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Abstract 

 Alcohol use disorder (AUD) is a leading cause of death and disability worldwide. There 

has been substantial progress in identifying genetic variants underlying AUD. However, there 

are few whole-exome sequencing (WES) studies of AUD. We analyzed WES of 4,530 samples 

from the Yale-Penn cohort and 469,835 samples from the UK Biobank (UKB). After quality 

control, 1,420 AUD cases and 619 controls of European ancestry (EUR) and 1,142 cases and 

608 controls of African ancestry (AFR) from Yale-Penn were retained for subsequent analyses. 

WES data from 415,617 EUR samples (12,861  cases), 6,142 AFR samples (130 cases) and 

4,607 South Asian (SAS) samples (130 cases) from UKB were also analyzed. Single-variant 

association analysis identified the well-known functional variant rs1229984 in ADH1B 

(P=4.88×10-31) and several other common variants in ADH1C. Gene-based tests identified 

ADH1B (P=1.00×10-31), ADH1C (P=5.23×10-7), CNST (P=1.19×10-6), and IFIT5 (3.74×10-6). 

This study extends our understanding of the genetic basis of AUD.  
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Introduction 

Heavy alcohol use and alcohol use disorder (AUD) are leading causes of death and disability 

worldwide. Globally, in 2020, alcohol use accounted for 1.78 million deaths1. AUD is a complex 

disorder affected by both environmental and genetic factors, with twin studies showing AUD to 

have an estimated heritability of ~0.502. Identifying genetic factors that contribute to AUD risk 

could advance efforts to prevent, identify, and treat the disorder and common co-occurring 

medical and psychiatric problems related to alcohol use. 

 Over the past 30 years, candidate gene studies of AUD have established the importance 

of the functional coding variants rs1229984 in ADH1B (alcohol dehydrogenase 1B (class I), beta 

polypeptide) in multiple populations, and rs671 in ALDH2 (aldehyde dehydrogenase 2 family 

(mitochondrial))3-6 in some Asian populations. These two genes encode enzymes that play 

critical roles in ethanol metabolism7. There has also been substantial progress made in genetic 

studies of AUD and problematic alcohol use (PAU, a proxy phenotype of AUD) through 

genome-wide association studies (GWAS). Key findings have been obtained that were 

impossible before the big data era8. Dozens of risk variants have been discovered9-15, primarily 

in European-ancestry (EUR) subjects, which have improved causal inferences between related 

traits15. AUD differs from alcohol consumption genetically, to some extent each having distinct 

genetic correlations with other health-related traits13,14, supporting the particular medical 

significance of AUD. The partitioned heritability of AUD and gene expression is enriched in brain 

tissues, indicating that AUD involves brain pathology14-16. 

 We previously conducted a large PAU GWAS of more than one million individuals of 

multiple ancestries, which extended our understanding of the biology of AUD and improved 

potential translational applications17. In that study, we demonstrated a substantial shared 

genetic architecture of PAU across multiple ancestries therefore the cross-ancestry fine-

mapping improved the identification of potential causal variants, and the cross-ancestry 
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polygenic risk score (PRS) analysis showed better prediction than single-ancestry PRS. The 

study prioritized multiple genes with convergent evidence linking AUD risk to the brain. It also 

identified existing medications for potential pharmacological studies by drug-repurposing 

analysis. 

 Although these findings have considerably advanced our knowledge of the genetics of 

AUD, large gaps remain. The estimated single-nucleotide polymorphism (SNP)-based 

heritability (h2) of AUD ranges from 5.6% to 12.7% with liability-scale h2 ranging from 8.9% to 

16.2%12-15,17, far less than estimates from genetic epidemiology. Increasingly, whole-exome 

sequencing (WES) data are being used to augment SNP data for many diseases and traits18-22. 

WES outperforms SNP-array-based studies in identifying rare variants and accounting for 

missing heritability21,23-25. Large-scale WES studies of patients with neuropsychiatric disorders 

such as bipolar disorder and schizophrenia have implicated ultra-rare variants (URVs) in coding 

regions as risk factors or found enrichments of protein-truncating variants from evolutionarily 

constrained genes18,22. However, the analysis of WES data in AUD has been limited to small 

samples because of the limited availability of AUD patients with genetic data26,27, thus there is a 

need for a large-scale WES study with greater power to detect risk variants for AUD. Thus, we 

performed the largest multi-ancestry WES study in AUD to date by combining data from the 

Yale-Penn cohort (YP)11 and UK Biobank (UKB)28. We confirmed previously observed 

associations of the coding variant rs1229984 with AUD and obtained suggestive evidence of 

several novel rare variants. Enrichment analyses applying Firth’s logistic regression showed a 

nominally significant burden of ultra-rare loss-of-function (LoF) variants in evolutionarily 

constrained genes (pLI>0.9) for AUD cases. Furthermore, using gene-based tests accounting 

for the burden from LoF, missense and synonymous variants, we identified the well-studied 

ADH1B and ADH1C, and novel genes CNST and IFIT5. 
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Results 

WES datasets. After quality control (QC, see Methods), whole-exome sequencing (WES) data 

from 3,892 participants of the YP cohort was included, including 2,102 EUR individuals and 

1,790 individuals of African ancestry (AFR) (Table 1). AUD diagnosis (DSM-IV29 alcohol 

dependence) was obtained using the Semi-Structured Assessment for Drug Dependence and 

Alcoholism (SSADDA)30. We analyzed 1,420 EUR cases and 619 EUR controls and 1,142 AFR 

cases and 608 AFR controls. SNPs and INDELs (insertions and deletions), were jointly called 

following a GATK Best Practices Workflow31, and a series of QC steps performed to remove 

low-quality samples and variants (Figure 1, Figure S1). Over 3 million variants passed QC, of 

which 13.22% are not reported either in the Exome Aggregation Consortium (ExAC)32 data or 

the Genome Aggregation Database (gnomAD) version 3.1.233 (Figure S2). Among these novel 

variants, 1,988 were present only in EUR and 803 variants were specific to AFR. We found that 

98.19% of the novel variants (154,592) were shared by EUR and AFR. 

 WES data for 426,366 UK Biobank (UKB) participants were examined across EUR, AFR 

and South Asian (SAS) ancestries (Methods). UKB has assigned 367,640 British participants to 

EUR and hereafter are referred to as EUR1 subpopulation28. UKB participants without EUR1 

ancestry were analyzed by principal component analysis (PCA), integrating subjects from the 

1000 Genomes Project34 and 47,977 participants were then assigned to the an additional EUR 

group (hereafter referred as EUR2), 6,142 to AFR and 4,607 to SAS (details of this approach 

are described in our previous study17). 

 

Examining loss of function (LoF) variants in AUD.  

To ascertain whether deleterious coding variants were enriched in AUD cases or controls, we 

annotated the variants using ANNOVAR35 and categorized the variants according to these 
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predictions into four groups based on the annotations: loss-of-function (LoF), damaging 

missense (Dmis), other missense (Omis) and synonymous (Synn) (Methods, Table S1). The 

deleteriousness of missense variants was determined by applying an ensemble pathogenicity 

predictor for exome missense variants (REVEL) with a cutoff of 0.5 to optimize sensitivity and 

specificity36,37. Logistic regressions with Firth’s correction38 were performed on URVs with minor 

allele count (MAC) ≤ 5 (Figure 2, Tables S2-3). 

 Adjusted for batch, age, sex, 10 principal components and the overall coding variant 

burden, URVs were not significantly enriched for any class of variants in AUD or in controls in 

either EUR or AFR from the YP cohort (Figure 2B and Table S2). After meta-analyzing URV 

enrichments across all subpopulations from the UKB and YP cohorts, we observed nominally 

significant enrichment of LoF URVs in evolutionarily constrained (pLI > 0.9) genes (P=1.72×10-2, 

Figure 2A, Table S3).  

 

Single-variant association analysis.  

We used a logistic mixed model implemented in SAIGE-GENE+39 to assess the association of 

exome-wide variants with AUD (Table S4). Single-variant association analyses showed no 

significant signals in the YP cohort (Table S5-6). The well-established AUD-associated SNP 

rs1229984 in the ADH1B gene was ranked as the top signal in EUR (P=7.95×10-7; Figure S3) 

but did not pass the threshold after Bonferroni correction for exome-wide multiple testing 

(PBonferroni = 4.13×10-7). In UKB, rs1229984 was significantly associated with AUD risk in the 

largest sub-population, EUR1 (P=1.21×10-27, Figure S4). We did not observe any significant 

signals from EUR2, AFR or SAS in UKB by single-variant association analyses (Figure S4, 

Tables S7-10). 
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Within- and cross-ancestry meta-analyses. 

We next performed within- and cross-ancestry meta-analyses combining YP and UKB. Of the 

8,129,748 variants in EUR, rs1229984 in ADH1B gene (P=2.84×10-29) and 9 variants in ADH1C 

gene were significantly associated with AUD at a Bonferroni-corrected threshold of P=6.15×10-9, 

with 3 additional variants in ADH1C meeting the FDR-adjusted P-value threshold of 2.04×10-8 

(Table S11). No significant variants were identified in the AFR meta-analysis (Table S12). The 

results from a cross-ancestry meta-analysis, mostly driven by information in EUR, showed 

significant signals consistent with what was observed in EUR-only, with ADH1B*rs1229984 

identified as the lead SNP (P=4.88×10-31; Figure 3, Table S13). Using conditional analysis we 

examined the independence of the top variants that passed Bonferroni correction in the cross-

ancestry meta-analysis (Table S14). Among these 10 variants, 3 were reported by both of two 

previous phenome-wide association studies based on exome-sequencing data from UKB.20,40 

All these variants were reported in our previous PAU study (Table S14).17  

 

Gene-based analysis. 

Rare variants may act in aggregate and therefore could be detected by gene-based analysis 

rather than single-variant association analyses. Thus, we performed collapsing analyses to test 

the gene-level associations using variant aggregation strategies implemented in SAIGE-

GENE+39 across multiple minor allele frequency (MAF) cutoffs and functional annotations. The 

predicted functional effects for variants were annotated using ANNOVAR35, as done in the 

enrichment analysis. For each gene, four separate variant burden masks were evaluated: LoF, 

“LoF|Missense”, “LoF|Missense|Synonymous”, and Synonymous (Table S1). For each of the 

masks, we considered different MAF cutoffs for each gene: MAF≤0.01%, MAF≤0.1%, MAF≤1% 

and all coding variants (in YP we restricted to MAF≤0.1%). The conservative Bonferroni-
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corrected exome-wide significance threshold was P≈2.36×10-6, corresponding to 21,162 genes 

tested in this study. 

 In the UKB EUR1 subpopulation, we observed exome-wide significant associations in 

ADH1B under the burden of all coding variants for “LoF|Missense|Synonymous” and 

“LoF|Missense” masks (P=3.70×10-31 and P=5.45×10-31, respectively; Figure S5). CNST 

(consortin, connexin sorting protein) was identified as close to the exome-wide gene-level 

significance under the burden mask of “LoF|Missense|Synonymous” for the rarest category of 

coding variants with MAF≤0.01% (P=2.75×10-6; Figure S5, Table S15). OCA2 (oculocutaneous 

albinism II) was significantly associated with AUD in the AFR subpopulation for rare 

“LoF|Missense” variants with MAF≤1% (P=2.31×10-6; Figure S5, Table S16). No significant 

genes were identified in the UKB EUR2 and SAS subpopulations or the YP cohort (Tables S15-

20).  

 Meta-analysis of EUR subjects across UKB and YP showed significant associations in 

ADH1B for “LoF|Missense” (P=2.66×10-30; Table 2, Table S21; Figure S6) and for 

“LoF|Missense|Synonymous” (P=6.02×10-27; Table 2, Table S21) under all coding variant masks. 

ADH1C showed significant associations for all coding LoF variants (P=1.99×10-6; Table 2, Table 

S21). We found no significant gene-level associations in the AFR meta-analysis, presumably 

due to limited statistical power (Table S22). 

 Cross-ancestry meta-analysis of all UKB and YP subpopulations confirmed the 

associations of ADH1B and ADH1C with AUD (Figure 4 and Table 2). For rare variants with 

MAF≤0.1% under the “LoF|Missense|Synonymous” mask, the most significant gene-based 

association was identified in CNST (P=1.19×10-6, Table S23), for which significant associations 

have also been observed for the rarer variants under the MAF bin of 1×10-4 in UKB alone 

(Figures S5, Table S15). Under the gene burden mask of all LoF variants, ADH1C was most 
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significantly associated with AUD (P=5.23×10-7, Table S23). IFIT5 was significant at an FDR 

level < 5% for risk effects from all LoF and missense variants (P=3.74×10-6). 

 Next, we extracted the genes that were nominally significant in at least one of the MAF 

and variant class combinations to perform Gene Ontology (GO) enrichment analysis. Although 

no individual GO term was significant after correction for multiple testing, “primary alcohol 

metabolic process” was the most enriched term of nominal significance (P=2.05×10-4; Figure 

S7). 

 

Sex-stratified analysis.  

We performed sex-stratified analysis across the UKB and YP cohorts for single-variant 

association tests (Tables S24-29). No significant signals were found for YP cohort males or 

females. In the UKB, ADH1B*rs1229984 surpassed the Bonferroni corrected threshold only in 

males from the EUR1 subpopulation (P=5.97×10-21). A novel rare coding variant—rs756613425 

in gene U2AF1L4—survived multiple testing correction (P=5.38×10-9) among females in EUR2. 

After meta-analysis, only rs1229984 in ADH1B remained significant in males in EUR 

populations (P=3.63×10-22, Table S24) and the cross-ancestry analysis (P=1.44×10-23, Table 

S28). 

 

Discussion 

Rare variants play important roles in disease pathogenesis for some traits and 

characteristically, those that can be identified have larger effects than common variants20,21. 

Many causal variants for Mendelian diseases have been identified through rare variant analysis, 

e.g., DHODH (MIM: 126064) for postaxial acrofacial dysostosis (MIM: 263750)41. Rare coding 
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variants detected by WES could explain additional disease risk or trait variability, beyond what is 

detected in common variant analyses. Studies have shown that rare variants or low-frequency 

variants (typically those with MAF<0.01) can explain roughly the same amount of variance in 

some traits as higher allele frequency SNPs23,25. A recent study using genome-based restricted 

maximum likelihood (GREML) on whole-genome sequence data from 21,620 subjects showed 

that SNPs with a MAF between 0.0001 and 0.001 explained more of the variance for height and 

BMI than many other allele frequency bins. Combining all common and rare variants fully 

recovered the heritability of height and BMI23. This may also be possible for other complex traits. 

WES is a sequencing method that captures most protein-coding regions of the genome 

to identify exonic variants associated with a trait. An analysis of ~450K UKB subjects showed 

that gene targets of drugs approved by the FDA were 3.6-fold more common among the 

associated genes by rare variant analysis than in the remaining genes, indicating the method’s 

potential clinical utility21. However, there is not much known about the AUD risk attributed to rare 

variants. 

In this study, we present results from the largest multi-ancestry AUD WES study to date 

utilizing the YP and the UKB, which included 15,683 cases and 414,472 controls, facilitating our 

understanding of the genetic architecture of AUD. YP is a deeply phenotyped cohort with EUR 

and AFR participants recruited for genetic studies of substance use disorders11. The array-

based genotype data from YP have contributed to several significant GWAS of AUD12,17. The 

YP WES data included in this study represent the largest purpose-recruited WES cohort for 

AUD. UKB is a population cohort with deep genomic and phenotyping data, comprising mostly 

EUR participants28. The prevalence of AUD in UKB is low compared to YP.  

 We confirmed the associations of the common coding variant ADH1B*rs1229984 and 

the genes ADH1B and ADH1C with AUD risk using both single-variant and gene-based 

association analyses. Inclusion of non-EUR ancestries enabled us to identify the novel gene 
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OCA2 in AFR, where the genetic burden identified by gene-based analysis fell on rare coding 

variants with MAF<0.01. Cross-ancestry meta-analysis of the gene-based results showed 

significant associations of another two novel genes, CNST (Consortin, Connexin Sorting 

Protein), conferred by coding variants with MAF<0.001, and IFIT5 (interferon induced protein 

with tetratricopeptide repeats 5), conferred by LoF and missense variants. Sex-stratified 

analysis using UKB data identified a rare (MAF=1.14×10-4) protein-altering variant 

U2AF1L4*rs756613425 in EUR2 females—neither the variant nor the gene has previously been 

associated with AUD (P=5.38×10-9, PBonferroni=0.036). 

 In our cross-ancestry single-variant meta-analysis, suggestive (P<1×10-6) rare variants 

have been identified including rs117666725 (SLC18A1), rs1383727003 (ARHGEF16), and 

rs1437880 (ASNSD1). A previous association study has implicated SLC18A1 with alcohol 

withdrawal severity but is attributable to a common SNP42. ARHGEF16 is a guanine-exchange 

factor belonging to the Rho family GTPases, which plays important roles in neuron development 

and neurodegeneration43. ASNSD1 encodes asparagine synthetase domain containing 1, which 

has been implicated in Huntington’s disease, a dominantly inherited neurological disorder44. 

None of these variants or genes have been identified to be associated with AUD risks in 

previous studies. 

 IFIT5 has been reported to be involved in NF-ĸB pathway activation and promoting 

epithelial-to-mesenchymal transition via miRNA processing45,46. Previous studies on opioid use 

disorder and neuropathic pain implicated IFIT5 with network analysis47,48.  CNST, the consortin 

gene encoding the connexin sorting protein, was recently identified to be differentially expressed 

in anorexia nervosa, a serious mental disorder characterized by a high risk of mortality and 

morbidity49,50. Our gene-based test in AFR-UKB identified OCA2 gene in AUD cases. OCA2 is 

not just a primary pigmentation gene influencing the amount and characteristics of melanin in 

melanocytes, but it also stands as an independent factor impacting eye color51. Studies have 
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shown that OCA2 could be related to both eye color and neurodevelopmental disorders52-54. 

These genes could be novel targets for further functional studies for AUD. 

 Several limitations of our study should be noted. The enrichment analysis for different 

functional classes of URVs across ancestries only yielded nominal significant findings in LoF 

variants from evolutionarily constraint genes (Figure 2). This is considered to be most likely due 

to inadequate statistical power to identify the effects of deleterious URVs. Larger sample 

resources especially non-European genomic resources are urgently needed not only to 

delineate the contributions to AUD risk arising from deleterious URVs in coding regions, but also 

to more explicitly examine and compare the genetic variations across populations. Furthermore, 

WES only captures coding regions, which represent less than 2% of the human genome. To 

comprehensively and systematically investigate the particular genetic factors and their 

regulatory mechanisms underlying AUD risks, whole-genome sequencing offers an attractive 

approach. In addition, our analysis did not consider potential confounding factors such as 

socioeconomic status. 

 Our large-scale WES study is an advance in GWAS approaches to AUD that confirmed 

the associations of established variants with AUD and identified novel variants and genes by 

analyzing multiple ancestral groups. Future integrated studies of larger samples across multiple 

ancestries can be expected to advance our understanding of the multifaceted pathogenesis of 

AUD. 

 

Methods 

Ethics. The Yale–Penn study was approved by Yale Human Research Protection Program and 

University of Pennsylvania IRB. 
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YP cohort. Whole-exome sequencing data for YP batch 1 cohort was generated on the Illumina 

HiSeq 2000 platform platform (paired end, 75 bp) with NimbleGen SeqCap exome capture V2 

kit. The batch 2 to batch 4 data was sequenced on the NovaSeq 100bp paired end sequencing 

system using the xGen Exome Research Panel v1 from IDT. AUD cases were defined as 

participants with Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) 

alcohol dependence diagnosed using the Semi-structured Assessment for Drug Dependence 

and Alcoholism (SSADDA).30 Principal component analysis was applied to the ancestry 

assignment of YP cohort integrating 1000 Genomes phase 3 subjects34 based on autosomal 

variants that remained after LD pruning. 

 Variants from the whole-exome sequences in the YP cohort were called following the 

BWA-GATK pipeline. Sequences were mapped to hg38 reference genome using BWA55. GATK 

HaplotypeCaller with GVCF mode was utilized to call individual variants. Next, GATK 

GenomicsDBImport and GenotypeGVCFs were applied to jointly genotype all samples, followed 

by VariantRecalibrator and ApplyVQSR to recalibrate variant quality scores. Variants located in 

sites with more than 6 alleles and low-complexity regions were filtered out. Heterozygous 

variants were removed if the sum of reference and alternative allele depth out of total 

sequencing depth of that site was below 0.8, the proportion of alternative allele depth was below 

0.2, the Phred quality score of the reference allele was lower than 20, or the sequencing depth 

of the site was<10. For homozygous sites, variants with Phred quality score<20 or sequencing 

depth<10 were removed. Homozygous alternative allele sites with the proportion of sequencing 

depth for alternative alleles<0.8 were also removed. We used PLINK to remove variants with 

missingness rates>0.05; remove samples with inconsistent sex, highly related samples, or 

heterozygosity rate outside the mean ± 3 standard deviation range; and to filter out variants that 

failed Hardy-Weinberg equilibrium expectations (P<10-6). Samples with a missingness rate>10%, 
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with mean depth<20, or with mean genotype quality score <55 were not retained for analysis. 

This resulted in the exclusion of 148 samples (Figure S1). 

UKB dataset. UKB is a large-scale prospective biomedical dataset that includes about 500,000 

participants recruited throughout the United Kingdom. Exome-sequencing data from 469,835 

participants were accessed. EUR1 refers to the genetically defined white British ancestry 

samples from UKB. Principal component analysis (PCA) integrating 1000 Genomes subjects 

was applied to define the EUR non-White-British (EUR2), AFR and SAS ancestries, as in our 

previous study17. The phenotype definition for UKB was based on data field 41270 (the ICD-10 

diagnosis codes), and 20406 (self-report of ever having been addicted to alcohol). 10,466 

participants had at least one F10 ICD-10 code, and an additional 3,593 participants self-

reported to be addicted to alcohol were also defined as AUD cases. Participants reported to be 

lifetime abstainers or former drinkers (data field 20117), which might bias the genetic results as 

we demonstrated previously56, were removed from the control group. Participants reported to be 

current drinkers (data field 20117) were included as control samples. The final UKB analysis 

dataset comprised 426,366 samples across four subpopulations (367,640 EUR1, 47,977 EUR2, 

6,142 AFR and 4,607 SAS). Variants with a missingness rate<5% were retained for subsequent 

analysis. PLINK was used to exclude variants that failed the Hardy-Weinberg equilibrium 

expectations with P <1×10-20, which was assessed separately in cases and controls.  

Variant annotation.  We applied ANNOVAR to annotate all the variants passing the quality 

control steps according to predicted functional effect with RefSeq genome assembly hg38 

release, cytoBand and avsnp150 database35. Variants predicted to be frameshift substitution, 

stop gain, stop loss or splicing site alterations were categorized into LoF variants. The value of 

0.5 evaluated by REVEL36 was used as a cutoff for determining deleteriousness of missense 

variants. Variants with predicted REVEL score over 0.5 were considered as deleterious 

missense (Dmis) variants. Other missense (Omis) variants were those with REVEL score ≤0.5. 
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Single-variant association analysis.  SAIGE-GENE+ was used to perform single-variant 

association analysis, restricted to variants with MAC ≥ 5. For UKB, data analysis, sex, age and 

10 ancestry principal components (PCs) were used as covariates. For the YP cohort, covariates 

included for analysis were age, sex, 10 PCs and sequencing batch information. Single-variant 

association analyses were performed for EUR and AFR for YP cohort, and EUR1, EUR2, AFR, 

SAS subpopulations for UKB. P-values corrected by the Bonferroni method were used as the 

genome-wide significance threshold for the independent tests from each single-variant 

association analysis to prevent possible false positive signals. FDR-adjusted P-values were also 

calculated to examine whether there were any variants that satisfied a less conservative 

threshold (See Tables S5-13). 

Conditional analysis. We evaluated the independence of significant variants by performing 

conditional analysis using SAIGE-GENE+39 on chromosome 4 in the EUR1 subpopulation from 

UKB. Ten candidate variants that passed the Bonferroni correction were tested (Table S14). 

The files used as input to store the null model and variance ratios derived from genetic 

relationship matrices based upon multiple minor allele count categories for running SAIGE-

GENE+ were the same as those calculated in previous single-variant analyses. 

Gene-based tests.  Rare coding variants were aggregated by different burden masks (LoF, 

“LoF| Missense”, “LoF|Missense|Synonymous”, Synonymous) for each gene. We tested the four 

gene masks across different allele frequency groups (MAF≤0.01%, MAF≤0.1%, MAF≤1% and 

all) using SAIGE-GENE+39. Covariates utilized for regression analysis were the same as those 

used in single-variant analysis. The Bonferroni-corrected significance threshold for exome-wide 

gene-based analysis was set at P≈2.36×10-6 (0.05 divided by a total of 21,162 genes from those 

included in the analyses of YP and UKB). 
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Enrichment of functional ultra-rare variants (URVs). URVs were defined as those with minor 

allele count (MAC) ≤ 5 in the corresponding dataset. Evolutionarily constrained genes were 

defined as those intolerant to LoF variants with pLI (the probability of being LoF intolerant) ≥ 0.9. 

Logistic regression with Firth’s bias reduction procedure was applied to compare enrichment of 

URVs and URVs in evolutionarily constrained genes among AUD cases and controls, adjusted 

for age, sex, 10 PCs in UKB and age, sex, 10 PCs and batch information for YP. Baseline 

variants that represented the total number of analyzed coding variants (LoF, missense and 

synonymous) were also incorporated as a covariate. The combined enrichment results for each 

functional class of variants across the subpopulations from UKB and YP cohort were evaluated 

using an inverse-variance weighted meta-analysis implemented in METAL57. 

Meta-analyses. Within-ancestry meta-analyses for EUR and AFR and a cross-ancestry meta-

analysis of single-variant associations and gene-based tests were conducted using METAL57 

with a sample-sized weighted approach. Meta-analyzed gene-based results were performed for 

each gene burden mask group across different allele frequencies. For MAF<0.01% variants 

across each burden mask group, cross-ancestry meta-analysis was performed only in UKB. For 

MAF<0.1%, MAF<1% variants and all variants, within-ancestry meta-analyses in European or 

African ancestry and cross-ancestry analyses were performed across UKB and YP. 
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Tables 

Table 1. Demographic information for Yale-Penn and UK Biobank. Mean age ± standard 
deviation (SD) and proportions of females are shown for all participants from YP and UKB that 
have both phenotype and variant information. YP, Yale-Penn; UKB, UK Biobank; EUR, 
European; AFR, African; SAS, South Asian. NA, not applicable. 

 YP (N=3,892) UKB (N= 426,366) 

Age (mean ± SD) 40±11 57±8 
Female (%) 1,391(36%) 226,975 (53%) 
 
 EUR 

(N=2,102) 
AFR 
(N=1,790) 

EUR1 
(N=367,640) 

EUR2 
(N=47,977) 

AFR 
(N=6,142) 

SAS 
(N=4,607) 

Age (mean ± SD) 37±11 43±9 57±8 56±8 52±8 55±8 
Female (%) 736 (36%) 619 (35%) 195,383 (53%) 26,276 (55%) 3,497 (57%) 1,819 (39%) 
Case 1,420 1,142 11,079 1,782 130 130 
Control 619 608 356,561 46,195 6,012 4,477 
Unknown 63 40 NA NA NA NA 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 8, 2024. ; https://doi.org/10.1101/2024.04.05.24305412doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.05.24305412


Table 2. Meta-analyses for gene-based tests at FDR-adjusted P-value < 0.05. LoF, loss-of-
unction; MAF, minor allele frequency. 

Genes Raw P FDR-adjusted P Category MAF bin Samples 

ADH1B 

1.00×10-31 2.05×10-27 LoF+Missense 0.5 Cross-ancestry 
1.96×10-30 4.01×10-26 LoF+Missense 0.5 Cross-ancestry UKB 
2.66×10-30 5.41×10-26 LoF+Missense 0.5 Within-ancestry EUR 
6.02×10-27 1.25×10-22 LoF+Missense+Synonymous 0.5 Within-ancestry EUR 
1.22×10-26 2.56×10-22 LoF+Missense+Synonymous 0.5 Cross-ancestry 
6.66×10-26 1.39×10-21 LoF+Missense+Synonymous 0.5 Cross-ancestry UKB 

ADH1C 

5.23×10-7 9.57×10-3 LoF 0.5 Cross-ancestry 
8.87×10-7 9.07×10-3 LoF+Missense 0.5 Cross-ancestry 
1.99×10-6 3.63×10-2 LoF 0.5 Within-ancestry EUR 
2.54×10-6 2.58×10-2 LoF+Missense 0.5 Within-ancestry EUR 
3.04×10-6 2.93×10-2 LoF+Missense 0.5 Cross-ancestry UKB 

IFIT5 
3.74×10-6 2.55×10-2 LoF+Missense 0.5 Cross-ancestry 
4.31×10-6 2.93×10-2 LoF+Missense 0.5 Cross-ancestry UKB 

CNST 
 

1.19×10-6 2.49×10-2 LoF+Missense+Synonymous 0.001 Cross-ancestry 
2.09×10-6 4.37×10-2 LoF+Missense+Synonymous 0.001 Cross-ancestry UKB 
2.39×10-6 4.97×10-2 LoF+Missense+Synonymous 0.0001 Cross-ancestry UKB 

 

Figures 
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Figure 1. Workflow of this study. WES data from YP cohort went through the BWA-GATK 
variant calling pipeline and then association analyses were done at both single-variant and 
gene-based levels. Meta-analyses integrating UKB dataset have been performed for association 
results and enrichments of functional URVs across UKB and YP cohorts and ancestries. 
Logistic regression with Firth’s correction has been utilized to test the enrichments of each type 
of functional coding variants. 
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Figure 2. Functional enrichment analysis of URVs in YP and UKB. Case-control enrichment 
of URVs across functional categories of LoF, Dmis, Omis and Synn among all ancestry groups 
from YP and UKB. Enrichments were shown for all coding genes (N=21,162) and the 
evolutionarily constrained genes with pLI>0.9 (N=2,894). Odds ratios were calculated using 
logistic regression corrected with Firth’s method. Two-sided P values from Wald test were 
shown. Enrichment results were shown for combined dataset across YP and UKB (A), and for 
each subpopulation in YP and UKB separately (B). 

 

 

Figure 3. Manhattan and QQ plot for cross-ancestry meta-analyzed single-variant 
analysis across YP and UKB. A total of 8,590,046 variants across EUR1, EUR2, AFR and 
SAS from UKB and EUR, AFR from YP were analyzed. Ncase = 13,121, Ncontrol = 413,245. 
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Figure 4. Meta-analyses of gene-based tests. Manhattan plot for meta-analyses of gene-
based tests across different variant burden groups and MAF cutoffs. Red dashed line 
represented the Bonferroni-corrected significance threshold. Significant markers passing 
Bonferroni correction were highlighted in red. Markers with FDR-corrected P-value<0.1 were 
marked in black. Different shapes of dots indicated different variant groups while colors of dots 
represented MAF cutoffs. 

 

 

 

References 

 
1. Collaborators GBDA. Population-level risks of alcohol consumption by amount, geography, age, 

sex, and year: a systematic analysis for the Global Burden of Disease Study 2020. Lancet. 

2022;400(10347):185-235. 

2. Verhulst B, Neale MC, Kendler KS. The heritability of alcohol use disorders: a meta-analysis of 

twin and adoption studies. Psychol Med. 2015;45(5):1061-1072. 

3. Harada S, Agarwal DP, Goedde HW, Tagaki S, Ishikawa B. Possible protective role against 

alcoholism for aldehyde dehydrogenase isozyme deficiency in Japan. Lancet. 1982;2(8302):827. 

4. Borras E, Coutelle C, Rosell A, et al. Genetic polymorphism of alcohol dehydrogenase in 

europeans: the ADH2*2 allele decreases the risk for alcoholism and is associated with ADH3*1. 

Hepatology. 2000;31(4):984-989. 

5. Li D, Zhao H, Gelernter J. Strong protective effect of the aldehyde dehydrogenase gene (ALDH2) 

504lys (*2) allele against alcoholism and alcohol-induced medical diseases in Asians. Hum Genet. 

2012;131(5):725-737. 

6. Li D, Zhao H, Gelernter J. Strong association of the alcohol dehydrogenase 1B gene (ADH1B) with 

alcohol dependence and alcohol-induced medical diseases. Biol Psychiatry. 2011;70(6):504-512. 

7. Edenberg HJ. The genetics of alcohol metabolism: role of alcohol dehydrogenase and aldehyde 

dehydrogenase variants. Alcohol Res Health. 2007;30(1):5-13. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 8, 2024. ; https://doi.org/10.1101/2024.04.05.24305412doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.05.24305412


8. Gelernter J, Polimanti R. Genetics of substance use disorders in the era of big data. Nat Rev 

Genet. 2021;22(11):712-729. 

9. Frank J, Cichon S, Treutlein J, et al. Genome-wide significant association between alcohol 

dependence and a variant in the ADH gene cluster. Addict Biol. 2012;17(1):171-180. 

10. Park BL, Kim JW, Cheong HS, et al. Extended genetic effects of ADH cluster genes on the risk of 

alcohol dependence: from GWAS to replication. Hum Genet. 2013;132(6):657-668. 

11. Gelernter J, Kranzler HR, Sherva R, et al. Genome-wide association study of alcohol 

dependence:significant findings in African- and European-Americans including novel risk loci. 

Mol Psychiatry. 2014;19(1):41-49. 

12. Walters RK, Polimanti R, Johnson EC, et al. Transancestral GWAS of alcohol dependence reveals 

common genetic underpinnings with psychiatric disorders. Nat Neurosci. 2018;21(12):1656-1669. 

13. Sanchez-Roige S, Palmer AA, Fontanillas P, et al. Genome-Wide Association Study Meta-Analysis 

of the Alcohol Use Disorders Identification Test (AUDIT) in Two Population-Based Cohorts. Am J 

Psychiatry. 2019;176(2):107-118. 

14. Kranzler HR, Zhou H, Kember RL, et al. Genome-wide association study of alcohol consumption 

and use disorder in 274,424 individuals from multiple populations. Nat Commun. 

2019;10(1):1499. 

15. Zhou H, Sealock JM, Sanchez-Roige S, et al. Genome-wide meta-analysis of problematic alcohol 

use in 435,563 individuals yields insights into biology and relationships with other traits. Nat 

Neurosci. 2020;23(7):809-818. 

16. Koob GF, Volkow ND. Neurocircuitry of addiction. Neuropsychopharmacology. 2010;35(1):217-

238. 

17. Zhou H, Kember RL, Deak JD, et al. Multi-ancestry study of the genetics of problematic alcohol 

use in over 1 million individuals. Nat Med. 2023;29(12):3184-3192. 

18. Palmer DS, Howrigan DP, Chapman SB, et al. Exome sequencing in bipolar disorder identifies 

AKAP11 as a risk gene shared with schizophrenia. Nature genetics. 2022;54(5):541-547. 

19. Jurgens SJ, Choi SH, Morrill VN, et al. Analysis of rare genetic variation underlying 

cardiometabolic diseases and traits among 200,000 individuals in the UK Biobank. Nature 

genetics. 2022;54(3):240-250. 

20. Wang Q, Dhindsa RS, Carss K, et al. Rare variant contribution to human disease in 281,104 UK 

Biobank exomes. Nature. 2021;597(7877):527-532. 

21. Backman JD, Li AH, Marcketta A, et al. Exome sequencing and analysis of 454,787 UK Biobank 

participants. Nature. 2021;599(7886):628-634. 

22. Singh T, Poterba T, Curtis D, et al. Rare coding variants in ten genes confer substantial risk for 

schizophrenia. Nature. 2022;604(7906):509-516. 

23. Wainschtein P, Jain D, Zheng Z, et al. Assessing the contribution of rare variants to complex trait 

heritability from whole-genome sequence data. Nat Genet. 2022;54(3):263-273. 

24. Jin SC, Homsy J, Zaidi S, et al. Contribution of rare inherited and de novo variants in 2,871 

congenital heart disease probands. Nature genetics. 2017;49(11):1593-1601. 

25. Jang SK, Evans L, Fialkowski A, et al. Rare genetic variants explain missing heritability in smoking. 

Nat Hum Behav. 2022;6(11):1577-1586. 

26. Gentry AE, Alexander JC, Ahangari M, et al. Case-only exome variation analysis of severe alcohol 

dependence using a multivariate hierarchical gene clustering approach. PLoS One. 

2023;18(4):e0283985. 

27. Hill SY, Hostyk J. A whole exome sequencing study to identify rare variants in multiplex families 

with alcohol use disorder. Front Psychiatry. 2023;14:1216493. 

28. Bycroft C, Freeman C, Petkova D, et al. The UK Biobank resource with deep phenotyping and 

genomic data. Nature. 2018;562(7726):203-209. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 8, 2024. ; https://doi.org/10.1101/2024.04.05.24305412doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.05.24305412


29. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders 4th Ed. 

American Psychiatric Press: Washington, DC, USA. 1994. 

30. Pierucci-Lagha A, Gelernter J, Feinn R, et al. Diagnostic reliability of the Semi-structured 

Assessment for Drug Dependence and Alcoholism (SSADDA). Drug Alcohol Depend. 

2005;80(3):303-312. 

31. Van der Auwera GA, Carneiro MO, Hartl C, et al. From FastQ data to high confidence variant calls: 

the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinformatics. 

2013;43(1110):11 10 11-11 10 33. 

32. Lek M, Karczewski KJ, Minikel EV, et al. Analysis of protein-coding genetic variation in 60,706 

humans. Nature. 2016;536(7616):285-291. 

33. Chen S, Francioli LC, Goodrich JK, et al. A genomic mutational constraint map using variation in 

76,156 human genomes. Nature. 2024;625(7993):92-100. 

34. Genomes Project C, Auton A, Brooks LD, et al. A global reference for human genetic variation. 

Nature. 2015;526(7571):68-74. 

35. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-

throughput sequencing data. Nucleic acids research. 2010;38(16):e164. 

36. Ioannidis NM, Rothstein JH, Pejaver V, et al. REVEL: An Ensemble Method for Predicting the 

Pathogenicity of Rare Missense Variants. Am J Hum Genet. 2016;99(4):877-885. 

37. Ghosh R, Oak N, Plon SE. Evaluation of in silico algorithms for use with ACMG/AMP clinical 

variant interpretation guidelines. Genome Biol. 2017;18(1):225. 

38. Ma C, Blackwell T, Boehnke M, Scott LJ, Go TDi. Recommended joint and meta-analysis 

strategies for case-control association testing of single low-count variants. Genet Epidemiol. 

2013;37(6):539-550. 

39. Zhou W, Bi W, Zhao Z, et al. SAIGE-GENE+ improves the efficiency and accuracy of set-based rare 

variant association tests. Nature genetics. 2022;54(10):1466-1469. 

40. Karczewski KJ, Solomonson M, Chao KR, et al. Systematic single-variant and gene-based 

association testing of thousands of phenotypes in 394,841 UK Biobank exomes. Cell Genom. 

2022;2(9):100168. 

41. Ng SB, Buckingham KJ, Lee C, et al. Exome sequencing identifies the cause of a mendelian 

disorder. Nat Genet. 2010;42(1):30-35. 

42. Dutta N, Helton SG, Schwandt M, Zhu X, Momenan R, Lohoff FW. Genetic Variation in the 

Vesicular Monoamine Transporter 1 (VMAT1/SLC18A1) Gene and Alcohol Withdrawal Severity. 

Alcohol Clin Exp Res. 2016;40(3):474-481. 

43. Stankiewicz TR, Linseman DA. Rho family GTPases: key players in neuronal development, 

neuronal survival, and neurodegeneration. Front Cell Neurosci. 2014;8:314. 

44. Genetic Modifiers of Huntington's Disease Consortium. Electronic address ghmhe, Genetic 

Modifiers of Huntington's Disease C. CAG Repeat Not Polyglutamine Length Determines Timing 

of Huntington's Disease Onset. Cell. 2019;178(4):887-900 e814. 

45. Zheng C, Zheng Z, Zhang Z, et al. IFIT5 positively regulates NF-kappaB signaling through 

synergizing the recruitment of IkappaB kinase (IKK) to TGF-beta-activated kinase 1 (TAK1). Cell 

Signal. 2015;27(12):2343-2354. 

46. Lo UG, Pong RC, Yang D, et al. IFNgamma-Induced IFIT5 Promotes Epithelial-to-Mesenchymal 

Transition in Prostate Cancer via miRNA Processing. Cancer Res. 2019;79(6):1098-1112. 

47. Dai Q, Pu SS, Yang X, et al. Whole Transcriptome Sequencing of Peripheral Blood Shows That 

Immunity/GnRH/PI3K-Akt Pathways Are Associated With Opioid Use Disorder. Front Psychiatry. 

2022;13:893303. 

48. Ray PR, Shiers S, Caruso JP, et al. RNA profiling of human dorsal root ganglia reveals sex 

differences in mechanisms promoting neuropathic pain. Brain. 2023;146(2):749-766. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 8, 2024. ; https://doi.org/10.1101/2024.04.05.24305412doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.05.24305412


49. Zapata RC, Nasamran CA, Chilin-Fuentes DR, Dulawa SC, Osborn O. Identification of adipose 

tissue transcriptomic memory of anorexia nervosa. Mol Med. 2023;29(1):109. 

50. Solmi M, Wade TD, Byrne S, et al. Comparative efficacy and acceptability of psychological 

interventions for the treatment of adult outpatients with anorexia nervosa: a systematic review 

and network meta-analysis. Lancet Psychiatry. 2021;8(3):215-224. 

51. Zhang Z, Yang H, Wang H. The histone H2A deubiquitinase USP16 interacts with HERC2 and fine-

tunes cellular response to DNA damage. J Biol Chem. 2014;289(47):32883-32894. 

52. Tian C, Duan L, Fu C, He J, Dai J, Zhu G. Study on the Correlation Between Iris Characteristics and 

Schizophrenia. Neuropsychiatr Dis Treat. 2022;18:811-820. 

53. Yang L, Zhan GD, Ding JJ, et al. Psychiatric illness and intellectual disability in the Prader-Willi 

syndrome with different molecular defects--a meta analysis. PLoS One. 2013;8(8):e72640. 

54. Sinnema M, Boer H, Collin P, et al. Psychiatric illness in a cohort of adults with Prader-Willi 

syndrome. Res Dev Disabil. 2011;32(5):1729-1735. 

55. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. 

Bioinformatics. 2009;25(14):1754-1760. 

56. Dao C, Zhou H, Small A, et al. The impact of removing former drinkers from genome-wide 

association studies of AUDIT-C. Addiction. 2021;116(11):3044-3054. 

57. Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide association 

scans. Bioinformatics. 2010;26(17):2190-2191. 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 8, 2024. ; https://doi.org/10.1101/2024.04.05.24305412doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.05.24305412

