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Abstract 30 

Horizontal pleiotropy can significantly confound causal estimates in Mendelian 31 

randomization (MR) studies, particularly when numerous instrumental variables (IVs) are 32 

employed. In this study we propose a novel statistical method, Mendelian Randomization 33 

analysis based on Z-scores (MRZ), to conduct robust and accurate MR analysis in the 34 

presence of pleiotropy. MRZ models the IV-outcome association z-score as a mixture 35 

distribution, separating the causal effect of the exposure on the outcome from pleiotropic 36 

effects specific to each IV. By classifying IVs into distinct categories (valid, uncorrelated 37 

pleiotropic, and correlated pleiotropic), MRZ constructs a likelihood function to estimate 38 

both causal and pleiotropic effects. Simulation studies demonstrate MRZ's robustness, power, 39 

and accuracy in identifying causal effects under diverse pleiotropic scenarios and overlapped 40 

samples. In a bidirectional MR analysis of appendicular lean mass (ALM) and four lipid 41 

traits using both the UK Biobank (UKB)-internal datasets and the UKB-Global Lipids 42 

Genetics Consortium (GLGC) joint datasets, MRZ consistently identified a causal effect of 43 

ALM on total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C). Conversely, 44 

existing methods often detected mutual causal relationship between lipid traits and ALM, 45 

highlighting their susceptibility to confounding by horizontal pleiotropy. A randomized 46 

controlled experiment conducted in mice validated the absence of causal effect of TC on 47 

ALM, corroborating the MRZ findings and further emphasizing its resilience against 48 

pleiotropic biases. 49 

Keywords: Mendelian randomization; uncorrelated pleiotropy; correlated pleiotropy; 50 

appendicular lean mass; lipid traits.  51 
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Introduction 52 

Determining whether a modifiable exposure causes a particular disease outcome is 53 

crucial for understanding disease mechanisms and guiding prevention and clinical 54 

interventions. However, traditional observational analyses often face limitations in 55 

establishing such causal effects due to potential confounding by unobserved variables or 56 

reverse causation [1]. Mendelian randomization (MR) provides a solution by offering a 57 

statistical approach to infer causation from observational data while circumventing both 58 

unobserved confounding and reverse causation [1, 2]. MR utilizes genetic variation associated 59 

with an exposure as an instrumental variable (IV) to investigate the causal effect of the 60 

exposure on an outcome [2]. 61 

MR has proven highly successful in uncovering causal relationships across a wide range 62 

of epidemiological conditions and diseases, establishing itself as a popular approach in 63 

modern genetic epidemiology [3]. The rapid growth of genome-wide association studies 64 

(GWASs) further accelerates the application of MR by providing a wealth of data. With larger 65 

sample sizes, modern GWASs generate numerous IVs suitable for MR analysis. For instance, 66 

the latest human height GWAS identified over 11,000 independent association signals [4], 67 

enhancing the power and accuracy of MR estimation. 68 

However, many current MR analyses are challenged by a potentially severe confounding 69 

factor known as horizontal pleiotropy [5]. Horizontal pleiotropy violates the exclusive 70 

restriction assumption underlying the MR principle, casting doubt on the validity of MR 71 

analysis [6-8]. This issue becomes more pronounced as the number of IVs increases, as 72 

chance can lead to an increase in shared heritability factors between exposure and outcome. 73 
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Therefore, effective correction for confounding due to horizontal pleiotropy is essential, 74 

especially in large sample settings. 75 

Considerable efforts in the literature have addressed the pleiotropic effect and sought to 76 

mitigate its adverse impact on MR analysis [9, 10]. In a two-sample setting, multiple popular 77 

statistical methods accommodating pleiotropic IVs have been proposed and widely utilized 78 

[11-37]. However, under certain conditions, some methods may fail to adequately correct for 79 

horizontal pleiotropy or accurately detect true causal effects [9]. 80 

In this study, with the aim of conducting robust and accurate MR studies in the presence 81 

of horizontal pleiotropy, we introduce a novel statistical method. This method explicitly 82 

distinguishes causal effect from pleiotropic effect and estimates both within the maximum 83 

likelihood framework. Through simulation studies, we demonstrate that our proposed method 84 

effectively corrects for pleiotropic effects across various confounding scenarios while 85 

maintaining statistical power at a comparable level. As an application, we investigate the 86 

bidirectional causal effects of four lipid traits and appendicular lean mass (ALM) using data 87 

from the UK biobank (UKB) cohort and summary statistics from the Global Lipids Genetics 88 

Consortium (GLGC) [38]. Finally, we conduct a randomized controlled experiment in mice to 89 

address controversial findings revealed by our proposed method compared to alternative 90 

methods.  91 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 18, 2024. ; https://doi.org/10.1101/2024.04.16.24305933doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.16.24305933
http://creativecommons.org/licenses/by-nc/4.0/


6 

 

Results 92 

Outline of the proposed method 93 

The diagram illustrating the proposed method is presented in Figure 1. In this context, 94 

we consider the causal effect, denoted as r, of a continuous exposure trait X on a continuous 95 

outcome trait Y. Our objective is to estimate this causal effect using a collection of 96 

independent IVs that exhibit an association with X. These IVs are categorized into three 97 

distinct types based on their pleiotropic effects on the outcome and the correlation of these 98 

pleiotropic effects with the IV-exposure effects at corresponding IVs: 99 

1. Valid IVs: These IVs do not exert horizontal pleiotropic effects on the outcome. They 100 

serve as reliable indicators of the exposure's effect on the outcome without introducing 101 

additional confounding factors. 102 

2. Uncorrelated pleiotropic IVs: This category comprises IVs that exhibit horizontal 103 

pleiotropic effects on the outcome. However, these effects are not correlated with the 104 

corresponding IV-exposure effects. 105 

3. Correlated pleiotropic IVs: In this category, IVs demonstrate horizontal pleiotropic effects 106 

on the outcome that are correlated with the IV-exposure effects. This correlation violates the 107 

Instrument Strength Independent of Direct Effect (INSIDE) assumption [39]. 108 

In our analysis, we used genetic association z-scores, denoted as zX and zY, to estimate r. 109 

The outcome zY follows a normal distribution with a mean �� and a variance of one, 110 

i.e.,��~���� , 1�, where �� represents the effect of the IV on the outcome. The causal 111 

effect of X on Y can be interpreted as shifting the mean �� by an IV-specific offset denoted 112 

as ∆
 ���
��

� 
��, where NX and NY are the sample sizes of the exposure and outcome, 113 
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respectively. Importantly, this shift applies uniformly across all IVs regardless of whether 114 

they are valid or pleiotropic. Consequently, if we subtract this offset ∆ from zY, we obtain a 115 

residual z-score ��� 
 �� � ∆. This residual z-score no longer contains any information 116 

about the causal effect. 117 

We formulated ���  at different types of IVs to follow distinct distributions. 118 

1. Valid IVs: ���  at valid IVs asymptotically follows a standard normal distribution, i.e., 119 

��,���	
� ~ ��0, 1�. 120 

2. Uncorrelated pleiotropic IVs: At uncorrelated pleiotropic IVs, ���  follows a normal 121 

distribution with a fixed mean parameter �� and an enlarged variance, i.e., 122 

��,�
�� ~����, 1 � ���� � 

, where �� and ����  represent the mean and variance of the uncorrelated pleiotropic effects, 123 

respectively. 124 

3. Correlated pleiotropic IVs: ��� at correlated pleiotropic IVs follows another normal 125 

distribution. This distribution is characterized by a mean parameter related to zX and an 126 

enlarged variance, i.e., 127 

��,���� ~���� � ���� , 1 � ������ � ���� � 

, where ��  and ���  represent the mean and variance of the pleiotropic correlation, 128 

respectively. �� and ����  represent the mean and variance of the residual pleiotropic effects 129 

after adjusting for the pleiotropic correlation. 130 

These formulations allow us to account for the different distributions of residual 131 

z-scores at various types of IVs, thereby capturing the distinct effects of horizontal 132 

pleiotropy on the outcome. 133 
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Given the presence of multiple independent IVs, we employed the maximum likelihood 134 

approach to estimate the parameters from the data. We assumed that the proportions of valid 135 

IVs, uncorrelated pleiotropic IVs, and correlated pleiotropic IVs are (1-�), �(1-�), and ��, 136 

respectively. Here, � and �, both fallowing within the range [0,1], represent the proportion 137 

of total pleiotropic IVs and the relative proportion of correlated pleiotropic IVs, respectively. 138 

Our model contains nine parameters in total: � 
 �
, ��, �� , �� , ���� , ���� , ���, �, �� . We 139 

constructed a likelihood function of � as follows 140 

L��; �� , �� , ��, ��
� 	 ∏ ��1 
 ������������

	 � � ��1 
 ���
������
	 |�
, ���

� � � ����������
	 |�� , �� , ��

� , ���
� ���

��
 . 141 

Maximizing L with respect to � provides the maximum likelihood estimate of �. 142 

From this estimate, we can derive both the estimated causal effect, denoted as 
̂, and the 143 

distribution of pleiotropic effects. 144 

To assess the statistical significance of the estimates, we employed the likelihood ratio 145 

test (LRT) approach. Specifically, we examined the significance of 
̂ using a 146 

one-degree-of-freedom (df) chi-squared test. This test compares the maximized likelihood 147 

value with that obtained for a reduced likelihood function under the setting r=0. Additionally, 148 

we evaluated the existence of pleiotropic IVs using an 8-df chi-squared test. This test 149 

compares the maximized likelihood value with that obtained for another reduced likelihood 150 

function under the setting �=0, in which r is the only model parameter. 151 

The distribution of ���  152 

The distribution of ���  is central to our proposed method, Mendelian Randomization 153 

analysis using Z-scores (MRZ), as it forms the basis for distinguishing between valid and 154 

pleiotropic IVs. Among the two parameters shaping the distribution of ��� , variance plays a 155 
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crucial role in distinguishing between these categories. Through simulations, we investigated 156 

the distribution of ���  and evaluated the impact of three key factors on its variance: the 157 

sample size of the outcome (NY), the variance (���) of the pleiotropic effect ��
�, and the 158 

frequency of positive pleiotropic IVs (fp). Here, ��
�  was defined as the IV-attributable 159 

portion of outcome variance, that is, IV-specific outcome heritability. As expected, ���  at 160 

valid IVs consistently conforms to a standard normal distribution (Figure 2). Conversely, at 161 

pleiotropic IVs, the variance of ���  exceeds one and escalates with increasing NY and/or ���. 162 

Specifically, when all pleiotropic IVs align in the same direction as the IV-exposure effects 163 

(fp=1), the variance of ���  aligns well with theoretical expectations, which is var������
�). 164 

This variance amplifies when pleiotropic IVs consist of a mixture of positive and negative 165 

effects, reaching its maximum when the positive and negative pleiotropic IVs are evenly 166 

balanced (fp=0.5). 167 

Our simulations also revealed a striking resemblance between the distributions of ���  168 

and zY. This similarity arises from the positive nature of all zX by definition, leading to a 169 

consistent shift of zY towards ���  in the same direction across all IVs. Another fact 170 

reinforcing this similarity is the typically modest magnitude of the shift ∆, attributed to the 171 

small values of r in most real applications (e.g., <0.2). Consequently, we approximated the 172 

variance of ���  by studying zY as if no causal effect were present. By assuming an 173 

exponential distribution for pleiotropic effects, we estimated the distribution’s sole 174 

parameter [40]. Subsequently, we estimated the variance of ���  through Monto-Carlo 175 

sampling of �����
�. While this estimate assumes all pleiotropic effects align in the same 176 

direction and may thus underestimate the true variance, it provides a practical lower 177 
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boundary from which the optimization of the likelihood function starts to work. 178 

Detecting pleiotropic effects 179 

When all IVs are valid, MRZ does not detect any pleiotropy in both null and causal 180 

simulations (P<0.05). Notably, it is more conservative than MRPRESSO [19] and 181 

MREGGER [22], both of which identify pleiotropy and horizontal pleiotropy in 182 

approximately 5% of iterations. 183 

In scenarios where pleiotropic IVs are present, both MRZ and MRPRESSO 184 

demonstrate remarkable efficacy, presenting 100% power in detecting pleiotropy even when 185 

the proportion of pleiotropic IVs is as low as 10% (Figure 3A). Conversely, MREGGER 186 

exhibits significantly lower power in discerning the directionality of pleiotropic effects. 187 

Even at the highest proportion (60%), MR-EGGER’s power rate is only 55.5%. 188 

The proportion of pleiotropic IVs estimated by MRZ exhibits a high correlation with 189 

the actual proportion, irrespective of the presence of a causal effect or the correlation status 190 

of pleiotropic effects (Figure 3B). However, a slight overestimate of the mean proportion by 191 

a relative proportion of approximately 10% is observed across all scenarios. 192 

In instances where correlated pleiotropic IVs are present, MRZ’s ability to accurately 193 

estimate their proportion is unsatisfactory (Figure 3C). This suggests that uncorrelated and 194 

correlated pleiotropic IVs are indistinguishable by MRZ. Nevertheless, the per-IV mean 195 

correlated pleiotropic effect, defined as ����, exhibits a perfect linear relationship with the 196 

proportion of correlated pleiotropic IVs (Figure 3D). The slope of this linear trend remains 197 

consistent between null and causal simulations, indicating minimal influence of the causal 198 

effect on the trend. Furthermore, the slope increases with stronger correlated pleiotropic 199 
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effects and diminishes when no correlated pleiotropic IVs are included. Therefore, MRZ 200 

demonstrates the capability to capture correlated pleiotropic effects by jointly modeling the 201 

proportion of correlated pleiotropic IVs and the magnitudes of their effects. 202 

Causal effect: type-I error rate 203 

Through a series of null simulations, we evaluated the type-I error rate of MRZ in 204 

testing causal effect. For comparative purposes, we incorporated 14 existing two-sample MR 205 

methods into our analysis. These include MREGGER [22], IVW [23], weighted-median 206 

(W-median) [21], weighted-mode (W-mode) [20], MRPRESSO [19], contamination mixture 207 

(CMix) [16], MRMix [18], MRAID [11], MRcML [12], GRAPPLE [13], MRLASSO [17], 208 

MRRAPS [14], MRROBUST [17], and CAUSE [15]. It’s worth noting that there are other 209 

promising methods not included in our analysis, some of which are extensively discussed 210 

elsewhere [9]. 211 

In the absence of pleiotropic effects, MRZ, along with other methods, effectively 212 

maintains type-I error rates close to the desired level of 5% (Table 1). However, W-mode 213 

(0.2%) and CAUSE (0.1%) demonstrate conservativeness, exhibiting lower type-I error 214 

rates. 215 

In scenarios where pleiotropic effects are present, MRZ consistently maintains the 216 

correct type-I error rate across various proportions of pleiotropic IVs, irrespective of 217 

whether the pleiotropic effects are uncorrelated or correlated (Table 2). This robust 218 

performance also holds true under balanced pleiotropic effects (Supplemental Table 1). 219 

Among alternative methods, W-mode and CAUSE tend to be overly conservative, resulting 220 

in significantly reduced type-I error rates in all scenarios (Table 2). MREGGER shows 221 
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validity only when pleiotropic effects are uncorrelated but exhibits an inflated type-I error 222 

rate of up to 28.1% when the pleiotropic effects are correlated. MRMix generally performs 223 

well under low to modest proportions of pleiotropic IVs but shows an inflated error rate 224 

reaching up to 21.6% under higher proportions. All the other alternative methods have 225 

inflated type-I error rates that increase with increased proportion of pleiotropic IVs, whereas 226 

the inflation is more severe under correlated pleiotropy than under uncorrelated pleiotropy. 227 

The type-I error rates for certain methods can reach nearly 100% in some extreme scenarios, 228 

rendering them invalid at all under such conditions. Even when the pleiotropic effects are 229 

balanced, the inflation of type-I error rates is still observed for most alternative methods, 230 

especially in correlated pleiotropic scenarios (Supplemental Table 1). 231 

Further simulation studies involving a smaller set of 100 IVs (Supplemental Table 2) 232 

or a larger set of 500 IVs (Supplemental Table 3) reaffirm the validity of MRZ. Among 233 

alternative methods, W-mode and CAUSE exhibit inflated type-I error rates under high 234 

proportions of pleiotropic IVs when the number of IVs is 100 and 500, respectively, 235 

rendering them invalid (Supplemental Tables 2-3). Therefore, our simulations reveal 236 

MRZ's efficacy in rectifying horizontal pleiotropy across diverse confounding scenarios, 237 

where existing methods often lose validity. 238 

Notably, MRZ demonstrates strong robustness against sample overlap due to its 239 

effective control of horizontal pleiotropy. It maintains a valid type-I error rate even when 240 

exposure and outcome samples completely overlap (Supplemental Table 4), making it 241 

suitable for scenarios involving a single biobank-scale dataset such as the UKB cohort. 242 

Causal effect: power and effect size 243 
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We conducted a series of causal simulations to examine the power and effect size of 244 

various methods. In scenarios without pleiotropic effects, nearly all alternative liberal 245 

methods—those prone to type-I error under pleiotropic scenarios—demonstrate remarkably 246 

high power rates almost reaching 100% (Table 1). MRZ notably achieves a power rate of 247 

99.9%, positioning it among the most powerful methods. Conversely, W-mode exhibits the 248 

lowest power rate (10.4%), followed by MRMix (25.9%) and CAUSE (80.0%). Regarding 249 

effect size estimation, most methods, including MRZ, estimate mean effect sizes close to the 250 

true value of 0.050. MRZ displays one of the lowest mean errors (MEs, 0.008) among all 251 

methods. In contrast, W-mode (0.033) and MRMix (0.025) exhibit larger variations. 252 

In the presence of horizontal pleiotropy, MRZ exhibits a decline in power as the 253 

proportion of pleiotropic IVs increases, as expected. This decline is similar in both positive 254 

and negative causal effect settings (Supplemental Table 5), indicating minimal impact of 255 

pleiotropic effects on MRZ's power across diverse scenarios. Even with the highest 256 

proportion of 60% pleiotropic IVs, MRZ’s power rate maintains between 40%-58%. 257 

Alternative methods demonstrate scenario-dependent performance, lacking a universal 258 

trend across all settings. The two overly conservative methods CAUSE and W-mode, along 259 

with MREGGER, MRMix and MRAID, generally exhibit declining power with increased 260 

proportion of pleiotropic IVs (Supplemental Table 5). For other alternative methods, two 261 

distinct trends are observed depending on the relative directions of the causal effect and the 262 

pleiotropic effects. When they align, these methods maintain high power rates at nearly 100% 263 

at all proportions of pleiotropic IVs. Conversely, when they oppose, these methods 264 

experience rapid decline in power rates with increased proportion of pleiotropic IVs 265 
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(Supplemental Table 5). These conflicting trends highlight potential confounding effects of 266 

uncorrected pleiotropy on power estimation. 267 

To ensure a fair comparison of power rates among methods despite varying type-I error 268 

rates, we corrected each method’s raw power rate by its type-I error rate at the corresponding 269 

null setting, assuming a correct type-I error rate of 5%. Like MRZ, all alternative methods 270 

have a decrease in their corrected power rates when the proportion of pleiotropic IVs 271 

increases (Figure 4). Among the methods, MRZ generally maintains the highest corrected 272 

power rate across various proportions of pleiotropic IVs. This improvement is particularly 273 

notable when the causal effect opposes the pleiotropic effects, in which cases uncorrected 274 

pleiotropic effects counteract or even reverse the true causal effect, resulting in a severe loss 275 

of power for alternative methods. 276 

Uncorrected pleiotropic effects not only affect the power to detect the causal effect but 277 

also influence estimated effect size. MRZ’s estimated effect sizes align with the true value 278 

(0.05 or -0.05) across all scenarios (Figure 5), regardless of the proportion of pleiotropic IVs 279 

or the direction of the causal effect. Conversely, for all alternative methods, including 280 

W-mode and CAUSE, distinct trends are observed based on the relative directions of the 281 

causal effect to pleiotropic effects. When the directions align, mean effect sizes of all 282 

alternative methods tend to increase with the proportion of pleiotropic IVs, whereas they 283 

decrease when the directions oppose. At the highest proportion of 60% pleiotropic IVs, the 284 

decrease is so severe that the estimated effect sizes from all alternative methods are opposite 285 

to the true size. 286 

Additional simulation studies with 100 and 500 IVs (Supplemental Figure 1) reveal an 287 
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increased trend of MRZ’s power rate with an increasing number of IVs, underscoring the 288 

critical importance of including a substantial number of IVs for robust and powerful causal 289 

inference. 290 

When modeling no pleiotropic effects, the proposed test statistic T1 closely 291 

approximates the causal effect size estimated by the IVW test across all simulated scenarios 292 

(Supplemental Figure 2). This suggests that the IVW test provides a reasonable anchor for 293 

MRZ to adjust its estimated effect size when analyzing un-standardized summary statistics, 294 

such as case-control data. 295 

Running time 296 

The computation process of MRZ primarily focuses on optimizing the likelihood 297 

function twice: once for the alternative hypothesis and once for the null hypothesis. Despite 298 

involving a high dimension of nine parameters, the derivative-free optimization algorithm 299 

nmkb that we employed offers an efficient solution. MRZ completes the optimization within 300 

seconds even on datasets containing 500 IVs. However, it's important to acknowledge that 301 

there is no assurance that the optimization algorithm will converge to its global maximum 302 

under such a high-dimensional parameter space. Therefore, it's recommended to conduct 303 

repeated optimizations with varying initial parameter settings to enhance the likelihood of 304 

obtaining a robust solution. In this study, a total of 20 repeats were performed to ensure the 305 

reliability of the results. 306 

Real data analysis 307 

As an application, we conducted a bidirectional MR study examining the relationship 308 

between ALM and four circulating lipid traits (high-density lipoprotein cholesterol (HDL-C), 309 
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low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC), and triglycerides (TG)). 310 

We utilized two data sources: the UKB internal cohort and the summary statistics released 311 

by GLGC. 312 

In the UKB-internal analysis, we randomly divided the entire UKB cohort into two 313 

independent sub-samples (UKB_S1 and UKB_S2). For each exposure-outcome pair (e.g., 314 

ALM-TC), one sub-sample served as the exposure sample while the other served as the 315 

outcome sample. This process was repeated twice by reversing the roles of the two 316 

sub-samples so that two independent sets of summary statistics were generated [41]. In the 317 

UKB-GLGC joint analysis, we used the entire UKB cohort to generate GWAS summary 318 

statistics for ALM, while GLGC data (excluding UKB participants) provided summary 319 

statistics for the lipid traits. Consequently, we generated three datasets that are mutually 320 

independent in exposure and/or outcome, allowing for cross-validation of results. 321 

To assess robustness against sample overlap, we conducted an MR analysis using both 322 

exposure and outcome summary statistics derived from the entire UKB cohort, resulting in 323 

complete sample overlap. 324 

Observational analyses reveal significant correlations between raw ALM values and all 325 

lipid traits in the UKB cohort, and these correlations persist after adjusting for age and sex in 326 

both ALM and lipid traits (Supplemental Table 6). In the MR settings, the number of 327 

eligible IVs ranges from 85 to 719 across all exposure-outcome pairs (Supplemental Tables 328 

7-8). Strong IV-exposure associations are observed, with R2 values ranging from 0.05 to 0.10 329 

and F-statistics ranging from 52.1 to 188.8. 330 
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At a significance level of 6.25�10-3 (0.05/(2�4)), forward MRZ analysis identified a 331 

negative association between ALM and both TC and LDL-C (Table 3). This association is 332 

statistically significant in all three datasets for both traits, strengthening the evidence of 333 

causality. The estimated effect sizes are consistent across datasets for both TC (-0.079, 334 

-0.083 and -0.074) and LDL-C (-0.054, -0.063 and -0.037). Notably, the proportion of 335 

pleiotropic IVs was estimated to be modest to high for both traits, being around 30% and 40% 336 

in the UKB-internal datasets (261-268 IVs). 337 

Forward MR analyses using MRZ did not detect significant associations between ALM 338 

and either HDL-C or TG in any of the datasets, suggesting no causal effects on both traits. 339 

Further reverse MR analyses did not identify significant associations for any lipid traits with 340 

ALM, indicating no reverse causal effect. Analysis on the completely overlapped whole 341 

UKB cohort yielded similar results (Supplemental Table 9), confirming MRZ’s robustness 342 

against sample overlap. 343 

We compared the MRZ results with those from alternative methods. In the forward MR 344 

analyses, all alternative methods identified the same negative causal effect of ALM on TC in 345 

one or more datasets (Supplemental Figure 3). However, in the reverse MR analyses, all 346 

alternative methods revealed a same negative causal effect of TC on ALM in at least one 347 

dataset (Supplemental Figure 3). The results of mutual causality at the same direction are 348 

observed from alternative methods on the other three lipid traits too (Supplemental Figures 349 

4-6). Observing mutually reinforcing causal effects at the same direction suggests a high 350 

likelihood of pleiotropy, making it difficult to definitively determine the true causal 351 

relationship. Therefore, leaving aside the true causal relationships, none of the alternative 352 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 18, 2024. ; https://doi.org/10.1101/2024.04.16.24305933doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.16.24305933
http://creativecommons.org/licenses/by-nc/4.0/


18 

 

methods can produce results that are free of pleiotropic effects and that are self-validated 353 

across all datasets. 354 

Experimental validation 355 

Given the unidirectional causal link identified by MRZ versus the disputed 356 

bidirectional link suggested by alternative methods, there are conflicting views on the causal 357 

effect of lipid traits on ALM. To address this controversy empirically, we conducted an in 358 

vivo randomized controlled experiment using a mouse model. The experiments involved 359 

intervention with TC and compared to normal controls. The results reveal a significant 360 

increase in circulating TC levels in mice fed TC for a period of 8 weeks (N=12) compared to 361 

normal controls (N=12, Wilcoxon rank test P=3.59�10-5, Figure 6), indicating successful 362 

implementation of the TC intervention. Additionally, significant changes are observed in 363 

HDL-C (P=1.24�10-14), LDL-C (P=5.98�10-9), and TG (P=5.98�10-5) levels. 364 

As the outcome, we observed a significant increase in total body mass (P=1.64�10-3) 365 

and fat body mass (P=1.03�10-4) in the TC intervention group. However, there is no 366 

significant difference in lean body mass (P=0.80), suggesting no causal effect of lipid traits 367 

on ALM. These findings are consistent with the results obtained from MRZ analyses, but 368 

differ from the conclusions drawn by most alternative methods. This highlights MRZ's 369 

resilience against horizontal pleiotropic effects, to which existing methods are more 370 

susceptible.  371 
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Discussion 372 

Under the prevailing polygenic genetic architecture of complex traits, pleiotropy is 373 

anticipated to be a common occurrence [42]. While theoretical assertions suggest that 374 

perfectly balanced pleiotropic effects could cancel out bias [22], achieving such equilibrium 375 

is impractical. Current MR practices often employ sensitivity analyses like the MREGGER 376 

intercept test to evaluate pleiotropy balance [22]. However, our simulation studies revealed 377 

that the MREGGER intercept test lacks sufficient power to detect even substantial 378 

pleiotropic imbalances. Thus, relying solely on these methods cannot ensure that empirical 379 

MR analyses are conducted under balanced pleiotropic conditions. Even under balanced 380 

pleiotropy, our simulation studies demonstrated that the type-I error rate of certain methods 381 

may inflate as the proportion of pleiotropic IVs increases. The presence of correlated 382 

pleiotropic effects exacerbates this issue. Therefore, robust methods to address horizontal 383 

pleiotropy are crucial to ensure the validity of MR analyses. 384 

Our proposed method, MRZ, categorizes IVs into three distinct groups reflecting 385 

potential pathways from IVs to the outcome, as depicted in the classical MR rationale 386 

diagram. By assuming a general normality distribution for underlying pleiotropic effects, we 387 

derived a precise distribution for IV-outcome z-scores specific to each category. In simulated 388 

scenarios encompassing diverse pleiotropic settings, MRZ demonstrates enhanced control of 389 

type-I error rate as well as more precise and powerful causal effect estimation than existing 390 

methods. Notably, the normality assumption assumed by MRZ was not met in our 391 

simulations. However, we did not observe inflated type-I error rates or imprecise effect 392 

estimates, demonstrating the robustness of MRZ against data distribution. 393 
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Multiple sophisticated models have been proposed to address horizontal pleiotropy in 394 

MR analyses, with some examples provided in this study. While these methods demonstrate 395 

excellent performance under specific conditions, our simulation studies reveal limitations 396 

when the number of IVs reaches the hundreds. In such scenarios, certain alternative methods 397 

struggle to effectively correct for pleiotropic effects. This challenge arises because 398 

pleiotropic effects are often systematic, meaning they are not simply averaged out with an 399 

increasing number of IVs. In fact, the presence of systematic pleiotropy can worsen as the 400 

number of IVs grows. 401 

Among alternative methods, MRMix shares a similar strategy of categorizing IVs based 402 

on their potential causal effects [18]. However, MRMix utilizes four categories reflecting all 403 

combinations of the presence or absence of direct effects between IVs and both the exposure 404 

and the outcome. This classification allows MRMix to include IVs with no association to the 405 

exposure. In contrast, MRZ assumes all IVs to be associated with the exposure, aligning 406 

with the standard practice of screening and filtering IVs in empirical MR analyses to ensure 407 

this condition. 408 

Another key distinction between MRZ and MRMix lies in the data modeling strategy. 409 

MRMix assumes both IV-exposure and IV-outcome effects are random variables following a 410 

bivariate normal distribution. Conversely, MRZ treats the IV-exposure effect as a fixed value 411 

and models only the IV-outcome effect as a random variable with a distribution conditional 412 

on the former. This approach in MRZ eliminates the requirement for a normality assumption 413 

on the IV-exposure effect, making it more robust to non-normality, a frequent characteristic 414 

in non-infinitesimal genetic models. 415 
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Another comparable method, CMix, employs distinct probability functions to model 416 

valid and pleiotropic IVs as well. Key disparities between MRZ and CMix include the 417 

following: 1) MRZ categorizes pleiotropic IVs into uncorrelated and correlated groups, 418 

offering a more detailed classification compared to CMix, which treats all pleiotropic IVs 419 

collectively; 2) Both methods assume a normal distribution for effect sizes of pleiotropic IVs. 420 

However, MRZ allows the mean parameter of this distribution to vary freely, while CMix 421 

constrains it to zero but allows for an expanded variance; 3) MRZ integrates uncertainty 422 

regarding IV validity into its likelihood function without explicitly designating each IV as 423 

valid or pleiotropic. Conversely, CMix explicitly assigns a label to each IV based on its 424 

estimated probability of being valid or pleiotropic under each parameter setting. We argue 425 

that incorporating IV uncertainty may provide valuable insights into the distribution of 426 

pleiotropic IVs. Our simulation studies demonstrate that MRZ can effectively estimate the 427 

proportion of pleiotropic IVs, thereby supporting its efficacy. 428 

Skeletal muscle and circulating lipids play a critical role in regulating energy balance 429 

[43-45]. They are intricately linked and share common genetic background [46, 47]. Our real 430 

data analysis revealed a high degree of pleiotropy between ALM and all the lipid traits we 431 

examined. This pleiotropy poses a significant challenge for most existing MR methods. 432 

These methods tend to have inflated type-I error rates when the proportion of pleiotropic IVs 433 

is modest to high. As evidence, all alternative methods discovered a causal effect of TC on 434 

ALM in at least one dataset. However, this finding contradicted the results of controlled 435 

experiments where TC levels were directly manipulated. In contrast, MRZ yielded a 436 

different result that aligned with the experiment results. This highlights the importance of 437 
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robust methods for accurate causal inference in MR studies, especially when pleiotropy is a 438 

major concern. 439 

The observed causal effect of ALM on TC and LDL-C in our real data analysis is 440 

supported by nearly all alternative methods. Several plausible biological mechanisms could 441 

underlie this causality: 1) Metabolic rate and energy balance: Lean mass contributes 442 

significantly to basal metabolic rate [48, 49], which in turn can influence lipid metabolism 443 

and cholesterol levels. 2) Insulin sensitivity: Muscle tissue plays a crucial role in glucose 444 

metabolism and insulin sensitivity [50]. Higher lean mass is often associated with improved 445 

insulin sensitivity and glucose uptake [50], which in turn lead to changes in TC and LDL-C 446 

levels [51]; 3) Anti-inflammatory effects of muscle: Muscle secretes beneficial hormones 447 

such as interleukin-6 (IL-6) and irisin [52, 53], which have anti-inflammatory properties. 448 

These hormones can influence lipid metabolism and cholesterol levels [54, 55].  449 

It should be notable that ALM is usually altered by other modifiable factors such as 450 

exercise and diet. In this case, they are in the same causal pathway, and it is unclear whether 451 

the changes in circulating TC and LDL-C are directly caused by changes in ALM or if ALM 452 

acts as a mediator of some modifiable factor. Further investigation is warranted to elucidate 453 

the biological mechanism underlying this causal relationship. 454 

Certain limitations exist in the proposed method. Firstly, it does not account for certain 455 

biases common in MR analyses, such as weak instrument bias [56] and winner’s curse bias 456 

[57]. These biases can potentially be mitigated by implementing stringent IV filtering, such 457 

as applying a more rigorous significance threshold [57]. Secondly, optimizing a 458 

high-dimensional likelihood function poses challenges in converging to its global solution. 459 
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To enhance the likelihood of reaching the global maximum, it is advisable to perform 460 

multiple optimizations with varying initial parameters. However, this approach increases 461 

computational burden and does not guarantee attainment of the global maximum. Thirdly, 462 

the proposed method requires both exposure and outcome sample sizes as input, unlike other 463 

methods that do not have this requirement. This necessity arises because z-scores are 464 

meaningful only within the context of a specific sample size. If exposure and outcome 465 

sample sizes are uniform so that their ratios are constant across all IVs, then the detailed 466 

sample sizes are indeed unnecessary because the estimated effect size remains unchanged 467 

after calibrating to the effect size estimated by the IVW test. However, if sample sizes vary 468 

across IVs, then providing this information is essential for unbiased estimation by the 469 

proposed method. Furthermore, in scenarios involving case-control studies with imbalanced 470 

case-to-control ratios, employing an effective sample size rather than a raw sample size is 471 

preferable for accurate estimation [58]. 472 

In summary, we have proposed a novel two-sample MR method that demonstrates 473 

robustness against horizontal pleiotropic effects, while also offering accuracy and power 474 

across a wide range of scenarios. By applying this method to investigate the relationship 475 

between ALM and lipid traits, we identified a negative causal effect of ALM on TC and 476 

LDL-C. Our proposed method serves as a valuable alternative to existing MR methods, 477 

particularly in the analysis of large-scale biobank datasets with numerous IVs. With its 478 

ability to provide reliable and precise causal inference, our method contributes to advancing 479 

the field of MR analysis and enhances our understanding of complex biological 480 

relationships.  481 
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Online methods 482 

Basic model 483 

We assumed a continuous exposure trait X, a continuous outcome trait Y, and a 484 

bi-allelic SNP G taking values between 0, 1, and 2. For ease of presentation, we assumed X 485 

and Y are standardized so that their variances are one. Assumed that G is associated with X 486 

and serves as its IV and that the associations of G with both X and Y were tested under an 487 

additive mode of inheritance. 488 

The basic phenotype model for MR analysis was formulated as following 489 

� 
 ��� � ��, 490 

 
 
� � �� 
 �
���� � ���  

, where �� measures the effect of G on X, 
 measures the causal effect of X on Y, and �� 491 

and �� (��� ) are independently and normally distributed random errors. Here, we used the 492 

term r for a causal effect of X on Y because it is equivalent to the correlation coefficient for 493 

two standardized phenotypes. 494 

In the above model, the parameter r is the focus of MR analysis. In a typical 495 

two-sample MR analysis, regression coefficients of both X and Y on G are available from 496 

GWAS analyses, denoted by �!� and �!��. Then an unbiased estimator of r would be [23] 497 


̂ 
 ���
�

���
. 498 

Below, we modeled the estimation problem using the genetic association z-score, which 499 

is defined as the regression coefficient divided by its standard error. Specifically, 500 

�� 
 ���
���

, and �� 
 ���
�

���
� 501 

, where �"� and �"�� are standard errors of �!� and �!��. 502 
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The squared z-score statistic, termed sX or sY, is commonly used to test the genetic 503 

association between G and X or Y. When there is no association, the s statistic asymptotically 504 

follows a 1-df central chi-squared distribution. Accordingly, the z-score asymptotically 505 

follows a standard normal distribution. In contrast, when genetic association exists, the s 506 

statistic asymptotically follows a 1-df non-central chi-squared distribution characterized by a 507 

non-central parameter (NCP) #, and the z-score asymptotically follows a normal distribution 508 

with variance one but with a non-zero mean parameter � where �� 
 #, i.e., 509 

� �$ ���, 1�, 510 

% 
 ��
�$ &�

� �#�. 511 

In our previous study, we proved that the NCP parameter # is a function of sample 512 

size N and SNP effect size h2 [40]. Specifically, 513 

# 
 � � ln ) 11 � ��* + ��� ,   for �� // 1 

, where ln() represents natural logarithm transformation, and h2 is the portion of phenotypic 514 

variance explained by the SNP, e.g., the SNP-specific heritability. Specifically, we had 515 

��
� 
 ��������

������
, and ��

� 
 ���� ����

������

 ��

�
� 516 

, so that the mean parameters for X and Y have the following forms 517 

�� 
 �#� 
 �����
�  

, and �� 
 �����
� 
 ���

��
� 
��  518 

Clearly, the mean parameter �� is completely determined by ��  and their causal effect r. 519 

In the above formula, the parameter ��  is unknown and could be estimated from the 520 

GWAS summary statistics with the following formula 521 
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�̂� 
 0���!�� � 22�1 � 2�var���  

, where f is minor allele frequency (MAF) of the IV. However, in practical released GWAS 522 

summary statistics X may not be standardized so that its variance var(X) is unknown. In this 523 

case, recall that 524 

3���|��� 
 �

√�"
5�������	





 . 525 

Therefore, we replaced ��  by its maximum likelihood estimation, which is zX, and re-wrote 526 

the form of ��  527 

�� 
 ���
��

� 
�� 
 ∆      (1) 528 

Given ∆, the probability of observing zY is simply the density of a normal distribution 529 

N( ∆ , 1). Equivalently, if we let ��� 
 �� � ∆ , then ���  follows a standard normal 530 

distribution N(0, 1) 531 

��� 
 �� � ∆ �$ ��0,1�. 532 

Estimating r using z-scores 533 

When multiple independent IVs are available, we built the estimation model within the 534 

maximum likelihood framework. Assumed that there are a total of M independent IVs. Let 535 

�� 
 ����, ���, … , ��#��  and �� 
 ����, ���, … , ��#��  be corresponding z-score vectors. 536 

We constructed the likelihood function of r as 537 

L�
; 9� , 9� , �� , ��� 
 ∏ 3���$� �#
$%� . 538 

Maximizing the likelihood function L(r) yielded the maximum likelihood estimate of r, 539 

denoted by 
̂, and the maximum likelihood, denoted by L(
̂). 540 

The significance of 
̂  was evaluated using the LRT approach. Specifically, by 541 

restricting r=0, we obtained the null likelihood L0. We then constructed the likelihood ratio 542 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 18, 2024. ; https://doi.org/10.1101/2024.04.16.24305933doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.16.24305933
http://creativecommons.org/licenses/by-nc/4.0/


27 

 

test statistic as follows 543 

;� 
 �2�log�L&� � log �L�
̂���.      (2) 544 

Under the null hypothesis of r=0, T1 approximately follows a 1-df central chi-squared 545 

distribution, which is used to judge the significance of 
̂. 546 

Modeling uncorrelated and correlated horizontal pleiotropy effects 547 

We defined an IV to be valid if it has no horizontal pleiotropic effect. For a pleiotropic 548 

IV, the estimator 
̂ is not necessarily an unbiased estimator of r anymore. To see this, we 549 

re-wrote the phenotype model for Y as 550 

 
 
� � ��� � �� 


 ���
 � ���� � ���  

, where �� measures the pleiotropic effect of G on Y that is not mediated by X. In this 551 

model, 
̂ is an unbiased estimator of the following parameter instead 552 

E�
̂� 
 E�����
���

)= 
 � �

��

. 553 

Depending on the direction of ��, 
̂ could overestimate or underestimate the true effect r. 554 

In the presence of pleiotropy, the association of G with Y is a mixture of the X-mediated 555 

causal effect and the pleiotropic effect. Accordingly, the mean parameter �� is a mixture of 556 

two components (Supplemental Notes) 557 

�� 
 ∆ � �' 

so that 558 

��� 
 ��� � ∆� �$ ���' , 1�       (3) 559 

, where �'
� 
 ���'

�  is a parameter defined by pleiotropy driven heritability 560 

�'
� 
 �����
��

������
. 561 
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In the above formula, the mean parameter �� is composed of two components: the 562 

first one is the causal effect, and the second one is the pleiotropic effect. The causal effect is 563 

fixed for not only valid IVs but also pleiotropic IVs. In contrast, the pleiotropic effect exists 564 

at pleiotropic IVs only and may vary depending on the strength of the IV-outcome effect, 565 

and was therefore modeled as a random effect. After removing the causal effect, the residual 566 

outcome z-score contains information about the pleiotropic effect only. Depending on 567 

whether it is correlated to zX or not, the pleiotropic effect is further classified into two types. 568 

In the first type, the pleiotropic effect is directly on the outcome, so it is uncorrelated to zX. 569 

In this case, �' was modeled as a zX-independent normally distributed effect 570 

�'��
 
 �� � ��,         ��~��0, ���� �. 571 

In the second type, the pleiotropic effect is influenced by some unmeasured confounder 572 

that is correlated to both the exposure and the outcome. �' in this type is correlated to zX 573 

and the INSIDE assumption is violated [39]. Accordingly, it was modeled as a zX-related 574 

normally distributed effect 575 

�'
��,� 
 �� � >$��$ � ��, ��~��0, ���� � 

, where am measures the correlation between �'
��,� and ��$ at the mth IV. We added the 576 

subscript m in �'
�� to emphasize that am is IV-specific whose magnitude depends on the 577 

magnitude of the pleiotropy effect at the mth IV. To account for the variation of am, it was 578 

further modeled as a normally distributed random effect 579 

>$~���� , ����, 580 

where �� and ��� measure mean pleiotropic correlation and its variance, respectively. 581 

Until now, we have built a hierarchical model towards the mean parameter of ���  582 
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distribution. We aimed to obtain its marginal distribution. To integrate out the intermediate 583 

dummy variables, we introduced the following lemma, 584 

Lemma I, If a random variable X follows a normal distribution �~���, ����, and if its mean 585 

parameter �  is another random variable following a second normal distribution 586 

�~����, ����, then the marginal distribution of X is again a normal distribution of the form 587 

�~����, ��� � ���� (Supplemental Notes). 588 

Applying this lemma, we first integrated out am to obtain the marginal distribution of �'
�� 589 

�'���~���� � ���� ,   ������ � ���� �. 590 

We then in turn integrated out �'�
� and �'��� to obtain the marginal distribution of ���  591 

��,�
�� ~����, 1 � ���� � 

and 592 

��,���� ~���� � ���� , 1 � ������ � ���� �. 593 

Taken together, for the three types of IVs (valid, uncorrelated pleiotropic and correlated 594 

pleiotropic), the residual z-score ���  after removing the causal effect r has a type-specific 595 

distribution 596 

��� ~ ? ��0,1�, valid IV;����, 1 � ���� �, uncorrelated pleiotropic IV;���� � ���� , 1 � ������ � ���� �, correlated pleiotropic IV.J.    (4) 597 

One key inference from the above distributions is that ���  at different types has distinct 598 

variances. Specifically, ���  at valid IVs has an exact variance of one. ���  at pleiotropic IVs 599 

has a greater variance. This feature may make the three types of IVs distinguishable. 600 

Likelihood function under horizontal pleiotropy 601 

We assumed that the proportions of valid IVs, uncorrelated pleiotropic IVs and 602 

correlated pleiotropic IVs are(1-�), �(1-�), and ��, where � and � K L0,1M measure the 603 
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proportion of pleiotropic IVs and the relative proportion of correlated pleiotropic IVs, 604 

respectively. Our model contains nine parameters in total: 605 

� 
 �
, �� , �� , �� , ���, ���� , ���� , �, ��. We constructed a likelihood function of � as follows 606 

L��; ��, �� , �� ,��
� 	 ∏ ��1 
 ������������

	 � � ��1 
 ���
������
	 |�
 , ���

� � � ����������
	 |�� , �� , ��

� , ���
� ���

��
  (5) 607 

, where the probability densities were defined by equation (4). 608 

Maximizing L regarding � yields the maximum likelihood estimate of �, denoted by 609 

�N, and the maximum likelihood, denoted by L(�N). We maximized L using the function nmkb 610 

in the R package dfoptim, which implements a derivative-free Nelder–Mead algorithm for 611 

high-dimensional function. 612 

Test of causal effect 613 

The causal effect is tested against the null hypothesis of 
=0 by means of the LRT 614 

approach. Specifically, by restricting r=0 in (5), we constructed the null likelihood function, 615 

denoted by L0, which contains eight parameters. Maximizing L0 over its sample space yields 616 

the maximum likelihood under the null hypothesis, denoted by L0(�N&). The LRT statistic was 617 

then constructed as follows 618 

;� 
 �2�logOL&��N&�P � log �L��N���.     (6) 619 

Under the null hypothesis of r=0, T2 approximately follows a 1-df central chi-squared 620 

distribution, which was used to declare the significance of 
̂. 621 

Test of pleiotropic effects 622 

The existence of pleiotropic effects was tested against the null hypothesis of �=0 using 623 

the same LRT approach. Under the null hypothesis, the likelihood function contains only one 624 

free parameter r. Therefore, we used a 8-df central chi-squared distribution to declare the 625 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 18, 2024. ; https://doi.org/10.1101/2024.04.16.24305933doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.16.24305933
http://creativecommons.org/licenses/by-nc/4.0/


31 

 

significance of the estimate �̂. 626 

In implementation, we will first test pleiotropic effects at the significance level P<0.05. 627 

If there is evidence of pleiotropic effects, then we will use T2 to test the causal effect; 628 

otherwise, we will use T1 instead. 629 

Unstandardized phenotypes 630 

Since 
̂  is estimated based on z-scores, its test significance remains unchanged 631 

regardless of whether exposure or outcome is standardized. However, its magnitude may 632 

differ from the original effect size when unstandardized exposure or outcome is analyzed. 633 

The ratio of 
̂ to the original effect size is a constant C that is determined by the unit of 634 

exposure and outcome under analysis. In certain scenarios, it is desirable to obtain the 635 

original effect size, such as to recover the odds ratio for case-control data types. 636 

To recover the original effect size, we estimated C by anchoring our test to a 637 

comparable alternative test. As demonstrated in the Results section, our proposed test 638 

statistic T1, which assumes no pleiotropic effects, yields an effect size approximately equal 639 

to the IVW test, which also assumes no pleiotropic effects. Consequently, we conducted both 640 

the T1 test and the IVW test on the same dataset and estimated C by calculating the ratio of 641 

their effect sizes. 642 

Simulation studies 643 

We performed a series of simulation studies to evaluate the performance of the 644 

proposed method. We simulated one continuous exposure X, one continuous outcome Y and 645 

one continuous confounder U. We simulated a set of bi-allelic SNP as IVs for the exposure. 646 

We studied a two-sample context so that the exposure and outcome summary statistics were 647 
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generated from two separate samples. Parameter settings were as follows: 648 

1) The number of IVs was set to be M=200. 649 

2) Both exposure and outcome sample sizes were set to be NX=NY=200,000. 650 

3) The causal effect of X on Y was set to be r=0 (null), 0.05 (positive effect), or -0.05 651 

(negative effect). In the latter two cases, X explained r2=0.25% of Y’s variance. 652 

4) Confounder effect. In the case of confounding effect, the effect of the confounder U was 653 

set to explain 20% of phenotypic variance in both X and Y. The effect directions of U on 654 

both X and Y were set to be the same. 655 

5) Proportion of pleiotropic IVs to the outcome (�). The proportion of pleiotropic IVs � 656 

varied from 10% to 60% at an increment of 10%. The default direction of the pleiotropic 657 

effects was assumed to be positively dominated, in which 70% : 30% of pleiotropic IVs 658 

were simulated to have positive : negative pleiotropic effects. In the case of balanced 659 

pleiotropic effects, 50% : 50% of pleiotropic IVs were simulated to have positive : negative 660 

pleiotropic effects. 661 

6) Relative proportion of correlated IVs ��). From the pleiotropic IVs simulated in step 5), 662 

a fraction of � 
 0.5 IVs were simulated to also have a pleiotropic effect on U. For ease of 663 

presentation, the direction of the pleiotropic effects on U was set to be the same as that on Y. 664 

7) IV effects on exposure. We assumed a non-infinitesimal genetic architecture for 665 

IV-exposure effects. A proportion of 10% of total IVs were simulated to have a large effect 666 

each explaining 0.2% of X’s variance. The portion of explained variance for each of the 667 

remaining 90% IVs was drawn from an exponential distribution with a mean 1.0 � 10(), a 668 

level comparable to the majority of GWAS findings. The 200 IVs explained approximately a 669 
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total of 5.8% of X’s variance. 670 

8) IV pleiotropic effects on outcome and confounder. The portion of the variance in both Y 671 

and U explained by each pleiotropic IV was drawn from an exponential distribution with a 672 

mean 1.0 � 10(). 673 

Each scenario was simulated with 1,000 iterations. At each simulation iteration, the 674 

MAF of each IV was drawn from a uniform distribution uni(0.05, 0.5), and the IV genotypes 675 

at both exposure and outcome samples were simulated using PLINK [59] assuming the 676 

Hardy-Weinberger equilibrium. After the phenotypes were simulated, PLINK was invoked 677 

to test genetic association in both the exposure and the outcome samples. 678 

Comparison with existing methods 679 

We evaluated and compared the performance of the proposed method with 14 existing 680 

two-sample MR methods, including IVW [23], MREGGER [22], weighted-median 681 

(W-median) [21], weighted-mode (W-mode) [20], MRPRESSO [19], the contamination 682 

mixed model (CMix) [16], MRMix [18], MRAID [11], MRcML [12], GRAPPLE [13], 683 

MRLASSO [17], MRRAPS [14], MRROBUST [17], and CAUSE [15]. Comparison criteria 684 

included type-I error rate, power rate and estimated effect size. The statistical significance 685 

was declared at the nominal level α=0.05. In power rate estimation, only effects in the same 686 

direction as the true effect were considered as potentially successful hits. Effects in the 687 

opposite direction were not considered regardless of their statistical significance. 688 

Because various methods may possess different type-I error rates, comparing raw 689 

power rates may be unfair. To ensure a fair comparison of power rates, the raw power rate 690 

was corrected by calibrating it with the type-I error rate estimated at the corresponding null 691 
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condition. This correction was only for comparison purpose. It allows all methods to operate 692 

under the assumption of possessing a correct type-I error rate of 0.05 693 

Powercor=Powerraw– type-I+0.05. 694 

CAUSE requires a substantial number of background SNPs spanning the genome to 695 

estimate its model parameters. To meet this requirement, we generated an additional random 696 

set of 100,000 independent SNPs that are associated with neither the exposure nor the 697 

outcome. This combination of 100,000 background SNPs and the IVs was used for 698 

estimating nuisance parameters (step 1), while only the IVs were used for causal inference 699 

(step 2). For all other methods, only the IVs were used for causal inference. 700 

Due to their high computational demands, CAUSE and MRPRESSO were assessed 701 

across 200 iterations. 702 

Real data application 703 

Lean body mass is an important physiological index. Low ALM, coupled with 704 

diminished muscle strength and reduced physical performance, serves as a defining criterion 705 

for the onset of sarcopenia [60], which is a critical condition that can significantly impair 706 

function, lead to physical disability, and is a major modifiable risk factor for frailty in older 707 

adults [61, 62]. Lipids are another cluster of metabolites related to energy balance [63, 64]. 708 

Disorders of lipid metabolism can co-occur with the loss of skeletal muscle mass [65, 66]. 709 

However, the mutual relationship between ALM and lipid traits has not been well-studied. 710 

Uncovering their causal relationships is thus needed to facilitate the prediction and 711 

intervention of sarcopenia. 712 

As a real application, we conducted a comprehensive bidirectional MR study between 713 
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ALM and four lipid traits, including HDL-C, LDL-C, TC, and TG using two data sources: 714 

the UKB internal cohort and the summary statistics released by GLGC. The study (project 715 

number 41542) was covered by general ethical approval for the UKB study, and was 716 

approved by the Northwest Centre for Research Ethics Committee (11/NW/0382). All 717 

participants provided informed consent. 718 

The study design is displayed in Supplemental Figure 7. In brief, we performed both 719 

the UKB-internal analysis and the UKB-GLGC joint analysis. In the UKB-internal analysis, 720 

we randomly divided the entire UKB cohort into two independent sub-samples (UKB_S1 721 

and UKB_S2). For each exposure-outcome pair (e.g., ALM-TC), one sub-sample served as 722 

the exposure sample, while the other served as the outcome sample. This process was 723 

repeated by reversing the roles of the two sub-samples so that two independent sets of 724 

summary statistics were generated [41]. In the UKB-GLGC analysis, the whole UKB cohort 725 

was used to generate GWAS summary statistics for ALM, while the GLGC data (excluding 726 

UKB participants) provided summary statistics for the lipid traits. In total, for each 727 

exposure-outcome pair, we generated three datasets that are mutually independent in 728 

exposure and/or outcome, so that the results from them could cross-validate each other. 729 

To evaluate the influence of sample overlap, we also applied a MR analysis in which 730 

both the exposure and the outcome summary statistics were derived from the whole UKB 731 

cohort, so that both samples completely overlapped.  732 

The details of the analysis are described in Supplemental Notes. In brief, the GWAS of 733 

UKB samples was performed with BOLT-LMM [67]. Genome-wide significant (p<5.0 �734 

10(*) SNPs were selected from the exposure sample, followed by clumping (LD r2=0.01 735 
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and window size=500 kb) to select eligible IVs using TwoSampleMR R package. In the 736 

UKB-GLGC joint analysis, GWAS of ALM was conducted in the whole UKB cohort, while 737 

the GWAS summary statistics of lipid traits were derived from the released GLGC results 738 

including no UKB participants. In the UKB-overlapping analysis, the GWAS summary 739 

statistics of both ALM and lipid traits were derived from the whole UKB cohort. The QC 740 

and MR analysis procedure are the same across various analyses. However, in analyses 741 

using UKB samples only (UKB-internal and UKB-overlapping), palindromic IVs were not 742 

excluded, while in the UKB-GLGC joint analysis, palindromic IVs were excluded to avoid 743 

strand orientation error. 744 

Mouse-model experiments 745 

The experimental procedures and treatments conducted in this study were ethically 746 

reviewed and approved by the Animal Care Ethical Committee of Soochow University, 747 

Suzhou, China, ensuring compliance with animal welfare guidelines and regulations. 748 

Male C57BL/6 mice, aged 8 weeks and weighing 20 ± 5 g, were procured from 749 

Shanghai Lingchang Biotechnology Co., LTD. These mice were housed in a controlled 750 

environment with a temperature of 23 ± 1 ◦C and a 12:12-hour light-dark cycle (lights on 751 

from 07:00 to 19:00), and they had free access to food and water throughout the experiment. 752 

Following a 1-week acclimatization period, the mice were randomly assigned to two 753 

groups: the control group (N=12) and the TC group (N=12). Standard feed was obtained 754 

from Double Lion Experimental Animal Feed Technology Co., LTD, Suzhou. The control 755 

group received a standard diet consisting of 71% normal diet food, 20% protein, 4% fat, and 756 

5% fiber. In contrast, the TC group received a high-cholesterol diet comprising 68.3% 757 
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normal diet food, 1.3% cholesterol, 18.4% lard, and 12% protein. This dietary intervention 758 

continued for a duration of 8 weeks. 759 

Body composition analysis, including measurements of total body mass, fat mass, lean 760 

mass, and fluid content, was conducted on live animals without the use of anesthesia. This 761 

analysis was performed using small animal MRI equipment (Minispec LF50 body 762 

composition analyzer, Bruker, Billerica, MA, USA). To conduct the measurements, each 763 

mouse was placed in a specially designed plastic holder tailored for mice, without the need 764 

for sedation or anesthesia. Subsequently, the holder containing the mouse was positioned 765 

within the measuring space of the MRI system. To ensure the accuracy of the results, 766 

measures were taken to prevent the mice from moving within the holder during the scanning 767 

process. Each scan lasted approximately 2 minutes, during which the MRI equipment 768 

captured detailed data on the body composition of the mice. 769 

Blood biochemistry analysis was conducted using a Hitachi 7100 clinical chemistry 770 

analyzer in accordance with the manufacturer's guidelines. Approximately 500 µL of plasma 771 

was collected from each mouse and transferred to a gel tube containing lithium heparin. 772 

Subsequently, the plasma samples were centrifuged at 5000 rpm using a refrigerated 773 

centrifuge set at 4°C for 15 minutes to obtain 160–200 µL of serum. In cases where the 774 

volume of serum obtained was insufficient for analysis, it was diluted with deionized water 775 

at a ratio of 1:2 to ensure proper loading for analysis. This process ensured accurate and 776 

reliable blood biochemistry measurements for each sample. 777 
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For each trait, the difference of measurement between the endpoint and the baseline 778 

was analyzed. The comparison was made between the control group and the intervention 779 

group using the Wilcoxon rank test in R package.  780 
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https://alkesgroup.broadinstitute.org/BOLT-LMM/) were used to perform association 789 

analysis in the simulated data and in the UK Biobank data, respectively. The MR analyses 790 

were performed using R (v.4.3.2, https://cran.r-project.org/). The R package TwoSampleMR 791 

(v0.5.7, https://github.com/MRCIEU/TwoSampleMR) was used to implement the IVW, 792 

MREGGER, W-median, and W-mode methods. MRAID 793 

(https://github.com/yuanzhongshang/MRAID), CAUSE (v1.2.0, 794 

https://github.com/jean997/cause), MRcML (https://github.com/xue-hr/MRcML/), 795 

GRAPPLE (https://github.com/jingshuw/GRAPPLE), MRMix 796 

(https://github.com/gqi/MRMix), mr.raps (https://github.com/qingyuanzhao/mr.raps), 797 

MR-PRESSO (https://github.com/rondolab/MR-PRESSO) were used to implement 798 

respective methods. MendelianRandomization (v0.9.0, 799 

https://cran.r-project.org/web/packages/MendelianRandomization/index.html) was used to 800 

implement the CMix, MRLASSO and MRROBUST methods [68]. The R package dfoptim 801 

(v2023.1.0, https://cran.r-project.org/web/packages/dfoptim/index.html) was used to 802 

optimize high-dimensional likelihood function.  803 
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Figure legends 804 

Figure 1. Diagram of the proposed method. 805 

Four elements are involved: IV G, exposure X, outcome Y, and confounder U. X and Y are 806 

represented by their association z-scores with G. There are three potential pathways from G 807 

to Y, depending on G’s pleiotropic status: valid (purple), uncorrelated pleiotropic (blue) and 808 

correlated pleiotropic (red). The causal effect ∆ (green) exists in all pathways. After 809 

removing the causal effect ∆ from zY (lower panel), the residual outcome z-score ���  810 

contains information on pleiotropic effects only. Depending on in which pathway G is, ���  811 

has a pathway-specific distribution (right panel), which is used to differentiate valid and 812 

pleiotropic IVs. 813 

Figure 2. The distribution of outcome z-scores at valid and pleiotropic IVs. 814 

The influence of three factors on the distribution of outcome z-score was evaluated: outcome 815 

sample size (NY=1e5 or 2e5), the variance of IV-specific heritability to the outcome (���), 816 

and the proportion of positive pleiotropic IVs (fp=0.5, 0.7 or 1.0). The IV-specific 817 

heritability ��
�  was drawn from an exponential distribution with a mean 5e-5 or 1e-4 so 818 

that its variance ���=(5e-5)2 or (1e-4)2. The exposure sample size was set to be NX =2e5. The 819 

causal effect of X on Y was set to be r=0.05. zY is IV-outcome z-score. ���  is the residual of 820 

zY after removing the causal effect. var���,+,-�� � is the theoretical variance assuming fp=1.0. 821 

At valid IVs, both zY and ���  conform to a standard normal distribution. At pleiotropic IVs, 822 

the variance of ���  exceeds one and escalates with increasing NY and/or ���. When fp=1.0, 823 

the variance of ���  aligns well with var���,+,-�� �, and amplifies when fp<1.0, peaking when 824 
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the positive and negative pleiotropic IVs are evenly balanced (fp=0.5). zY has a similar 825 

distribution to ��� . 826 

Figure 3. The performance of MRZ in detecting pleiotropic effects. 827 

A total of 200 IVs and 1000 iterations were simulated. A, The proportion of pleiotropic IVs 828 

ranges from 10%-60%. The relative proportion of correlated pleiotropic IVs is 50%. The 829 

power of detecting pleiotropy was declared at S 
 0.05 level. B, Presented is the mean 830 

estimated proportion of pleiotropic IVs. Error bar is its standard deviation. Four scenarios 831 

were simulated, correlated pleiotropic effects and no causal effect (correlated_null), 832 

correlated pleiotropic effects and causal effect (correlated_causal), uncorrelated pleiotropic 833 

effects and no causal effect (uncorrelated_null), and uncorrelated pleiotropic effects and 834 

causal effect (uncorrelated_causal). C, In this simulation, the proportion of pleiotropic IVs 835 

was fixed at 60%, while the relative proportion of correlated pleiotropic IVs ranges from 836 

10%-60%. Both causal and null scenarios were simulated. Presented is the mean estimated 837 

proportion of correlated pleiotropic IVs. The error bar is its standard deviation. D, the per-IV 838 

correlated pleiotropic effect was defined as the product of the proportion of correlated 839 

pleiotropic IVs and the mean correlated pleiotropic effect. The IV-specific heritability to the 840 

confounder was drawn from an exponential distribution with a mean 1e-4, 5e-5, or 0, 841 

respectively. These different settings correspond to different magnitudes of correlated 842 

pleiotropic effects. 843 

Figure 4. Corrected power rate of various methods for testing causal effect. 844 

A total of 200 IVs were simulated. The sample sizes for both exposure and outcome samples 845 
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were 2e5. The 200 IVs explained approximately a portion of 5.8% of the exposure variance. 846 

A positively dominated pleiotropic setting was simulated, in which 70% pleiotropic IVs 847 

were simulated to have positive pleiotropic effects while the remaining 30% were simulated 848 

to have negative pleiotropic effects. In addition, half pleiotropic IVs were simulated to be 849 

correlated with the corresponding IV-exposure effects. The causal effect r was set to be 0.05 850 

(positive effect) or -0.05 (negative effect). The statistical significance was declared at 851 

S 
 0.05 level. Raw power rate was corrected by calibrating it with the type-I error rate 852 

estimated at the corresponding null condition, using the equation 853 

Powercor=Powerraw– type-I+0.05. 854 

Figure 5. Estimated causal effect size of various methods. 855 

The causal effect r was set to be 0.05 (positive effect) or -0.05 (negative effect). The mean 856 

effect size across 1,000 iterations is presented. 857 

Figure 6. The randomized controlled experiment intervened by TC in mice. 858 

Male C57BL/6 mice were randomly allocated to control group (N=12) and intervention 859 

group (N=12), followed by intervention by TC diet in the TC group for 8 weeks. For each 860 

trait, the difference of measurement between the endpoint and the baseline was analyzed. 861 

The comparison was made between the control group and the intervention group using the 862 

Wilcoxon rank test. ***, P<0.001; **, P<0.001; NS, non-significant (P>0.05).  863 
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Table 1, Performance of various methods with all valid IVs. 864 

 
r=0.00 

 
r=0.05 

Method Type-I error 
 

Power Effect ME 

MRZ 0.052 
 

0.999 0.049 0.008 

CAUSE 0.001 
 

0.800 0.050 0.008 

W-mode 0.002 
 

0.104 0.050 0.033 

MREGGER 0.049 
 

0.950 0.049 0.011 

MRMix 0.068 
 

0.259 0.049 0.025 

IVW 0.065 
 

0.999 0.049 0.008 

W-median 0.031 
 

0.948 0.049 0.010 

GRAPPLE 0.056 
 

0.999 0.050 0.008 

MRcML 0.067 
 

0.999 0.050 0.008 

RAPS 0.057 
 

0.999 0.050 0.008 

MRROBUST 0.061 
 

0.999 0.049 0.008 

MRLASSO 0.073 
 

0.998 0.049 0.008 

CMix 0.054 
 

0.998 0.049 0.008 

MRPRESSO 0.050 
 

0.998 0.049 0.008 

MRAID 0.047 
 

0.997 0.049 0.008 

Notes: A total of 1,000 iterations were simulated. In each iteration, the sample size for both 865 

exposure and outcome samples was set to be 200,000. A total of 200 IVs were simulated, all 866 

of which are valid having no pleiotropic effect on the outcome. The 200 IVs explain 867 

approximately a portion of 5.8% of the exposure variance. Causal effect size was set to be 868 

r=0.00 (null) or r=0.05 (causal). Effect, mean estimated effect size across the 1,000 869 

iterations; ME, mean error, defined as the absolute error of the estimated effect size from the 870 

true effect size r=0.05. 871 
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Table 2, Type-I error rates of various methods under pleiotropic effects. 872 

PleiotropicIVs(%) MRZ CAUSE W-mode EGGER MRMix MRAID IVW W-median CMix GRAPPLE MRcML MRROBUST MRLASSO RAPS MRPRESSO 

Uncorrelated pleiotropy 

10 0.05 0.00 0.00 0.06 0.03 0.06 0.15 0.05 0.07 0.04 0.12 0.08 0.10 0.08 0.08 

20 0.04 0.00 0.00 0.06 0.06 0.08 0.30 0.07 0.12 0.13 0.26 0.12 0.16 0.16 0.19 

30 0.04 0.00 0.00 0.05 0.05 0.14 0.47 0.12 0.24 0.31 0.42 0.24 0.30 0.31 0.49 

40 0.07 0.01 0.01 0.06 0.09 0.22 0.60 0.21 0.40 0.54 0.61 0.47 0.51 0.50 0.66 

50 0.05 0.01 0.01 0.06 0.10 0.31 0.69 0.30 0.53 0.68 0.75 0.69 0.71 0.61 0.83 

60 0.04 0.02 0.01 0.05 0.22 0.44 0.77 0.45 0.73 0.81 0.87 0.83 0.89 0.73 0.92 

Correlated pleiotropy 

10 0.03 0.00 0.00 0.10 0.02 0.04 0.32 0.03 0.05 0.03 0.10 0.05 0.07 0.06 0.11 

20 0.06 0.00 0.00 0.12 0.04 0.08 0.62 0.08 0.12 0.25 0.21 0.11 0.19 0.20 0.25 

30 0.05 0.01 0.00 0.16 0.05 0.10 0.81 0.17 0.20 0.62 0.39 0.24 0.38 0.51 0.69 

40 0.04 0.01 0.01 0.20 0.05 0.15 0.93 0.30 0.34 0.87 0.57 0.59 0.67 0.82 0.91 

50 0.05 0.02 0.01 0.24 0.08 0.25 0.98 0.49 0.54 0.97 0.74 0.93 0.89 0.94 0.95 

60 0.05 0.02 0.03 0.28 0.18 0.40 0.99 0.67 0.70 0.99 0.88 0.98 0.97 0.98 1.00 

Notes: A total of 200 IVs and 1,000 iterations were simulated. Sample size for both exposure and outcome samples was set to be 2e5. The 200 IVs explain 873 

approximately a portion of 5.8% of the exposure variance. In the case of uncorrelated pleiotropy, 70% of all pleiotropic IVs were randomly selected to have 874 

positive pleiotropic effects while the remaining 30% pleiotropic IVs were simulated to have negative pleiotropic effects. In the case of correlated pleiotropy, 875 

50% of pleiotropic IVs were simulated to be correlated with the corresponding IV-exposure effects. The causal effect r was set to be 0. The significance 876 

threshold was set to 0.05. 877 
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Table 3, Bidirectional causal effects of ALM and lipid traits identified by MRZ. 878 

   
Forward (ALM->lipids) 

 
Reverse (lipids->ALM) 

Trait Samples N IVs R2 F fpleio r SE P 
 

IVs R2 F fpleio r SE P 

TC 
                 

 
UKB_S1/UKB_S2 220K/216K 268 0.06 52.5 0.32 -0.08 0.02 3.65E-6 

 
100 0.06 131.6 0.69 -0.05 0.04 0.22 

 
UKB_S2/UKB_S1 220K/216K 261 0.06 52.3 0.33 -0.08 0.02 1.01E-6 

 
115 0.06 112.9 0.77 -0.07 0.03 0.03 

 
UKB/GLGC 440K/912K 716 0.09 64.3 0.61 -0.07 0.01 3.64E-7 

 
497 0.09 175.1 0.88 -0.05 0.02 0.02 

LDL-C 
                 

 
UKB_S1/UKB_S2 220K/216K 268 0.06 52.5 0.37 -0.05 0.02 2.67E-3 

 
85 0.05 139.6 0.74 -0.06 0.04 0.13 

 
UKB_S2/UKB_S1 220K/216K 261 0.06 52.3 0.46 -0.06 0.02 3.54E-4 

 
92 0.05 129.0 0.63 -0.06 0.03 0.05 

 
UKB/GLGC 440K/825K 718 0.10 64.4 0.56 -0.04 0.01 4.97E-3 

 
397 0.08 188.8 0.66 -0.04 0.02 0.01 

TG 
                 

 
UKB_S1/UKB_S2 220K/208K 267 0.06 52.4 0.56 0.01 0.03 0.75 

 
109 0.05 107.6 0.66 0.03 0.02 0.15 

 
UKB_S2/UKB_S1 220K/209K 260 0.06 52.1 0.53 -0.02 0.02 0.33 

 
113 0.05 103.4 1.00 -0.05 0.04 0.28 

 
UKB/GLGC 440K/849K 715 0.09 64.3 1.00 -0.03 0.05 0.49 

 
461 0.07 148.1 1.00 -0.04 0.03 0.23 

HDL-C 
                 

 
UKB_S1/UKB_S2 220K/196K 268 0.06 52.5 0.71 -0.01 0.04 0.78 

 
191 0.10 110.0 0.69 -0.03 0.02 0.21 

 
UKB_S2/UKB_S1 220K/196K 261 0.06 52.3 0.77 -0.03 0.04 0.46 

 
197 0.09 103.0 0.73 -0.03 0.02 0.16 

 
UKB/GLGC 440K/874K 719 0.10 64.5 0.98 -0.04 0.07 0.53 

 
565 0.09 153.4 0.85 0.02 0.02 0.49 

Notes: The entire UKB cohort was randomly divided into two independent sub-samples (UKB_S1 and UKB_S2). For the UKB-internal analysis, the two 879 

sub-samples were used as exposure and outcome samples, respectively. For the UKB-GLGC joint analysis, the entire UKB sample was used for ALM, while 880 

GLGC summary statistics were used for lipid traits. For each ALM-lipid pair, three datasets were analyzed. TC, total cholesterol; LDL-C, low-density 881 
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lipoprotein cholesterol; TG, triglyceride; HDL-C, high-density lipoprotein cholesterol; Samples, the two samples used for ALM/lipid traits; N, sample size, 882 

K represents kilo; IVs, the number of IVs; R2, the portion of exposure variance explained by all IVs; F, F-statistic; fpleio, the estimated proportion of 883 

pleiotropic IVs; r, estimated causal effect; P, p-value. The significance threshold was set at 6.25�10-3 (0.05/8). Significant associations were marked in bold.884 
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