.03.24305256
http://creativecommons.org/licenses/by/4.0/


Appendix-6: On multiple testing and the independence of

phenotypes

The 898 phenotypes tested are not completely independent of each other, and

there may be significant correlation between phenotypes, particularly as some

diseases are repeated in the custom list and the ICD10 codes. We sought to

calculate Pearson correlation r2 between phenotype pairs to quantify the degree

of correlation in our phenotypic data. This serves two purposes - to evaluate if

phenotypes we would expect to be highly correlated indeed have a high r2

(meaning that they have been curated correctly), and secondly, to try to

eliminate highly-correlated phenotypes to reduce the multiple-testing burden.

Of the 402,753 pairs of phenotypes generated, 153 pairs had a correlation r2 of

≥ 0.5. Manually inspecting these pairs, the majority were between conditions

one would expect to be highly correlated; for example, the ICD10 encoding for

sarcoidosis and for multiple sclerosis fully correlated (r2 = 1) with the respective

custom encodings for these conditions. There were also correlations between

biologically similar phenotypes, such as pulmonary heart disease and

pulmonary hypertension (r2 = 0.89), and correlations between pairs for which

one trait was a subset of the other, such as acute pancreatitis and pancreatitis

(r2= 0.90). By reviewing these highly-correlated pairs, we estimated that only

about 80-90 phenotypes could be excluded due to being highly correlated, as

the rest of the pairs had differences in their definitions that warranted the

inclusion of both phenotypes.
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We therefore tested all 898 phenotypes available, and to be stringent, the

Bonferonni cutoff we used accounted for all tests as if they were independent.

The number of phenotypes, individuals, and variants tested is summarised in

Table-S4. A small minority of tests failed on REGENIE; a total of 9,197,933,046

tests produced a p-value, out of a possible 9,374,352,233 tests (98% success

rate).
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Phenotypes n
phenotypes

n
individuals

n variants
(WES5KImputation)

n variants
(TOPMEDImputation)

Custom
phenotypes

(In both sexes)

199 44,186 605,263 10,045,406

Custom
phenotypes
(Female only)

15 24,387 553,716 9,215,675

Custom
phenotypes
(Male only)

5 19,799 529,480 8,855,245

ICD10 codes
(In both sexes)

565 42,027 599,758 9,948,708

ICD10 codes
(Female only)

99 23,710 550,988 9,171,960

ICD10 codes
(Male only)

15 18,317 522,117 8,741,181

Table-S4

The number of phenotypes, individuals, and variants being tested. The number

of variants tested varied with the number of individuals tested, as different

subsets of individuals would result in different numbers of variants having at

least three homozygotes.
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Appendix-7: On covariates included in the association testing

The covariates included were age (at year of phenotype curation, 2022), sex,

age2, age x sex, age2 x sex and the first ten principal components (PCs) from

the principal component analysis on unrelated G&H individuals described

above.

We controlled for ten genetic PCs derived from common variants. These top ten

PCs explained more than 85% of the variance explained by the top 50 PCs

(Figure-S10A). 86 suggested that the common variant PCs may not sufficiently

control for the population structure captured within rare variants, and as this

study tested rare variants as well, we considered the possibility of controlling for

PCs derived from rare variants. We filtered the SNP-array to variants with a

minor allele count of 3 to a minor allele frequency of 1%, and completed the QC

and PC calculation in the same way as we did for the common variant PCs

(described in Appendix-3). Most of the top 10 rare variant PCs were strongly

correlated with at least one of the common variant PCs (Figure-S10B). We

therefore decided not include rare variant PCs as covariates.
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Figure-S10

Principal component analyses of SNP-array data. A: The cumulative

percentage variance explained across the 50PCs generated from common

variants in the SNP-array. B: The correlation plot of the first 10 PCs generated

by common variants compared to the first 10 PCs generated by rare variants.
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Previous work in the lab by 75 demonstrated that increased runs of

homozygosity (ROHs) in the genome was associated with several conditions

such as anxiety and type 2 diabetes. We sought to explore if the fraction of the

genome in ROHs (FROH) is a possible confounder for these recessive findings,

by adding it as a covariate and rerunning the association tests for the 42 lead

SNPs in the WES5Kimputation dataset. ROHs were calledby PLINK1.9 on the

SNP-array data with the following specifications: maximum inverse density

50kb/SNP, maximum internal gap 1000kb, minimum SNP count 50, maximum 1

heterozygous in scanning window hit, maximum 4 missing calls in scanning

window hit and a scanning window sizeof 50. The total length of ROHs (in kb)

was then divided by the length of the autosome (approximately 2700000kb) to

obtain FROH. After controlling for FROH, the recessive p-values correlate well with

those obtained without controlling for it, suggesting that this additional covariate

is unnecessary (Figure-S11).
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Figure-S11

Scatter plot of the WES5Kimputation lead variants p-values (-log10p)

compared to their p-values when the recessive test is rerun to control for

FROH.
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Appendix-8: Characteristics of loci identified as significant in

the recessive association testing

Information about the 185 lead variants passing p<5x10-8are tabulated in

Table-S5. The frequency and consequence distributions of the lead variants are

shown in Figure-S12. Despite applying an exome reference panel including

many rare protein-coding variants, many of the findings from the WES5K

imputation were still common and intronic, implicating variants near exonic

regions that happened to be captured with WES, or common SNPs from the

GSA backbone. Similarly, the majority of the significant hits from the whole

genome TOPMEDimputation were within the non-coding regions. This is

expected as common variants have better power and 99% of the human

genome is non-coding.
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Figure-S12

Characteristics of lead SNPs in the recessive findings. A: Distribution of the

allele frequencies of the lead SNPs. B: Distribution of the variant consequences

of the lead SNPs.
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As an example for plotting and visualisation purposes, we plotted the recessive

tests performed between the TOPMEDImputation and D58[Other hereditary

haemolytic anaemias]. The Quantile-quantile (QQ) plot (Figure-S13A) suggests

that the tests are underpowered, as we see substantial deflation of the test

statistics below what is expected under the null (lambda = 0.56). When we split

the variants contributing to these tests into common (AF > 5%) and low

frequency variants (AF ≤ 5%), indeed we see that the lambda of 0.94 for the

common variants is close to 1 (Figure-S13BC), while the lambda for the rare

variants is low at 0.21 (Figure-S13C), indicating that the deflation is likely due to

reduced power for rare variants.
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Figure-S13

Quantile-quantile (QQ) plots (B-D) for the phenotypes that have

Bonferroni-significant findings. In A, all the recessive p-values in the

D58[Other hereditary haemolytic anaemias] run have been plotted. We then

split the QQ-plot into common variants (AF > 5%, B) and low frequency variants

(C).
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Appendix-9: Evaluating the dominance deviation of the 185

recessive findings

For the lead variants of the 185 recessive loci, 152 lead variants were not GWS

in the additive test. Looking at the distribution of AFs, recessive hits that were

GWS in the additive test had higher AFs than hits that were insignificant in the

additive test, suggesting that common variants simply had more power to be

detected under the additive model even if the underlying pattern of inheritance

might be recessive. (Figure-S14A).

For the lead variants of the significant recessive associations, we also reran the

additive test (step 2 of REGENIE) after removing homozygous individuals, to

explore heterozygous effects. When doing this, all but two lead variants had

p-values below GWS, demonstrating both the weight of these homozygotes on

the significant results in the original additive tests and the loss of power by

reducing the sample size of the tests. The remaining two lead variants likely

have strong heterozygous effects that can be detected even at reduced power.

(Figure-S14D)

It is possible that the tests that dropped below GWS after homozygotes were

removed may still have heterozygous effects. We compared the betas in the

different models of testing. As expected, additive tests estimated betas that

were smaller in magnitude compared to the recessive tests (Figure-2B). After

dropping the homozygotes, 107 of these tests became insignificant (p-value >

0.05), but for tests that remained nominally significant, their betas correlated

well with the full additive tests, though again, their estimated effect sizes were
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smaller (Figure-S14E). These nominally-significant additive tests performed

without homozygous individuals demonstrate heterozygous effects despite

reduced power.

When we removed the homozygous individuals for the additive tests, a small

minority of tests (18/185 lead variants) could not be run in REGENIE when the

homozygotes were excluded. These tests tend to have higher AFs greater than

0.7 (suggesting that the removal of homozygotes resulted in the test being too

underpowered) (Figure-S14B).
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Figure-S14

Exploring the recessive lead variants with different models of testing in

REGENIE. A: AF distribution of recessive hits that were GWS and not GWS in

additive tests. B: AF distribution of recessive hits that could and could not run

under the additive model without homozygous individuals. C: legend for the

figure. D, E: P-values (-log10p, D) and betas (E) in the additive tests compared

to the additive tests without homozygotes.
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To further explore whether the recessive model was indeed the best fit for the

variants that were significant on the recessive test in REGENIE, we performed

logistic regression testing in R, using a genotypic model that included a

dominance deviation encoding. For comparison, we also fitted a standard

additive and recessive model in R. We re-coded the genotypes to perform

additive, recessive and genotypic tests with 2 degrees of freedom, as shown in

Table-S6 and the equations below.
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Genotype Additive Recessive Dominance deviation
RR 0 0 0
RA 1 0 1
AA 2 1 0

Table-S6

Genotype encodings for the additive, recessive and dominance deviation

tests performed as logistic regression tests in R. “RR” refers to the

homozygous wild type, “RA” the heterozygous genotype, and “AA” the

homozygous alternate genotype.
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Additive test:

𝑝ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑒 ~ β
𝑎𝑑𝑑

𝐺
𝑎𝑑𝑑𝑖𝑡𝑖𝑣𝑒

 +  𝐵𝐶

where is the genotype of the SNP using the additive encoding (0/1/2),𝐺
𝑎𝑑𝑑𝑖𝑡𝑖𝑣𝑒

is the effect size under an additive model, C is a matrix of covariatesβ
𝑎𝑑𝑑

(defined below) and B is a vector of effect sizes for those covariates.

Recessive test:

𝑝ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑒 ~ β
𝑟𝑒𝑐

𝐺
𝑟𝑒𝑐𝑒𝑠𝑠𝑖𝑣𝑒

 +  𝐵𝐶

where is the genotype of the SNP using the recessive encoding𝐺
𝑟𝑒𝑐𝑒𝑠𝑠𝑖𝑣𝑒

(0/0/1), and is the effect size under a recessive model.β
𝑟𝑒𝑐

Genotypic (2 degrees of freedom) test, to extraction dominance deviation:

𝑝ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑒 ~ β
𝑎𝑑𝑑

𝐺
𝑎𝑑𝑑𝑖𝑡𝑖𝑣𝑒

 +  β
𝑑𝑜𝑚𝑑𝑒𝑣

𝐺
𝑑𝑜𝑚𝑑𝑒𝑣

 +  𝐵𝐶

where is the genotype of the SNP using the dominance deviation𝐺
𝑑𝑜𝑚𝑑𝑒𝑣

encoding (0/1/0), and is the effect size of the dominance deviation underβ
𝑑𝑜𝑚𝑑𝑒𝑣

the genotypic model.

The tests were performed on the full cohort (i.e. the set of individuals used in

REGENIE, sample sizes in Table-S4), as well as on the subset of individuals

genetically-inferred to be unrelated by KING (26,579 individuals in the largest
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cohort, subsetted accordingly depending on the imputation and phenotype

tested).

Covariates

The covariates included were age, sex, age2, age x sex, age2 x sex and the first

ten PCs.

In Figure-S15, the results from the additive and recessive tests in R were

plotted similarly to those in REGENIE in Figure-2 and gave similar conclusions

to those noted earlier in the main text.
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Figure-S15

Exploring the recessive lead variants with different models of testing in R.

A,C: P-values (-log10p, A) and betas (C) in the recessive tests compared to the

additive tests in R. B,D: P-values (-log10p, B) and betas (D) in the additive tests

compared to the additive tests without homozygotes in R.

80

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 3, 2024. ; https://doi.org/10.1101/2024.04.03.24305256doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.03.24305256
http://creativecommons.org/licenses/by/4.0/


Before considering the results from the dominance deviation tests, we

compared the results from the standard recessive model between R logistic

regression and REGENIE. We found that the -log10(p-values) correlated well

(Figure-S16A, linear regression slope = 1.1, r2 = 0.96). This correlation still held

when restricting to a set of 26,579 unrelated individuals (in the largest set) in R,

though unsurprisingly there was less power (linear regression slope = 0.6, r2 =

0.93). Still, there were some REGENIE tests that were not significant (p-value >

0.05) in the R logistic regression, and these outliers had much larger effect size

estimates in R (Figure-S16B). Otherwise, for tests that were nominally

significant in R, their betas correlated well with REGENIE (linear regression

slope = 0.98, r2 = 0.98). The outlier R tests that had insignificant p-values

tended to involve rarer variants (Figure-S16C, Wilcoxon two-sided p-value =

2x10-4), although the distribution of phenotype case counts were similar

(Figure-S16C, Wilcoxon two-sided p-value = 0.27). They were excluded from

subsequent analyses described below.

When fitting the genotypic model, 76% (or 140) of these lead variants had

nominally significant dominance deviation p-values. These variants tended to

be at least nominally significant in the R recessive test as well (chi-square test

p-value = 1.3x10-11, Figure-S16D). For the tests that had an insignificant

dominance deviation p-value, we cannot rule out that the underlying inheritance

pattern may still be recessive, especially as some also had recessive tests with

insignificant p-values in R, suggesting that R is an imperfect model to replicate

the results from the more complex model fitted by REGENIE.

81

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 3, 2024. ; https://doi.org/10.1101/2024.04.03.24305256doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.03.24305256
http://creativecommons.org/licenses/by/4.0/


Regardless, as expected, the recessive and dominance deviation p-values

were correlated (linear regression of their log10-transformed p-values: slope =

4, r2 = 0.3, p-value <2.2x10-16) (Figure-S16E), with hits having a nominally

significant dominance deviation tending to have lower recessive p-values

(Wilcoxon two-sided p-value = 2.8x10-5). We also saw that hits having a

nominally significant dominance deviation also tended to have a larger

difference between their recessive and additive p-values (Wilcoxon two-sided

p-value = 3x10-9) (Figure-S16F). We did not find any difference in the recessive

betas, distribution of AFs and case counts between the hits with nominally

significant and insignificant dominance deviation p-values (Wilcoxon two-sided

p-value 0.3, 0.7 and 0.2 respectively, Figure-S16G-H).

In summary, from removing homozygotes and re-performing the additive tests,

we demonstrated that several of our recessive findings may harbour mild

heterozygous effects. In addition, fitting the genotypic model in R provided

further support for at least three-quarters of our findings being truly recessive.
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Figure-S16

Logistic regression testing in R for the recessive findings. A,B: P-values

(-log10p, A) and betas (B) in REGENIE compared to logistic regression testing.

C: Distributions of AF and case counts between nominally significant and

insignificant (p-value > 0.05) tests in the recessive logistic regression. D-F:

Distribution of recessive logistic regression p-values(D-E), the differences

between the recessive -log10p and the additive -log10p (F), betas (G), and AF

and case counts (H) across the dominance deviation tests.
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Appendix-10: Replication in other cohorts

Table-S7 and Table-S8 list the Genes & Health phenotypes being matched to

FinnGen phenotypes and GERA phenotypes respectively.

The current locus definition (r2>0.25 and within 1.5Mb of the lead variant) was

chosen so as not to inflate the pairs of independent findings we report, but for

the purpose of replication in other cohorts, they are not as stringent as the one

described in Huang et al. 2022. For completeness, we repeated the replication

calculations with the Huang et al. 2022 cutoffs, so as to calculate a PAT in a

manner closer to what was described in the literature. For each significant locus

in G&H, we first identified proxy variants as variants that are within a +/-50kb

window from the lead variant with LD r2 ≥0.8, and a p-value ≤100 times the

p-value of the lead variant. The PAT in FinnGen reduced from 23% to 21% for

genome-wide significant loci with this more stringent locus definition.
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Appendix-11: Single variant associations with phenotypes

found to be significantly associated with genome-wide

homozygosity (FROH) in Malawsky et al. (2023)

Gene Lead variant AF CSQ Phenotype OR p-value DD
p-value

FROH-Associated Phenotypes:
A09[Other gastroenteritis and colitis of infectious and unspecified origin]

. 2:171680912:G:A 0.3 intergenic A09[Other
gastroenteritis and

colitis of infectious and
unspecified origin]

0.6 2.7E-08 6.0E-02

E11[Type 2 diabetes mellitus]
. 6:104459545:G:A 0.01 regulatory

region
E11[Type 2 diabetes

mellitus]
38 3.6E-08 7.2E-06

Y_RNA 10:92706738:G:C 0.7 downstream
gene

GNH0242 Type 2
Diabetes narrow

0.8 8.8E-09 1.0E-01

Y_RNA 10:92706682:A:G 0.8 downstream
gene

Type 2 Diabetes 0.8 4.3E-09 5.6E-02

ADAMTS
16

5:5261658:G:A 0.01 intron E14[Unspecified
diabetes mellitus]

296 5.1E-09 6.9E-06

UBE2E2 3:23530638:C:A 0.001 intron E14[Unspecified
diabetes mellitus]

2664 4.6E-08 9.6E-01

SNX5 20:17949555:G:T 0.01 intron GNH0244 Unspecified
or Rare Diabetes

narrow

63 1.4E-08 3.5E-03

E78[Disorders of lipoprotein metabolism and other lipidaemias]
APOA5 11:116796367:A:G 0.9 upstream

gene
E78[Disorders of

lipoprotein metabolism
and other lipidaemias]

0.8 3.3E-11 7.1E-03

F41[Other anxiety disorders]
. 2:236834949:C:T 0.01 regulatory

region
F40[Phobic anxiety

disorders]
138 2.7E-08 2.6E-03

. 7:131782270:G:A 0.08 intergenic Anxiety and phobia 1.8 3.5E-08 4.8E-03

. 7:131780486:G:A 0.08 intergenic F41[Other anxiety
disorders]

1.9 7.7E-10 2.7E-03

. 7:131773247:A:G 0.1 regulatory
region

F41[Other anxiety
disorders]

1.8 1.8E-08 7.7E-05

H61[Other disorders of external ear]
ESRRG 1:216911690:AG:A 0.01 intron H60[Otitis externa] 54 2.5E-09 4.7E-04

J11[Influenza, virus not identified]
PKHD1 6:52012065:G:GT 0.004 intron J12[Viral pneumonia,

not elsewhere
classified]

271 3.1E-09 6.6E-06

PKHD1 6:52012065:G:GT 0.004 intron B97[Viral agents as
the cause of diseases
classified to other

chapters]

180 2.7E-09 1.9E-05
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. 6:51529735:A:G 0.002 intergenic B97[Viral agents as
the cause of diseases
classified to other

chapters]

430 2.4E-08 8.0E-04

J34[Other disorders of nose and nasal sinuses]
ADAMTS
9-AS2

3:64802433:A:G 0.03 intron J34[Other disorders of
nose and nasal

sinuses]

8 1.5E-08 1.8E-07

. 7:48916122:T:C 0.02 intergenic J34[Other disorders of
nose and nasal

sinuses]

13 5.0E-09 1.5E-03

. 5:91760313:C:G 0.01 intron J34[Other disorders of
nose and nasal

sinuses]

11 2.4E-08 1.5E-03

L30[Other dermatitis]
PTPRN2 7:157970755:T:G 0.005 intron L20[Atopic dermatitis] 64 1.1E-08 8.6E-01
NKAIN1 1:31215264:T:C 0.9 intron L21[Seborrhoeic

dermatitis]
1.3 6.2E-09 8.4E-01

BCAR3 1:93847011:TCGG
GCGCGGCGG:*

0.4 intron Dermatitis (atopic,
contact, other,
unspecified)

1.2 1.6E-08 6.3E-08

Table-S9

Single recessive associations involving phenotypes found to be

significantly associated with genome-wide homozygosity in Malawsky et

al. (2023) 18.
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Appendix-12: FinnGen information, ethics statement, materials

and methods:

FinnGen was launched in 2017 (https://www.finngen.fi/), and it is a

pre-competitive collaboration between biobanks in Finland and their supporting

organisations such as universities and university hospitals. There is also

involvement from international partners from the pharmaceutical industry, and

the Finnish biobank cooperative (FINBB). All the FinnGen partners are listed

here: https://www.finngen.fi/en/partners.

Patients and control subjects in FinnGen provided informed consent for biobank

research, based on the Finnish Biobank Act. Alternatively, separate research

cohorts, collected prior the Finnish Biobank Act came into effect (in September

2013) and start of FinnGen (August 2017), were collected based on

study-specific consents and later transferred to the Finnish biobanks after

approval by Fimea (Finnish Medicines Agency), the National Supervisory

Authority for Welfare and Health. Recruitment protocols followed the biobank

protocols approved by Fimea. The Coordinating Ethics Committee of the

Hospital District of Helsinki and Uusimaa (HUS) statement number for the

FinnGen study is Nr HUS/990/2017.

The FinnGen study is approved by Finnish Institute for Health and Welfare

(permit numbers: THL/2031/6.02.00/2017, THL/1101/5.05.00/2017,

THL/341/6.02.00/2018, THL/2222/6.02.00/2018, THL/283/6.02.00/2019,

THL/1721/5.05.00/2019 and THL/1524/5.05.00/2020), Digital and population

data service agency (permit numbers: VRK43431/2017-3, VRK/6909/2018-3,
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VRK/4415/2019-3), the Social Insurance Institution (permit numbers: KELA

58/522/2017, KELA 131/522/2018, KELA 70/522/2019, KELA 98/522/2019,

KELA 134/522/2019, KELA 138/522/2019, KELA 2/522/2020, KELA

16/522/2020), Findata permit numbers THL/2364/14.02/2020,

THL/4055/14.06.00/2020, THL/3433/14.06.00/2020, THL/4432/14.06/2020,

THL/5189/14.06/2020, THL/5894/14.06.00/2020, THL/6619/14.06.00/2020,

THL/209/14.06.00/2021, THL/688/14.06.00/2021, THL/1284/14.06.00/2021,

THL/1965/14.06.00/2021, THL/5546/14.02.00/2020, THL/2658/14.06.00/2021,

THL/4235/14.06.00/2021, Statistics Finland (permit numbers: TK-53-1041-17

and TK/143/07.03.00/2020 (earlier TK-53-90-20) TK/1735/07.03.00/2021,

TK/3112/07.03.00/2021) and Finnish Registry for Kidney Diseases

permission/extract from the meeting minutes on 4th July 2019.

The Biobank Access Decisions for FinnGen samples and data utilized in

FinnGen Data Freeze 10 include: THL Biobank BB2017_55, BB2017_111,

BB2018_19, BB_2018_34, BB_2018_67, BB2018_71, BB2019_7, BB2019_8,

BB2019_26, BB2020_1, BB2021_65, Finnish Red Cross Blood Service

Biobank 7.12.2017, Helsinki Biobank HUS/359/2017, HUS/248/2020,

HUS/150/2022 § 12, §13, §14, §15, §16, §17, §18, and §23, Auria Biobank

AB17-5154 and amendment #1 (August 17 2020) and amendments

BB_2021-0140, BB_2021-0156 (August 26 2021, Feb 2 2022), BB_2021-0169,

BB_2021-0179, BB_2021-0161, AB20-5926 and amendment #1 (April 23

2020)and it´s modification (Sep 22 2021), Biobank Borealis of Northern

Finland_2017_1013, 2021_5010, 2021_5018, 2021_5015, 2021_5023,

2021_5017, 2022_6001, Biobank of Eastern Finland 1186/2018 and

88

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 3, 2024. ; https://doi.org/10.1101/2024.04.03.24305256doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.03.24305256
http://creativecommons.org/licenses/by/4.0/


amendment 22 § /2020, 53§/2021, 13§/2022, 14§/2022, 15§/2022, Finnish

Clinical Biobank Tampere MH0004 and amendments (21.02.2020 &

06.10.2020), §8/2021, §9/2022, §10/2022, §12/2022, §20/2022, §21/2022,

§22/2022, §23/2022, Central Finland Biobank 1-2017, and Terveystalo Biobank

STB 2018001 and amendment 25th Aug 2020, Finnish Hematological Registry

and Clinical Biobank decision 18th June 2021, Arctic biobank P0844:

ARC_2021_1001.
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Supplementary Documents

Tables S5, S7 and S8 can be found here:

https://docs.google.com/spreadsheets/d/1480luaKK33BuwIk3fkq-1Pqyr10bk7C

g/edit?usp=sharing&ouid=101119527407856944679&rtpof=true&sd=true

Table S10 can be found here:

https://docs.google.com/spreadsheets/d/1DArZ5tn_KZABL3ZJHkstHCe_87GP

Szz6/edit?usp=sharing&ouid=101119527407856944679&rtpof=true&sd=true
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