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Abstract 
 

Background 
Involuntary admissions to psychiatric hospitals are on the rise. If patients at elevated risk of 
involuntary admission could be identified, prevention may be possible. 
 
Objectives 
To develop and validate a prediction model for involuntary admission of patients receiving care 
within a psychiatric service system using machine learning trained on routine clinical data from 
electronic health records (EHRs). 
  
Methods 
EHR data from all adult patients who had been in contact with the Psychiatric Services of the 
Central Denmark Region between 2013 and 2021 were retrieved. We derived 694 patient predictors 
(covering e.g., diagnoses, medication, and coercive measures) and 1,134 predictors from free text 
using term frequency - inverse document frequency and sentence transformers. At every voluntary 
inpatient discharge (prediction time), without an involuntary admission in the two years prior, we 
predicted involuntary admission 180 days ahead. XGBoost and Elastic Net regularized logistic 
regression models were trained on 85% of the dataset. The best performing model was tested on the 
remaining 15% of the data. 
  
Results 
The model was trained on 50,634 voluntary inpatient discharges among 17,968 unique patients. The 
cohort comprised 1,672 voluntary inpatient discharges followed by an involuntary admission. The 
XGBoost model performed best in the training phase and obtained an area under the receiver 
operating curve of 0.84 in the test phase. 
  
Conclusion 
A machine learning model using routine clinical EHR data can accurately predict involuntary 
admission. If implemented as a clinical decision support tool, this model may guide interventions 
aimed at reducing the risk of involuntary admission. 
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Introduction  

The incidence of involuntary admissions is on the rise worldwide.1 Involuntary admissions are used 

when patients are in urgent need of psychiatric inpatient treatment, but are too ill (typically 

psychotic) to consent.2 Involuntary admission can be traumatic for patients and are costly for 

society.3 Therefore, various interventions to reduce the need for involuntary admissions have been 

investigated.4 To ensure cost-effectiveness, these interventions should preferably target patients at 

high risk of involuntary admission. However, such individual risk assessments are complex. 

 

Several risk factors for involuntary admission have been identified in large patient populations.5 

However, assessing risk at the level of the individual patient is challenging due to potential 

interactions between risk factors, waxing and waning of risk factors, and irregular/noisy clinical 

data on risk factors.6 Recently, however, machine learning methods have been demonstrated to 

handle this level of complexity well. Unlike standard statistical analyses, machine learning 

inherently accommodate complex interactions and idiosyncrasies, and also handles large amounts of 

predictors and temporal dependencies within the data.7,8 

  

We are aware of two prior machine learning studies having examined involuntary admission via 

routine clinical data.9,10 Both, however, fail to construct a relevant prediction task as they do not 

issue predictions, which is a prerequisite for clinical relevance, but merely utilize machine learning 

methods for identification of risk factors for involuntary admission. Additionally, both studies only 

consider patients with complete data in their primary analysis, which could potentially decrease the 

generalisability as data from real-world practice, are typically not missing at random.6 We have 

previously shown that a machine learning model trained on routine clinical data from electronic 

health records (EHRs) can accurately predict mechanical restraint11 and are currently in the process 

of implementing a decision support (risk reduction) tool based on this model in clinical practice. To 

our knowledge, no studies have used machine learning to predict involuntary admissions at the level 

of the individual patient using EHR data. Therefore, the aim of this study was to fill this gap in the 

literature. 
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Methods 
An illustration of the methods used in this study is shown in Figure 1.  

 

Figure 1 approximately here 

 

Reporting guidelines 

The reporting adhered to all items considered “essential for inclusion” by at least 50% of the 

respondents in the first Delphi round for the Transparent Reporting of multivariable prediction 

models for Individual Prognosis Or Diagnosis with Artificial Intelligence (TRIPOD-AI). 12 

 

Data source 

The study is based on data from the PSYchiatric Clinical Outcome Prediction (PSYCOP) cohort, 

encompassing routine clinical EHR data from all individuals with at least one contact to the 

Psychiatric Services of the Central Denmark Region in the period from January 1, 2011 to 

November 22, 2021.13 The dataset includes records from all service contacts to the public hospitals 

in the Central Denmark Region (both psychiatric and general hospitals). A service contact can be 

either an inpatient admission, outpatient visit, home visit or consultation by phone, and each is 

labelled with a timestamp and diagnosis. Due to the universal healthcare system in Denmark, the 

large majority of hospital contacts are to public hospitals (there are no private psychiatric hospitals 

in Denmark) and, thus, covered by these data. Importantly, the dataset also includes blood samples 

from general practitioners as they are analyzed at public hospitals and, as a result, are included in 

this dataset. 14  

 

Data extraction  

All EHR data from patients with at least one contact with the Psychiatric Services of the Central 

Denmark Region in the period from 2013 to 2021 were extracted (Figure 1A). To ensure the 

feasibility of subsequent implementation of a predictive machine learning model potentially 

developed in this study, only data collected routinely as part of standard clinical practice and 

recorded in the EHR system were used (i.e., there was no data collection for the purpose of this 

study).13 
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Cohort definition 

Figure 1B, illustrates the cohort definition. The cohort consisted of all adult patients with at least 

one contact to the Psychiatric Services of the Central Denmark Region in the time period from 

2011-2021. Data prior to 2013 were dropped due to data instability, primarily due to the gradual 

implementation of a new EHR-system in 2011.15,16 However, data on involuntary admissions from 

2012 were used to establish incidence of involuntary admissions since these data were registered via 

an alternative digital system and, therefore, unaffected by the implementation of the new EHR-

system.17  

 

Dataset splitting 

The data was randomly split into a training (85%) and a test (15%) set by sampling unique patients, 

stratified by whether they had an involuntary admission within the follow-up (see Figure 1C). This 

ensured a balanced proportion of patients with involuntary admission in the training- and test set 

and prevented data leakage as no patient could occur in both datasets. The test set was not examined 

until the final stage of model evaluation, where no additional changes were made to the model. 

 

Prediction times and exclusion criteria 

Prediction times were defined as the last day of a voluntary psychiatric admission. A prediction at 

this time point would enable outpatient clinics to initiate targeted intervention/monitoring to reduce 

the risk of involuntary admission. Additionally, an exclusion criterion stipulating that patients 

should not have had an involuntary admission in the 2 years prior the prediction time was 

implemented. This prevented predictions in cases where clinicians were already aware of the 

patient's risk of involuntary admission, thus proactively reducing the risk of alert fatigue. 

Additionally, if a prediction time did not have a long enough lookbehind- (for predictors) or 

lookahead window (for outcomes), that prediction time was dropped. (Figure 1D). For definition of 

lookbehind- and lookahead windows, see the following two paragraphs. 

 

Outcome definition and lookahead window 

The outcome was defined as the start of an involuntary admission. The lookahead window (the 

period following the prediction time in which the outcome could occur) was 180 days. Hence, all 

prediction times for which an involuntary admission occurred within 180 days were deemed to be 

positive outcomes (Figure 1D).  
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Predictor engineering and lookbehind window 

A full list of the predictors (a total of 1828) and their definitions is available in Supplementary 

Table 1. The predictors were chosen based on the literature on risk factors for involuntary 

admissions5 supplemented with clinical domain knowledge. All predictors were engineered with 

four different fixed lookbehind windows: the 10, 30, 180 and 365 days leading up to a prediction 

time, respectively. Additionally, different predictor aggregation methods (mean, max, bool, etc.) 

were employed using the timeseriesflattener v2.0.1 package (Figure 1F). 18 If a predictor was not 

present in the lookbehind period from a prediction time, it was labelled as “missing”. However, 

these instances do not indicate missing values in the conventional sense, as they stem from a 

genuine lack of data, rather than, e.g., a missed visit in a clinical trial. This absence reflects real-

world clinical practice, and, therefore, patients with such missing data should not be excluded, as it 

aligns with the available data for potential implementation. 

 

The predictors can be grouped into nine strata: age and sex, hospital contacts, psychiatric diagnoses, 

medications, lab results, coercive measures, psychometric rating scales, suicide risk assessment, and 

free text predictors from EHR clinical notes (extracted via natural language processing). 

Specifically, hospital contacts included both inpatient and outpatient contacts with linked diagnoses. 

Diagnoses included all psychiatric subchapters (F0-F9) from the International Classification of 

Disease (ICD-10) 18 with specific predictors for schizophrenia (F20), bipolar disorder (F30-F31) 

and cluster b-personality disorders (F60.2-F60.4 (dissocial-, borderline- and histrionic personality 

disorder). Medication predictors were based on structured Anatomical Therapeutic Chemical (ATC) 

classification system codes 19and grouped as follows (figure 1E): antipsychotics, first generation 

antipsychotics, second generation antipsychotics, depot antipsychotics, antidepressants, anxiolytics, 

hypnotics/sedatives, stimulants, analgesics, and drugs for alcohol abstinence/opioid dependence. 

Finally, lithium, clozapine, and olanzapine were included as individual predictors. Predictors based 

on laboratory tests included plasma levels of antipsychotics, antidepressants, paracetamol, and 

ethanol. Coercive measures included involuntary medication, manual restraint, chemical restraint, 

and mechanical (belt) restraint. Scores from psychometric rating scales included the Brøset violence 

checklist,20 , the 17-item Hamilton depression rating scale (HAM-D17)21 and a simplified version of 

the Bech Rafaelsen mania rating scale (MAS-M).22 Data on suicide risk assessment was based on a 
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scoring system used in the Central Denmark Region with the following risk levels: 1 (no increased 

risk), 2 (increased risk), and 3 (acutely increased risk). 

 

Predictors from free text stemmed from the subset of EHR clinical note types deemed to be most 

informative and stable over time, e.g., “Subjective Mental State” and “Current Objective Mental 

State” (for the full list of clinical note types, see Supplementary Table 2) .15 Two different 

algorithms were applied to create predictors from the free text: term frequency–inverse document 

frequency (TF-IDF)23 and sentence transformers24. For the TF-IDF model, the unstructured free text 

was first preprocessed by lower-casing all words and removing stop words and symbols. 

Subsequently, the model generated all uni- and bi-grams. Secondly, top 10% by document 

frequency were removed (due to assumed low predictive value). Lastly, the top 750 uni- or bigrams 

were included in the model.  For each patient, all clinical notes within the 180 days lookbehind 

prior to a prediction time were concatenated into a single document from which the TF-IDF 

predictors were constructed. A pre-trained multilingual sentence transformer model24 was applied to 

extract sentence embeddings (Model: “paraphrase-multilingual-MiniLM-L12-v2”). This model is 

bound by a maximum input sequence length of 512 tokens. For each patient, the first 512 tokens 

from each clinical note within the 180 days lookbehind prior to a prediction time were extracted and 

input to the model, yielding a contextualized embedding of the text with 384 dimensions. 

Subsequently, the embeddings from each note within the lookbehind window were averaged to 

obtain a single aggregated embedding, which was included as a predictor in the model.  

 

Hyperparameter tuning and model training 

Two types of machine learning models were trained: XGBoost and elastic net regularized logistic 

regression (using scikit learn version 1.2.1).23 XGBoost was chosen because gradient boosting 

techniques typically excel in predictive accuracy for structured data, offer rapid training, and 

intrinsically handle missing values.25,26 Elastic net regularized logistic regression served as a 

benchmark model.27,28 5-fold stratified cross-validation was adopted for training with no patient 

occurring in more than one fold. Fine-tuning of hyperparameters (see Supplementary Table 3 for 

details) was performed to optimize the area under the receiver operating characteristic curve 

(AUROC) through the tree-structured parzen estimator method in Optuna v2.10.1.33 (see Figure 

1G).29 All analyses were performed using Python (version 3.10.9). 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 12, 2024. ; https://doi.org/10.1101/2024.04.11.24305658doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.11.24305658
http://creativecommons.org/licenses/by-nd/4.0/


   
 

   
 

 

Model evaluation on test data 

The model which achieved the highest AUROC following cross-validation on the training set was 

evaluated on the test set (see Figure 1H). Apart from AUROC, we also calculated the sensitivity, 

specificity, positive (PPV), and negative predictive values (NPV) at predicted positive rates (PPR) 

of 1%, 2%, 3%, 4%, 5%, 10%, 20% and 50%, respectively. The predicted positive rate is the 

proportion of all prediction times that are marked as positive. To test the robustness of the best 

performing model, its performance was examined across sex-, age-, months since first visit-, month 

of year, and day of week strata. Furthermore, a time-to-outcome robustness analysis was conducted 

to assess how the model behaved at different time-to-outcome thresholds. 

 

Estimation of predictor importance 

Predictor importance was estimated via information gain.29 In the case of XGBoost, the information 

gain of a predictor is calculated as the change in predicted probability at a given node split, 

averaged across all trees in the model.  

 

Secondary analyses of alternative model designs 

As secondary analyses, we performed model training using alternative model designs. First, we 

removed the implemented exclusion criterion of having an involuntary admission in the two years 

preceding a prediction time. Second, we assessed the importance of the number of predictors, by 

using only subsets of the full predictor set in the model training. Specifically, three distinct 

predictor sets were considered (all including sex and age): Only diagnoses, only patient descriptors 

(all predictors except text predictors), and only text predictors. Third, models with lookahead 

windows of 90 and 365 days, respectively, were trained.  

 

Ethics 

The study was approved by the Legal Office of the Central Denmark Region in accordance with the 

Danish Health Care Act §46, Section 2. The Danish Committee Act exempts studies based only on 

EHR data from ethical review board assessment (waiver for this project: 1-10-72-1-22). Handling 

and storage of data complied with the European Union General Data Protection Regulation. The 

project is registered on the list of research projects having the Central Denmark Region as data 

steward.  
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Results 
The full dataset consisted of 52,600 voluntary admissions distributed among 19,252 unique patients. 

A total of 1,672 of the voluntary admissions were followed by an involuntary admission within 180 

days after discharge (positive outcome), distributed across 806 unique patients (an involuntary 

admission can be included in multiple positive outcomes as a patient can have multiple voluntary 

admissions (prediction times) in the 180 days prior to an involuntary admission (positive outcome)).  

 

Table 1 lists clinical and demographic patient data for the prediction times included in the training 

and evaluation of the main model. The main model included predictors with a lookbehind window 

of up to 365 days. After filtering away all prediction times where the lookbehind or lookahead 

windows extended beyond the available data for a patient, a total of 50364 prediction times 

remained. These prediction times were distributed across 17,968 unique patients  (49.4% females 

(training set = 49.3% and test set = 50.0%), median age = 40.2 years (training set = 40.5 and test set 

= 39.2)). 

 

Table 1 approximately here 

 

Hyperparameters and model training 

The cross validation on the training set for model tuning showed that XGBoost (AUROC for the 

primary model = 0.79) outperformed logistic regression (AUROC for the primary model = 0.78) 

across all model variations (see Table 2). The hyperparameters used for the best models on the 

different predictor sets are listed in Supplementary Table 4. 

 

 

Model evaluation on test data  

The best performing XGBoost model identified in the training phase yielded an AUROC of 0.84 on 

the test set (see Figure 2A). 

 

Figure 2 and Table 2 approximately here 

 

Table 3 lists the performance metrics from this model on the test set based on different predicted 

positive rates. At a PPR of 5%, the model has a sensitivity of 39% and a positive predictive value of 
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36%. Thus, approximately two out of five of all true positive outcomes are correctly predicted, and 

for every three positive predictions, more than one prediction time is truly followed by an 

involuntary admission within 180 days. At this PPR, 36% of the unique involuntary admissions that 

underlie the positive outcomes are correctly detected (predicted positive) at least once.  

 

Table 3 approximately here 

 

 

Figure 2C shows the sensitivity of the model for prediction times with varying time to the outcome 

at different PPRs.  The sensitivity curves appear to remain stable as the time to outcome increases. 

The median time from the first positive prediction to the involuntary admission was 69.5 days. 

 

 

Figure 3 shows the performance of the model across different patient characteristics and calendar 

time subgroups. The model appears robust across all characteristics and the minor fluctuations, such 

as the variation in performance between the sexes, can likely be attributed similar minor differences 

in sample distributions.   

Figure 3 approximately here 

 

Supplementary Table 5 lists the 30 predictors with the highest information gain. Out of the 30 top 

predictors, 14 were text predictors – both represented by TF-IDF and sentence transformers.  The 

TF-IDF predictors were based on the following terms from free text: “ECT”, “police”, ”social 

psychiatric institution”, “self-harm”, “woman”. The 16 remaining predictors were distributed on the 

following patient descriptors: detention, coercion due to danger to self or others, lab test of plasma-

paracetamol, Brøset violence checklist score, diagnosis of child and adolescent disorder/unspecified 

mental disorder (ICD F9-chapter), visit to a physical department, suicide risk assessment score, 

diagnosis of personality disorder (ICD F6-chapter). 

  

Secondary analyses on alternative model designs 

The model which was trained without the exclusion criterion of having an involuntary admission in 

the 2 years preceding the prediction time yielded an AUROC of 0.90 on the cross-validated training 

set. Performance of the cross-validated models using different subsets of the full predictor set 
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(Table 2A) and different lookaheads (Table 2B) are shown in Table 2. Among those trained on 

different subsets of predictors, the best performing model was the one trained on only patient 

descriptors (no text). In the models trained on different outcome lookaheads, the model with a 90 

day lookahead performed better than the ones with 180 and 365 day lookaheads.  

 

 

Discussion 

This study investigated if involuntary admission can be predicted using machine learning models 

trained on EHR data. When issuing a prediction at the discharge from a voluntary inpatient 

admission, based on both structured and text predictors, the best model (XGBoost) performed with 

an AUROC of 0.84. The model was generally stable across different patient characteristics, 

calendar times, and with varying times from prediction to outcome. 

 

To our knowledge, this is the first study to develop and validate a prediction model for involuntary 

admission using routine clinical data from EHRs. We can, therefore, not offer a direct comparison 

of our results to those from other studies. However, a crude comparison to other prediction studies 

in psychiatry shows that our results are within the performance ranges that have previously been 

published.30 Many of these studies have, however, not been developed on routine clinical data, but 

rather on data collected for the purpose of the studies, which complicates clinical implementation. 

 

On the independent test set, the prediction model performed with an AUROC above the upper 

boundary of the confidence interval estimated from the 5-fold cross-validation in the training phase. 

While this suggests that the model did not overfit on the training set, the variation in model 

performance might be attributable to the limited number of positive cases in the test set. Tests on 

larger datasets will provide further knowledge on the robustness of the model. The prediction model 

demonstrated relatively stable sensitivity when increasing time from prediction to outcome (up to 

several months), highlighting that model performance is not merely driven by prediction of cases 

where an involuntary admission occurs shortly after discharge from a voluntary admission. Indeed, 

the median time from the first positive prediction to the involuntary admission of 69.5 days is 

sufficient to issue a potentially preventive intervention through, e.g., advance statements/crisis 

plans.4 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 12, 2024. ; https://doi.org/10.1101/2024.04.11.24305658doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.11.24305658
http://creativecommons.org/licenses/by-nd/4.0/


   
 

   
 

 

A series of secondary analyses were conducted to explore the impact of various model design 

decisions. First, the exclusion criterion stipulating that patients could not have had an involuntary 

admission in the two years prior to a prediction time was added to minimize the potential alert 

fatigue in clinicians. Specifically, this measure aimed to omit scenarios where clinicians are likely 

already aware of an increased risk of involuntary admission, given that prior involuntary admission 

is a major risk factor for subsequent involuntary admission.5 Indeed, this was confirmed by our 

results as the model trained without this exclusion criterion performed with an AUROC of 0.90 (on 

the cross-validated training set). This highlights the challenging balance between minimizing 

potential alert fatigue among clinicians and optimizing model performance for prediction models in 

healthcare. Second, the performance of a model trained on a limited feature set including only age, 

sex and diagnoses was tested, resulting in an AUROC of 0.64 (on the cross-validated training set). 

This demonstrates that using the full predictor set resulted in substantially better predictive 

performance, underlining the complexity of risk prediction at the level of the individual patient. 

Third, a lookahead window of 180 days was chosen for the main model as this leaves a reasonable 

window of opportunity for prevention of an involuntary admission. Models trained with lookahead 

windows of 90 and 365 days achieved an AUROC of 0.80 and 0.79, respectively, using 5-fold cross 

validation on the training set. This further validates the performance-wise stability of the method 

across different time-to-outcome intervals and justifies determining the optimal lookahead window 

based on clinical judgement.  

 

With regard to the predictors driving the discriminative abilities of the model, text features 

comprised 14 out of the top 30 predictors in ranked information gain, showcasing the importance of 

including text. This might be especially true for the field of psychiatry where the condition of a 

patient is mainly described in natural language in the EHR rather than in structured variables. , The 

inclusion of predictors based on TF-IDF and sentence transformer features/embeddings of the text 

also over all indicated an increased performance of the model. This is in line with prior results of 

both our own11 and others.31,32 Among predictors extracted from the free text using TF-IDF, “ECT”, 

“police” and “self-harm” were among the predictors with the highest predictive value,  which 

makes intuitive sense from a clinical perspective (proxies for severity). Regarding patient 

descriptors, prior detention, coercion due to danger to self or others, Brøset violence checklist score, 

and suicide risk assessment scores were among the top predictors, which again could be proxies for 
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the severity of the mental illness. Furthermore, a lab test of plasma-paracetamol – another top 

predictor - likely indicates that a patient has taken a toxic dose of paracetamol in relation to self-

harm or a suicide attempt – also a manifestation of severe mental illness. Lastly, a diagnosis of 

personality disorder (ICD F6-chapter), which includes borderline personality disorder and is a 

known risk factor for involuntary admission, was also found to be one of the most informative 

features.33  

 

The information gain estimates should, however, be interpreted with caution as XGboost includes a 

random factor in the model training process. Additionally, due to the structure of a decision tree 

model, top predictors containing mutual information can be omitted. Consequently, this may lead to 

only one of the mutual information predictors being included in the information gain table.34 The 

most important insight from the information gain estimates may be that the model is not informed 

by a few dominant predictors, but instead relies on a plethora of predictors. In line with this, the 

model with a limited feature set performed with an AUROC of 0.64 on the training set. This 

demonstrates the complexity of the outcome and aligns with our assumption that machine learning 

models are well suited for this prediction task.  

 
 
There are limitations to this study, which should be taken into account. First, there is a limited 

number of outcomes (involuntary admissions) in the dataset, and the main model considered a total 

of 1828 predictors. If not handled properly, this could result in “curse of dimensionality”35 and lead 

to potential overfitting. To mitigate this, we employed several strategies: structured predictors were 

constructed based on findings from prior research and clinical domain knowledge, we used cross-

validation during training, and, during hyperparameter tuning, feature selection was adopted. 

Finally, we used a hold-out test-set to ensure that potential overfitting during the training phase is 

accounted for in the evaluation. Second, the test set was not independent with regard to time or 

geographic location, which could have an impact on the generalizability of the model. Machine 

learning models inherently vary in their generalizability and reusing our model 1:1 in another 

hospital setting would probably result in reduced performance. However, the overall approach is 

likely to be generalizable and, thus, retraining the model on another EHR-dataset, while keeping the 

same architecture, could enable transferability.36 Third, despite several text predictors 

demonstrating high predictive value, the methods for obtaining the predictors from the free-text 

notes were relatively simple. In future studies, we believe it may be possible to unlock vastly more 
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predictive value from the text by applying more advanced language models. Specifically, a future 

direction could involve a transformer-based model fine-tuned specifically to psychiatric clinical 

notes and the given prediction task.37 Fourth, the approach in this project is characterized by fitting 

a classical binary prediction framework to a task that is inherently sequential in nature. As 

sequential transformer-based models are gradually adapted from language modelling to the general 

health care domain, it is likely that such architectures may be better suited to this task and will 

enhance performance. The adaptation of transformer-based models to the healthcare domain is, 

however, still in an explorative phase, and, hence, we deem that involving such methods in this 

study - which was aimed at developing a model for potential clinical implementation - would be 

premature. 

 
Conclusion 
A machine learning model using routine clinical data from EHRs can accurately predict involuntary 

admission. If implemented as a clinical decision support tool, this model may guide interventions 

aimed at reducing the risk of involuntary admission. 
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Figure 1. Extraction of data and outcome, dataset splitting, prediction time filtering, specification of predictors 
and flattening, model training, testing and evaluation  
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Figure 1 subtext: Figure was modified to this project based on Bernstorff et al1. IA: Involuntary admissions. F1 & F2: ICD-10 diagnoses within the 
group of diagnoses included in F1 chapter and F2 chapter. CV: Cross-validation.  TP: True positive. FP: False positive. TN: True negative. FN: False 
negative.  
 
Figure 2. Model performance of the XGBoost model in the test set. 
 

 
 
A) Receiver operating characteristics curve. AUROC= Area under the receiver operating characteristics curve. B) Confusion matrix . PPR: Positive 
predictive rate. NPV: Negative predictive value. IA: Involuntary admission. The decision threshold is defined based on a predicted positive rate of 
5%. C) Sensitivity (at same specificity) by months from prediction time to event, stratified by desired predicted positive rate.  
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Figure 3. Model robustness plots stratified on demographics and time frames 

 
Robustness of the model across different stratifications. The blue lines indicate the area under the receiver operating characteristics curve. Grey bars 
represent the proportion of prediction times in each bin. Error bars are 95%-confidence intervals from 100-fold bootstrap. Due to the low number in 
some of the bins, some bootstrapped folds contained only one class, resulting in missing error bars. 
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Table 1. Descriptive statistics for prediction times  

A Overall Train Test 

n 50364 43188 7176 

Age, median [Q1,Q3] 40.2 [28.3,53.5] 40.5 [28.3,53.7] 39.2 [28.0,52.2] 

Age 18-20 years, n (%) 998 (2.0) 861 (2.0) 137 (1.9) 

Age 20-29 years, n (%) 12462 (24.7) 10630 (24.6) 1832 (25.5) 

Age 30-39 years, n (%) 10560 (21.0) 8965 (20.8) 1595 (22.2) 

Age 40-49 years, n (%) 9657 (19.2) 8209 (19.0) 1448 (20.2) 

Age 50-59 years, n (%) 8281 (16.4) 7157 (16.6) 1124 (15.7) 

Age 60-69 years, n (%) 4715 (9.4) 4091 (9.5) 624 (8.7) 

Age 70-79 years, n (%) 2568 (5.1) 2294 (5.3) 274 (3.8) 

Age 80-89 years, n (%) 941 (1.9) 808 (1.9) 133 (1.9) 

Age +90 years, n (%) 182 (0.4) 173 (0.4) 9 (0.1) 

Female, n (%) 25219 (50.1) 21495 (49.8) 3724 (51.9) 

F0* Organic mental 
disorder,, n (%) 

2506 (5.0) 2186 (5.1) 320 (4.5) 

F1 Substance use 
disorders, n (%) 

13018 (25.8) 11164 (25.8) 1854 (25.8) 

F2 Psychotic disorders, 
n (%) 

17090 (33.9) 14640 (33.9) 2450 (34.1) 

F3 Affective disorders, 
n (%) 

18231 (36.2) 15556 (36.0) 2675 (37.3) 

F4 Neurotic disorders, 
n (%) 

14397 (28.6) 12371 (28.6) 2026 (28.2) 

F5 Eating, sleeping and 
sexual disorders, n (%) 

1653 (3.3) 1380 (3.2) 273 (3.8) 

F6 Personality 
disorders, n (%) 

6395 (12.7) 5644 (13.1) 751 (10.5) 

F7 Mental retardation 
disorders, n (%) 

1631 (3.2) 1402 (3.2) 229 (3.2) 

F8 Disorders of 
psychological 
development, n (%) 

2070 (4.1) 1703 (3.9) 367 (5.1) 

F9 Child and adolescent 
disorders, n (%) 

5653 (11.2) 4719 (10.9) 934 (13.0) 

 
*(F*) indicates the ICD-10 chapter. 
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Table 2. Model performance after cross-validation hyperparameter tuning for Xgboost and Logistic regression 
models trained on different subsets of the predictors (2A) and different lookaheads (2B) 
 
 

2A    

PREDICTOR SET Number of predictors AUROC 95% CI 

XGboost    

Full predictor set 1828 0.79 [0.756:0.828] 

Patient descriptors only 694 0.78 [0.755:0.813] 

TF-IDF features only 752 0.76 [0.733:0.787] 

Sentence transformer embeddings 
only 

386 0.74 [0.708:0.763] 

Diagnoses only 12 0.64 [0.618:0.666] 

Logistic Regression    

Full predictor set 1828 0.78 
 

[0.749:0.813] 
 

Patient descriptors only 694 0.76 
 

[0.731:0.786] 

TF-IDF features only 752 0.74 
 

[0.717:0.772] 

Sentence transformer embeddings 
only 

386 0.73 
 

[0.697:0.761] 
 

Diagnoses only 12 0.60 [0.574:0.629] 
 

 
 
2B 

   

XGboost    

365 days lookahead 1828 0.79 [0.767:0.809] 

90 days lookahead 1828 0.80 [0.777:0.826] 

Logistic regression    

365 days lookahead 1828 0.78 [0.753:0.799] 

90 days lookahead 1828 0.78 [0.738:0.829] 

 
 
All models included demographics (Age/Sex). The models with different lookahead window were trained on the full predictor set. Details on 
predictor description can be found in supplemental table 1 
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Table 3. Performance metrics on test set for model trained on full predictor set at varying positive rates 
 

Predicted positive rate AUROC True prevalence PPV NPV Sens Spec FPR FNR Acc TP TN FP FN 

50.0% 0.84 4.6% 8.3% 99.1% 90.3% 51.9% 48.1% 9.7% 53.7% 250 2,978 2,755 27 

20.0% 0.84 4.6% 16.8% 98.4% 72.9% 82.6% 17.4% 27.1% 82.1% 202 4,733 1,000 75 

10.0% 0.84 4.6% 24.3% 97.6% 52.7% 92.1% 7.9% 47.3% 90.2% 146 5,278 455 131 

7.5% 0.84 4.6% 28.6% 97.3% 46.6% 94.4% 5.6% 53.4% 92.2% 129 5,411 322 148 

5.0% 0.84 4.6% 36.2% 97.1% 39.4% 96.7% 3.3% 60.6% 94.0% 109 5,541 192 168 

4.0% 0.84 4.6% 40.2% 96.9% 35.0% 97.5% 2.5% 65.0% 94.6% 97 5,589 144 180 

3.0% 0.84 4.6% 45.9% 96.7% 30.0% 98.3% 1.7% 70.0% 95.1% 83 5,635 98 194 

2.0% 0.84 4.6% 50.8% 96.3% 22.4% 99.0% 1.0% 77.6% 95.4% 62 5,673 60 215 

1.0% 0.84 4.6% 52.5% 95.9% 11.6% 99.5% 0.5% 88.4% 95.4% 32 5,704 29 245 

  
Predicted 
positive rate 

F1 MCC Total number of 
unique outcome 

events 

Number of positive 
outcomes in test set 

(TP+FN) 

Number of unique 
outcome events detected 

Prop. of unique 
outcome events 

detected 

Median days from first 
positive to outcome 

50.0% 15.2% 17.7% 136 277 124 91.2% 78 

20.0% 27.3% 29.1% 136 277 96 70.6% 82 

10.0% 33.3% 31.3% 136 277 70 51.5% 81 

7.5% 35.4% 32.6% 136 277 60 44.1% 69.50 

5.0% 37.7% 34.6% 136 277 49 36.0% 69.50 

4.0% 37.5% 34.7% 136 277 40 29.4% 69.50 

3.0% 36.2% 34.7% 136 277 36 26.5% 72 

2.0% 31.1% 31.7% 136 277 24 17.6% 67 

1.0% 18.9% 23.1% 136 277 13 9.6% 53 

 
 
Predicted positive rate: The proportion of contacts predicted positive by the model. Since the model outputs a predicted probability, this is a 
threshold set during evaluation. 
True prevalence: The proportion of admissions that qualified for an outcome within the lookahead window. 
AUROC Area under the receiver operator characteristic (ROC) curve 
PPV: Positive predictive value. 
NPV: Negative predictive value. 
FPR: False positive rate. 
FNR: False negative rate. 
TP: True positives. Numbers are based on prediction times (end of psychiatric admission). 
TN: True negatives. Numbers are based on prediction times (end of psychiatric admission). 
FP: False positives. Numbers are based on prediction times (end of psychiatric admission). 
FN: False negatives. Numbers are based on prediction times (end of psychiatric admission). 
F1: The harmonic mean of the precision and recall. 
MCC: Matthew’s correlation coefficient. 
Prop. of unique outcome events detected: Proportion of the involuntary admissions that are flagged by a least one true positive prediction. 
Median days from first positive to outcome: For all involuntary admissions with at least one true positive, the number of days of from first positive 
prediction to outcome (involuntary admission) 
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