
 

 

1

Title 1 

A deep intronic variant in MME causes autosomal recessive Charcot-Marie-Tooth neuropathy 2 

through aberrant splicing.  3 

Authors 4 

Bianca R Grosz1,2, Jevin M Parmar3,4, Melina Ellis1,2, Samantha Bryen5,6, Cas Simons 5,6, 5 

Andre L.M. Reis5,7,8, Igor Stevanovski5,7, Ira W. Deveson5,7,8, Garth Nicholson2,11, Nigel 6 

Laing3, Mathew Wallis9,10, Gianina Ravenscroft3, Kishore R. Kumar2,11,12,13, Steve Vucic2,14, 7 

Marina L Kennerson1,2,11 8 

ORCID: 9 

Bianca R Grosz: 0000-0002-6926-0551 10 

Jevin Parmar: 0000-0003-1864-8094 11 

Melina Ellis: 0000-0002-8542-048X 12 

Samantha Bryen: 0000-0002-4140-8622 13 

Cas Simons: 0000-0003-3147-8042 14 

Andre L.M Reis: 0000-0002-7300-1157 15 

Igor Stevanovski: 0000-0002-7713-1979 16 

Ira W Deveson: 0000-0003-3861-0472 17 

Mathew Wallis: 0000-0002-5441-1732 18 

Garth A Nicholson: 0000-0001-9694-066X 19 

Nigel Laing: 0000-0001-5111-3732 20 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 24, 2024. ; https://doi.org/10.1101/2024.04.22.24306048doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2024.04.22.24306048


 

 

2

Gianina Ravenscroft: 0000-0003-3634-211X 21 

Kishore R Kumar: 0000-0003-3482-6962 22 

Marina L Kennerson: 0000-0003-3332-5074 23 

 24 

Affiliations:  25 

1. Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney, NSW 2139, 26 

Australia 27 

2. The University of Sydney, Camperdown, NSW, 2050, Australia 28 

3. Rare Disease Genetics and Functional Genomics Research Group, Harry Perkins 29 

Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 30 

6009, Australia 31 

4. Centre for Medical Research, Faculty of Health and Medical Sciences, The University 32 

of Western Australia, Perth, WA 6009, Australia 33 

5. Centre for Population Genomics, Garvan Institute of Medical Research, and UNSW 34 

Sydney, Sydney, NSW, Australia 35 

6. Centre for Population Genomics, Murdoch Children’s Research Institute, Melbourne, 36 

VIC, Australia 37 

7. Genomics and Inherited Disease Program, Garvan Institute of Medical Research, 38 

Sydney, NSW, Australia. 39 

8. Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia. 40 

9. Tasmanian Clinical Genetics Service, Tasmanian Health Service, Hobart, TAS, 41 

Australia. 42 

10. School of Medicine and Menzies Institute for Medical Research, University of 43 

Tasmania, Hobart, TAS, Australia. 44 

11. Molecular Medicine Laboratory and Neurology Department, Concord Repatriation 45 

General Hospital, Hospital Rd, Concord, NSW, 2139, Australia 46 

12. Translational Neurogenomics Group, Genomic and Inherited Disease Program, The 47 

Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, 48 

Australia 49 

13. St Vincent's Healthcare Campus, Faculty of Medicine, UNSW Sydney, Level 5, De 50 

Lacy Building, St Vincent's Hospital, Darlinghurst, NSW, 2010, Australia.  51 

14. Brain and Nerve Research Centre, The University of Sydney, Sydney, NSW 2139, 52 

Australia 53 

 54 

 55 

56 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 24, 2024. ; https://doi.org/10.1101/2024.04.22.24306048doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.22.24306048


 

 

3

Abstract 57 

Background: Loss-of-function variants in MME (membrane metalloendopeptidase) are a 58 

known cause of recessive Charcot-Marie-Tooth Neuropathy (CMT). A deep intronic variant, 59 

MME c.1188+428A>G (NM_000902.5), was identified through whole genome sequencing 60 

(WGS) of two Australian families with recessive inheritance of axonal CMT using the seqr 61 

platform. MME c.1188+428A>G was detected in a homozygous state in Family 1, and in a 62 

compound heterozygous state with a known pathogenic MME variant (c.467del; 63 

p.Pro156Leufs*14) in Family 2.  64 

Aims: We aimed to determine the pathogenicity of the MME c.1188+428A>G variant 65 

through segregation and splicing analysis.  66 

Methods:  The splicing impact of the deep intronic MME variant c.1188+428A>G was 67 

assessed using an in vitro exon-trapping assay.  68 

Results: The exon-trapping assay demonstrated that the MME c.1188+428A>G variant 69 

created a novel splice donor site resulting in the inclusion of an 83 bp pseudoexon between 70 

MME exons 12 and 13. The incorporation of the pseudoexon into MME transcript is predicted 71 

to lead to a coding frameshift and premature termination codon (PTC) in MME exon 14 72 

(p.Ala397ProfsTer47). This PTC is likely to result in nonsense mediated decay (NMD) of 73 

MME transcript leading to a pathogenic loss-of-function. 74 

Interpretation: To our knowledge, this is the first report of a pathogenic deep intronic MME 75 

variant causing CMT. This is of significance as deep intronic variants are missed using whole 76 

exome sequencing screening methods. Individuals with CMT should be reassessed for deep 77 

intronic variants, with splicing impacts being considered in relation to the potential 78 

pathogenicity of variants.  79 

Key Words (up to 5): Charcot-Marie-Tooth disease, splicing, MME, recessive, deep intronic 80 
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Introduction 81 

Charcot-Marie-Tooth neuropathy (CMT) is the most common inherited peripheral 82 

neuropathy, affecting 1/2500 individuals1. CMT is characterized by progressive length-83 

dependent loss of peripheral motor and sensory nerves, resulting in distal muscle weakness 84 

and sensory symptoms2. Patients are broadly divided into subtypes based on whether nerve 85 

conduction studies (NCS) indicating demyelinating (CMT1) or axonal (CMT2) forms of the 86 

disease. Recessive loss-of-function variants in the membrane metalloendopeptidase (MME) 87 

gene have been previously reported to cause axonal Charcot-Marie-Tooth neuropathy type 2T 88 

(CMT2T; OMIM: #617017)3–11. MME encodes for neprilysin, a widely expressed membrane-89 

bound metallopeptidase that has a key role in neuropeptide processing12. A significant portion 90 

of patients with axonal CMT remain genetically undiagnosed13–17, indicating that further 91 

disease-causing genes and pathogenic variants in known genes are yet to be identified.  92 

Splicing variants are increasingly being recognized as a cause of Mendelian disease18,19. The 93 

precise removal of introns (non-coding regions) and inclusion of exons (coding regions) in 94 

the final mature mRNA relies on the spliceosome and auxiliary splicing factors recognizing 95 

specific sequence motifs, such as the 5' donor splice site and 3' acceptor splice site. Splice-96 

altering variants can weaken or abolish recognition of the correct splice sites, or alternatively 97 

strengthen or create cryptic splice sites that mimic consensus splicing sequences20. These 98 

variants typically lead to one or more mis-splicing events that result in the skipping of partial 99 

or complete exons, and/or the retention of partial or complete introns 21–42. Pathogenic 100 

splicing variants have been found in several CMT genes including MPZ21,30,39,40, 101 

MFN222,30,31, LRSAM123, IGHMBP224, INF225, MCM3AP26, SH3TC230,32,38, GDAP127,42, 102 

SBF128, NDRG137, and FGD429. Variants affecting canonical splice donor and acceptor sites 103 

have also been described in MME 4,41.  104 
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Exon-trapping, also known as a mini-gene assay, is an in vitro technique used to identify 105 

exons in a genomic region of interest43. This is of particular use when relevant patient tissue 106 

is unavailable or when relevant transcripts may be unstable or degraded by nonsense 107 

mediated decay (NMD) 44. The genomic region of interest is cloned into an exon-trapping 108 

vector between two known exons. This exon-trapping vector is transfected into a cell line 109 

where it is transcribed and undergoes a series of post-transcriptional processes that include 110 

pre-mRNA splicing to create mature mRNA. This mRNA consists of the ‘trapped’ exons of 111 

the genomic region of interest flanked by the known exons, which can then be Sanger 112 

sequenced to characterize the ‘trapped’ exons. Comparison of ‘trapped’ exons between wild 113 

type and variant genomic sequences can also indicate if a candidate variant affects splicing 45–
114 

51. The well-validated exon-trapping vector pSpliceExpress 52 consists of known exons of the 115 

rat insulin gene, Ins2, and has been used previously to determine the splicing impacts of 116 

multiple pathogenic variants in Mendelian disease 45–51.   117 

Here we report a deep intronic variant in MME [chr3:155142758A>G (hg38); MME 118 

c.1188+428A>G], found in a recessive state in two Australian families. Exon-trapping 119 

revealed that this variant creates a novel splice donor site in MME intron 12 (NM_000902.5) 120 

which, along with a preceding existing cryptic splice acceptor site, results in the 121 

incorporation of an 83 bp pseudoexon in the MME transcript [chr3:155,142,675-155,142,757 122 

(hg38); r.1188_1189ins[1188+345_1188+427]]. The coding frameshift caused by this 123 

pseudoexon leads to a PTC in exon 14 and likely NMD of the MME transcript 124 

(p.Ala397ProfsTer47), resulting in a loss of MME function.  125 

  126 
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Materials and Methods: 127 

Subjects 128 

Members of Family 1 were recruited and informed consent was obtained for this study using 129 

protocols approved by the Sydney Local Health District Human Ethics Research Committee 130 

(2019/ETH07839). Recruitment and informed consent for the proband of Family 2 was 131 

approved by the Human Research Ethics Committee of the Royal Melbourne Hospital 132 

(HREC/16/MH/251). 133 

Variant Detection 134 

Genomic DNA for Family 1 was extracted from peripheral blood using the PureGene Kit 135 

(Qiagen) following the manufacturer’s instructions. WGS for two individuals in Family 1 136 

(V:1 and V:3) was outsourced to the Garvan Sequencing Platform. Paired-end sequencing 137 

reads of 150 base pairs were generated using the Illumina NovaSeq 6000 sequencing 138 

machine, with 30-fold average read depth.  139 

In Family 2, genomic DNA for the proband was extracted at the Department of Diagnostic 140 

Genomics (PathWest, Perth, Australia) using the QIAsymphonySP machine and 141 

QIAsymphone® DSP DNA Midi Kit. The proband underwent WGS at the Australian 142 

Genomics Research Facility (AGRF), Melbourne, following GATK4 best-practices. Paired-143 

end sequencing reads of 150 base pairs were generated using the Illumina NovaSeq 6000 144 

sequencing machine, with 30-fold average read depth. Parental DNA was not available for 145 

sequencing. 146 

WGS data processing was performed at the Centre for Population Genomics (CPG) following 147 

the DRAGEN GATK best practices pipeline. Reads were aligned to the hg38 reference 148 

genome using Dragmap (v1.3.0). Cohort-wide joint calling of single nucleotide variants 149 

(SNVs) and small insertion/deletion (indel) variants was performed using GATK 150 
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HaplotypeCaller (v4.2.6.1) with “--dragen-mode” enabled. Sample sex and relatedness 151 

quality checks were performed using Somalier (v0.2.15)53. Variants were annotated using 152 

VEP 105, and loaded into the web-based variant filtration platform, seqr54. A WGS search 153 

was conducted using the seqr45 platform for low minor allele frequency (<0.01) variants in 154 

CMT-related genes, for both Family 1 and 2 [gene list- Hereditary 155 

Neuropathy_CMT_IsolatedAndComplex (Version 2.14)55]. Additionally, variants were 156 

analyzed by the CPG Automated Interpretation Pipeline (AIP, 157 

https://github.com/populationgenomics/automated-interpretation-pipeline).  In silico splicing 158 

analysis was conducted using SpliceAI 56. 159 

Segregation Analysis 160 

The MME c.1188+428A>G variant in Family 1 and Family 2 was amplified using primers 161 

that spanned MME intron 12 (5’-CTCAGCCGAACCTACAAGGA-3’; 5’-162 

GCAAATGCTGCTTCCACAT-3’) to produce a 1264 bp amplicon [chr3:155,142,289-163 

155,143,552 (hg38)]. An internal sequencing primer was used (5’-164 

CTGTGTTAAAAGTAATTTCGGGG-3’) and the amplicon was Sanger sequenced. The 165 

MME c.467del variant in Family 2 was amplified (5’-GCAGAGCCGTATGCATCACT-3’; 166 

5’-TTCAGCTGTCCAAGAAGCACC-3’). A 717bp amplicon was produced 167 

[chr3:155,116,171-155,116,887 (hg38)], which was subsequently Sanger sequenced. 168 

 169 

Sanger Sequencing  170 

For Family 1, PCR amplicons were sent to Garvan Molecular Genetics, Garvan Institute 171 

(Sydney, Australia) for Sanger sequencing using BigDye Terminator cycle sequencing 172 

protocols. For Family 2, proband PCR amplicons were Sanger sequenced at AGRF, Perth 173 

using BigDye Terminator sequencing protocols. Sequences were visualized and analyzed 174 

using Snapgene Software version 7.1 (www.snapgene.com).  175 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 24, 2024. ; https://doi.org/10.1101/2024.04.22.24306048doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.22.24306048


 

 

8

 176 

Oxford Nanopore Technologies (ONT) Long Read Sequencing 177 

High molecular weight (HMW) DNA samples of the Proband in Family 2 were transferred to 178 

the Garvan Sequencing Platform for targeted long-read sequencing analysis on ONT 179 

instruments. Prior to ONT library preparations, DNA was sheared to ~20-25 kb fragment size 180 

using a MegaRuptor 3 instrument and visualized post-shearing on an Agilent FemtoPulse.  181 

Sequencing libraries were prepared from ~3-5 µg of HMW DNA, using native library prep 182 

kit SQK-LSK114, according to manufacturer’s instructions. Each library was loaded onto a 183 

R10.4.1 flow cell and sequenced on a PromethION device with live target selection/rejection 184 

executed by the ReadFish software package57. Detailed descriptions of software and hardware 185 

configurations used for ReadFish are provided in a previous publication58. Samples were run 186 

for a maximum duration of 72 h, with nuclease flushes and library reloading performed at 187 

approximately 24- and 48-h timepoints for targeted sequencing runs, to maximize sequencing 188 

yield. Raw ONT sequencing data was converted to BLOW5 format59 using slow5tools 189 

(v.0.3.0)60 then base-called using Guppy (v6). Resulting FASTQ files were aligned to the 190 

hg38 reference genome using minimap2 (v2.14-r883)61. Variants were called using clair362, 191 

phased using Whatshap63 and visualized using the Integrative Genomics Viewer (IGV, 192 

v2.17.3)64. 193 

Cell Culture  194 

The human HeLa cervical epithelial cell line (ATCC) was maintained in Dulbecco’s 195 

Modified Eagle’s Medium (DMEM)(Gibco) containing 10% (v/v) fetal bovine serum (FBS) 196 

(Gibco), +100 U/mL penicillin (Gibco), and 100 μg/mL streptomycin (Gibco) at 37°C in 197 

humidified air and 5% CO2. 198 
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Cloning Procedures 199 

The region surrounding MME c.1188+428A>G [chr3:155,141,790-155,143,755 (hg38)] was 200 

amplified from the genomic DNA of a heterozygous carrier of the c.1188+428A>G variant, 201 

using attB adapter primers (5’-AAAAAGCAGGCTTCGCTCTTAAATGGTTGGCTT-3’; 5’-202 

AGAAAGCTGGGTAACTAGACTCTTGGGGAAGGC -3’). The MME amplicon was then 203 

cloned into the exon-trapping pSpliceExpress vector between flanking Ins2 exons using a 204 

two-step Gateway cloning BP reaction (ThermoFisher). pSpliceExpress was a gift from 205 

Stefan Stamm (Addgene plasmid #32485)52. The pSpliceExpress-MME clones were then 206 

Sanger sequenced to verify the correct insertion of MME and to determine the 207 

c.1188+428A>G genotype of each clone (as the genomic DNA template was heterozygous 208 

for the variant).  209 

In vitro exon-trapping  210 

HeLa cells were grown to approximately 70% confluence in a 6-well plate. HeLa cells were 211 

separately transfected with either 2 μg of pSpliceExpress-MMEWT or 2 μg of pSpliceExpress-212 

MMEc.1188+428A>G using Lipofectamine 3000 (ThermoFisher). RNA extraction was performed 213 

48 h following transfection using the RNEasy Mini Kit (Qiagen), and reverse-transcribed 214 

template was prepared using the iScript cDNA Synthesis Kit (Bio-Rad). PCR amplification 215 

of cDNA was conducted using primers designed to anneal to the flanking Ins2 exons (5’-216 

CAGCACCTTTGTGGTTCTCA-3’; 5’-CAGTGCCAAGGTCTGAAGGT-3’). The RT-PCR 217 

amplicons were size fractionated using a 1.5% w/v agarose gel. The largest amplicon for each 218 

vector was gel-purified using Isolate II PCR and Gel Kit (Bioline) for Sanger Sequencing. 219 

In silico splicing analysis of reported MME variants 220 

All reported MME variants in gnomAD v.4.0.0 were detected by searching the gnomAD 221 

browser for the genomic region corresponding with the MME gene; ‘3-155024124-222 

155183704’(hg38).  The MME variants reported in gnomAD were then exported using the 223 
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‘Export Variants to CSV’ function. The consequences of the variants were described by 224 

gnomAD using the Variant Effect Predictor (VEP) annotation based on the most deleterious 225 

predicted functional effect of each variant 65 . These variants were then filtered for a minor 226 

allele frequency (MAF) <0.01 and a maximum SpliceAI ∆score >0.8 (high precision splicing 227 

change prediction66) as annotated by gnomAD.  228 

 229 

 230 

  231 
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Results:  232 

Clinical Phenotypes 233 

Family 1 consists of four affected siblings from a consanguineous family of European (non-234 

Finnish) background (Figure 1a). The phenotype was consistent with a generalized 235 

sensorimotor axonal neuropathy and sensory ataxia without cerebellar signs (Table 1), and 236 

was confirmed with NCS for individuals V:1 and V:6 (Table 2). Affected individuals had 237 

previously undergone diagnostic and research whole exome sequencing with negative results.  238 

Family 2 consists of one affected female born to a healthy, non-consanguineous couple 239 

(Figure 1b). Neurological examination revealed mild distal upper limb weakness and 240 

moderate distal lower limb weakness (Table 1). NCS showed evidence of an axonal 241 

sensorimotor neuropathy (Table 2). Bilateral MRI of the thighs and calves showed muscle 242 

atrophy (Supplementary Figure 1).   243 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 24, 2024. ; https://doi.org/10.1101/2024.04.22.24306048doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.22.24306048


 

 

12

Genetic Analysis  244 

WGS screening using the seqr platform in Family 1 revealed a single homozygous variant in 245 

two affected individuals (V:1 and V:3), MME c.1188+428A>G (NM_000902.5). This variant 246 

was reported in dbSNP build 15567 (rs61758195), with a low MAF in gnomAD v4.0.068 247 

(10/152120), All of Us (35/490,748)69, and TOPMED70 (15/264290). No homozygous 248 

individuals were reported in gnomAD, All of Us, or TOPMED. SpliceAI predicted that MME 249 

c.1188+428A>G could create a strong novel splice donor site (Score 0.97; where a SpliceAI 250 

score above 0.8 is considered a ‘high precision’ predicted splice variant56). This in turn 251 

strengthened the SpliceAI prediction for a cryptic splice acceptor site 83 bp upstream of the 252 

novel splice donor site (Score 0.99).  253 

Segregation analysis in Family 1 confirmed the biallelic inheritance of the MME 254 

c.1188+428A>G variant segregated with the CMT phenotype (Figure 1a).  Sanger 255 

sequencing of DNA from available individuals showed that all affected individuals were 256 

homozygous for the MME c.1188+428A>G variant and unaffected individuals were carriers 257 

(Supplementary Figure 2).  258 

WGS screening using the seqr platform and AIP was conducted in the proband of Family 2 259 

(II:1). The MME c.1188+428A>G variant was detected in a compound heterozygous state 260 

with a second MME variant (MME c.467del; p.Pro156Leufs*14), which has previously been 261 

reported as pathogenic41 (Figure 1b). Sanger sequencing validated the presence of each MME 262 

variant in the index individual (Supplementary Figure 3). As parental DNA was unavailable, 263 

ONT long-read sequencing was conducted to phase the heterozygous MME variants in the 264 

proband (Figure 1c-d). ONT long-read sequencing confirmed that MME c.1188+428A>G 265 

(boxed red in Figure 1c) and c.467del (boxed red in Figure 1d) were present on alternative 266 

haplotypes (hap-1: red, hap-2: blue) and therefore were in trans in the proband.   267 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 24, 2024. ; https://doi.org/10.1101/2024.04.22.24306048doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.22.24306048


 

 

13

In vitro exon-trapping of MME-pSpliceExpress vectors 268 

Two separate exon-trapping pSpliceExpress vectors were generated to assess the in vitro 269 

splicing impact of the MME c.1188+428A>G variant: pSpliceExpress-MMEWT (wild-type) 270 

and pSpliceExpress-MMEc.1188+428A>G (variant). A schematic of the constructs and relevant 271 

SpliceAI scores are shown in Figure 2a. RT-PCR products produced following transfection of 272 

these vectors were analyzed using gel electrophoresis (Figure 2b), which revealed a visible 273 

size difference between the wild-type (381 bp) and MME c.1188+428A>G amplicons (464 274 

bp). The gel-purified amplicons were Sanger sequenced and the sequencing was aligned to 275 

the WT MME mRNA sequence.  The sequenced products showed that the pSpliceExpress-276 

MMEWT produced a transcript that was correctly spliced between MME exon 12 and 13 277 

(Figure 2c). In contrast, exon-trapping of the pSpliceExpress-MMEc.1188+428A>G vector showed 278 

that an 83 bp pseudoexon had been spliced between MME exon 12 and 13 (Figure 2d).   A 279 

BLAT search71 using the sequence of the trapped pseudoexon revealed alignment to the 280 

intronic region directly upstream of the MME c.1188+428A>G variant [chr3:155,142,675-281 

155,142,757 (hg38)]. This suggests that the MME c.1188+428A>G variant creates a novel 282 

splice donor site leading to the aberrant inclusion of 83 bp of intronic MME sequence in the 283 

final spliced transcript, as predicted by SpliceAI. Prediction of the novel MME coding 284 

sequence caused by the introduction of the pseudoexon showed that a PTC was generated in 285 

exon 14 (p.Ala397ProfsTer47) at genomic position chr3:155,144,368 (hg38)(Supplementary 286 

Figure 4). This PTC likely leads to NMD of the MME transcript.   287 

In silico splicing analysis of MME variants  288 

All reported MME variants in gnomAD v.4.0.0 were assessed using the integrated SpliceAI 289 

scores to determine if splicing variants in MME were a likely underrecognized cause of 290 

disease. There were 37,264 total variants reported in MME in gnomAD, of which 35,673 291 

variants had a MAF <0.01. Of these, 88 variants had a maximum SpliceAI ∆score above 0.8 292 
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(Supplementary Table 1).  There were no homozygotes reported for any of the 88 MME 293 

putative splicing variants. The majority of these predicted splicing variants were predicted to 294 

directly change either the canonical splice donor sites (26/88) or canonical splice acceptor 295 

sites (30/88) of MME, including an inframe deletion (c.1317_1317+2del) and a frameshift 296 

variant (c.957+1del). An additional nine variants were predicted to affect a splicing region, 297 

including one which is also annotated as a synonymous variant (c.1188G>A; p.Lys396Lys). 298 

Nine missense variants (p.Asp209Gly, p.Ile217Ser, p.Glu282Val, p.Arg365Ile, p.Ser436Gly, 299 

p.Asp533Gly, p.Ile553Val, p.Val554Phe, p.Gln692Arg) and a synonymous variant 300 

(p.Gly417Gly) were also predicted to alter splicing. Twelve variants were annotated as 301 

‘intron variants’, of which two could be considered ‘deep intronic’ variants 302 

(c.1188+428A>G, described in this manuscript, and c.197-9871A>G). Interestingly, further 303 

analysis using SpliceAI demonstrated that MME c.197-9871A>G was predicted to create a 304 

splice donor site (Score 0.81) and strengthen an upstream cryptic splice acceptor site (Score 305 

0.81) in a similar manner to c.1188+428A>G, thereby possibly creating an in-frame 96 bp 306 

pseudoexon.  307 

 308 

  309 
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Discussion 310 

Here we report a deep intronic variant, MME c.1188+428A>G causing recessive CMT2T in 311 

two unrelated Australian families. This variant results in a pseudoexon that likely leads to 312 

NMD of the MME transcript, resulting in a loss-of-function. This is in keeping with 313 

previously reported MME variants which have broadly been characterised as ‘loss-of-314 

function’ variants. To our knowledge, this is the first report of a pathogenic deep intronic 315 

variant in MME. Given that a significant portion of patients with axonal CMT remain 316 

genetically undiagnosed13–17, it’s possible that deep intronic variants in MME explain a 317 

portion of this diagnostic gap. 318 

Individuals from Family 1 previously underwent both diagnostic WES and research WES, 319 

and the proband in Family 2 previously underwent targeted gene panel testing (PathWest 320 

neuro v3). These testing methods did not capture deep intronic regions and returned negative 321 

results. However, deep intronic regions have previously been shown to have a higher 322 

prevalence of variants than coding regions and canonical splice sites72. Our findings suggest 323 

that intronic SNPs should be analyzed to determine if they impact splicing before they are 324 

dismissed as benign. Detection and functional validation of deep intronic variants has 325 

previously been shown to increase diagnostic rates in other Mendelian diseases including X-326 

linked Alport syndrome73, inherited retinal disorders74,75,  and dystrophinopathy76,77.  
327 

Pathogenic deep intronic variants, such as described here, are likely to be underreported 328 

amongst CMT-causing genes due to a lack of detection by WES and targeted gene panels, 329 

and a lack of functional investigation upon detection.  330 

The MME c.1188+428A>G variant was reported in multiple different genetic ancestry groups 331 

in gnomAD v.4.0.068, including in the European (Non-Finnish) (8/68008), African/African 332 
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American (1/41432), and ‘remaining’ (1/2092) ancestry groups. This was also reflected in the 333 

‘All of Us’ Research Program69, which reported the MME c.1188+428A>G variant in the 334 

African (2/107,888) and European populations (33/256,804). Whilst it is possible that MME 335 

c.1188+428A>G represents a recurrent de novo variant, it is also likely that this variant has 336 

persisted at low levels in the global population. As this variant is missed by WES and may 337 

not be prioritised by variant-filtering approaches focusing on coding variants, this variant 338 

may therefore represent an underappreciated cause of recessive CMT. This is further 339 

supported by its detection in two Australian CMT families who are not known to be related. 340 

Whilst the predicted splicing variants reported in MME are individually rare, we have 341 

described eighty-eight variants in gnomAD that are predicted by SpliceAI to alter splicing. 342 

Nine of these variants were annotated as missense variants, and one was a synonymous 343 

change. This is of note as these ‘missense’ variants are often assumed to result in a single 344 

amino acid change, and synonymous variants are often considered functionally neutral, with 345 

their effect on splicing typically not assessed78. Our results suggest that the discovery of any 346 

of these eighty-eight variants in a homozygous or compound heterozygous state in an 347 

individual with CMT should prompt further functional investigation of their effect on splicing 348 

of the MME transcript.  349 

Prior to functional validation, MME c.1188+428A>G was considered a variant of uncertain 350 

significance (VUS) according to American College of Medical Genetics and Genomics 351 

(ACMG) criteria79 (BP4, PM2, PM3, PP1), However, the functional evidence generated by 352 

the splicing assay now allows for the addition of PVS1 (null variant in a gene where loss-of-353 

function is a known mechanism of disease) and PS3 (well-established in vitro or in vivo 354 

functional studies supportive of a damaging effect on the gene or gene product) criteria. This 355 

allows reclassification of the variant as ‘pathogenic’. Therefore, this work demonstrates the 356 
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importance of functional validation to confirm the effect of candidate variants on splicing to 357 

increase diagnostic rates for those with inherited disease. 358 

Previously described homozygous MME patients typically have a phenotype consistent with 359 

late-onset axonal neuropathy. In contrast, three of the four affected siblings in Family 1 360 

described childhood onset and the proband of Family 2 described symptom onset in early 361 

adulthood. It has also previously been reported that heterozygous MME variants can cause 362 

spinocerebellar ataxia type 43 (SCA43)80 as well as autosomal dominant CMT3. However, 363 

the individuals in Family 1 who were MME c.1188+428A>G heterozygotes were all 364 

clinically assessed as neurologically normal, including an individual who is in their seventh 365 

decade. Homozygous affected individuals in Family 1 were noted to have a sensory ataxia 366 

rather than cerebellar ataxia, although MRI brain studies were not conducted. Therefore, our 367 

findings here do not support a role for MME c.1188+428A>G to cause SCA43 or autosomal 368 

dominant CMT, and further expand the phenotype of recessive CMT2T. 369 

Understanding the specific effects of splice-affecting variants is crucial for developing 370 

potential therapeutic strategies. Antisense oligonucleotides (ASOs) that modulate splicing are 371 

an active area of research, including individualized approaches to treat rare genetic 372 

diseases81–83. Several antisense nucleotides that modify splicing have been approved by the 373 

United States Food and Drug Administration and have resulted in marked improvements in 374 

clinical outcomes in those with genetic diseases84–94. An FDA-approved “n-of-1” ASO, 375 

milasen, successfully blocked pathogenic pseudoexon inclusion in MFSD8 in a patient with 376 

neuronal ceroid lipofuscinosis type 794. ASOs which block pathogenic pseudoexons, such as 377 

that created by MME c.1188+428A>G, have also been described in in vivo preclinical 378 

models93,95–99. As such, individuals with the MME c.1188+428A>G variant may represent a 379 
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form of CMT that is treatable through personalized ASO therapy and warrants further 380 

investigation.  381 
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Figure Legends: 391 

Figure 1: The MME c.1188+428A>G (NM_000902.5) variant segregates with recessive 392 

CMT in two families. A) Family 1 pedigree showing the associated genotypes for the MME 393 

c.1188+428A>G (NM_000902.5) variant. Affected individuals in the fifth generation are 394 

homozygous (G/G). Unaffected individuals in the fifth (V) and sixth (VI) generation are 395 

heterozygous (A/G). Squares represent males and circles represent females, solid symbol 396 

denotes affected individual. The double line in the fourth (IV) generation indicates a 397 

consanguineous relationship. The MME c.1188+428 genotype is denoted beneath individuals 398 

who underwent Sanger sequencing, with the pathogenic ‘G’ allele in red text. B) A pedigree 399 

showing the associated genotypes for MME c.1188+428A>G and MME c.467del in the index 400 

individual in Family 2. C-D) Haplotype phasing showed that the c.1188+428A>G (C) and 401 

c.467del (D) variants were present on alternative haplotypes (light red and light blue), thus 402 

inherited in trans in the proband of Family 2. Phased targeted ONT long-read sequencing 403 

reads were visualized using the Integrative Genomics Viewer (IGV; v2.17.3).   404 

Figure 2. An exon-trapping assay was used to analyze splicing changes caused by the 405 

MME c.1188+428A>G variant. A) Schematic of the pSpliceExpress-MMEWT (wild-type) 406 

and pSpliceExpress-MMEc.1188+428A>G (variant) constructs. Both constructs consisted of an 407 

RSV LTR promoter region (blue) controlling transcription of a minigene of MME exons 12 408 

and 13 (grey) flanked by Ins2 exon 2 and Ins2 exon 3 (black). The constructs differed in the 409 

presence of either an A (wild type: green text) or a G allele (mutant: red text) at MME 410 

c.1188+428A>G. i) The wild type sequence was not predicted to contain any strong splice 411 

sites when assessed using SpliceAI, with a score of 0.11 for the acceptor site (purple text) and 412 

0.00 for the donor site (green text). ii) SpliceAI predicted that the MME c.1188+428A>G 413 

variant (red arrow) would create a strong splice donor site [Score: 0.97 (Δ 0.97); red text], 414 

which then strengthened the prediction of a splice acceptor site 83 bp upstream [Score 0.99 415 
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(Δ0.97); purple text]. The predicted 83 bp pseudoexon sequence is capitalized and boxed in 416 

red. B) The amplicon produced by the pSpliceExpress-MMEc.1188+428A>G vector (464 bp) 417 

showed a visible increase in product size when compared to the amplicon produced by 418 

pSpliceExpress-MMEWT (381 bp).  The 158 bp RT-PCR product produced by both vectors 419 

indicated splicing and ligation of the flanking Ins2 exon 2 and exon 3. Lanes: L: 420 

HyperLadder 100 bp (Bioline); WT: wild-type; NRTC: negative cDNA conversion control 421 

(no reverse transcriptase). NTC: negative PCR reaction control (no cDNA template). C) 422 

Sanger sequencing of the pSpliceExpress-MMEWT RT-PCR product confirmed correct 423 

splicing between MME exon 12 and 13. D) Sanger sequencing of the pSpliceExpress-424 

MMEc.1188+428A>G RT-PCR product revealed the presence of a novel 83 bp pseudoexon (red) 425 

between MME exon 12 and 13. Abbreviations: RSV LTR: Rous Sarcoma Virus Long 426 

Terminal Repeat promoter; Ins2: rat preproinsulin 2 gene. 427 

 428 

429 
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Table 1. Phenotypic characterization of individuals with recessive CMT MME variants reported in this manuscript. Abbreviations- AFO: Ankle 

foot orthoses; CMTNS: Charcot-Marie-Tooth Neuropathy Score; UL/LL: Upper Limb/Lower Limb 

Family # Family 1 Family 2 

Individual V:1 V:3  V:4 V:6 II:1 

Sex M F M M F 

Onset Fourth decade Childhood Childhood Childhood Early-adult 

Age at evaluation 

(years) 

60-65 65-70 65-70 65-70 50-55 

Presenting symptom Gait unsteadiness Difficulty running Difficulty sitting on crossed 

legs during childhood 

Difficulty running, 

multiple ankle sprains 

Bilateral leg weakness 

and sensory disturbance 

Atrophy UL/LL Yes/yes Yes/yes Yes/yes Yes/yes No/Yes 

(left calf only) 

Foot deformity None Pes cavus/hammer toes - Pes cavus Pes cavus 

Tone UL/LL Normal/reduced Normal/normal Normal, increased  Normal/normal 

Shoulder abduction 5 5 3 5 4 

Elbow flexion 4 5 3 4 5 

Elbow extension 4 5 3 4 5 
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Finger abduction 2 4 3 1 4 

Hip flexion 4 3 3 3 4 

Knee extension 4 3 3 4 4 

Knee flexion 4 3 3 4 4 

Ankle dorsiflexion 0 0 3 1 3 

Ankle plantarflexion 0 0 3 0 4 

Deep tendon 

reflexes UL/LL 

Absent/absent Absent ankle  Hyperreflexia knee, absent 

ankle  

Absent/absent Normal/ reduced ankle 

reflexes 

Plantars Absent - Absent Flexor Flexor 

Proprioception 

UL/LL 

Normal/reduced to 

the MTP 

- - Normal/reduced to the 

ankle 

Normal/reduced to ankle 

Vibration UL/LL Normal/reduced to 

ankle 

Absent in toes - Reduced to 

wrist/reduced to knees 

Reduced to mid-shin 

Pinprick UL/LL Normal/reduced to 

ankle 

Normal/reduced to the 

mid shin 

Reduced to elbows/reduced 

to knees 

Reduced to PIP 

joint/reduced to knees 

Reduced to mid-shin 

Reduced dorsum hand 

Temperature 

sensation UL/LL 

Normal/reduced to 

ankle 

- - Reduced to 

wrist/reduced to above 

Reduced to mid-shin 
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knee 

Other 

symptoms/signs 

Cough GORD and cough Corticospinal tract signs Nil Fatty infiltration on left 

gastrocnemius 

Gait High steppage/ataxic High steppage/ataxic Steppage gait High steppage/ataxic High steppage 

Romberg’s sign Positive Positive  Positive Mild sway 

Mobility aids AFO, walking stick 

and mobility scooter 

AFO, walker AFO, walker, mobility 

scooter 

Wheelchair AFO, elbow crutch 

CMTNS (version 2) 31 - 28/36 36 15 
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Table 2. Nerve conduction study (NCS) findings of individuals with recessive CMT MME variants reported in this manuscript. Abbreviations: 

APB: abductor pollicis brevis; ADM: abductor digiti minimi; EDB: extensor hallucis brevis; FHB: flexor hallus brevis; CMAP: compound 

motor action potential; CV: conduction velocity; NR: no response; SNAP: sensory nerve action potential; R: right, L:left.  

Family # Family 1 Family 2 

Individual V:1 V:6 II:1 

Age at NCS (years) 60-65 65-70 55-60 

Median nerve (digit II) [orthodromic(R)] 

SNAP (uV) NR NR 6.6 

CV (m/s) NR NR 50 

Ulnar nerve (digit V) [orthodromic(R)] 

SNAP (uV) NR 1 4.9 

CV (m/s) NR 40.2 51 

Sural nerve [orthodromic(R)] 

SNAP (uV) NR NR NR 

CV (m/s) NR NR NR 

Sural nerve [orthodromic(L)] 
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SNAP (uV) NR NR NR 

CV (m/s) NR NR NR 

Median nerve (APB) (R) 

CMAP (mV) NR NR 4.8 

CV (m/s) NR NR 41 

Ulnar nerve (ADM) (R) 

CMAP (mV) 2 0.6 6.6 

CV (m/s) 44.4 44.7 52 (wrist-below elbow) 

57 (wrist-above elbow) 

Peroneal nerve (EDB) (R) 

CMAP (mV) NR NR NR 

CV (m/s) NR NR NR 

Tibial nerve (FHB) (L) 

CMAP (mV) NR NR NR 

CV (m/s) NR NR NR 

Needle EMG Absent voluntary units in the right 
tibilias anterior and medial 
gastrocnemius muscles, as well as 
denervation-reinnervation changes in 

Absent recruitment of motor units in 
the right tibialis anterior, medical 
gastrocnemius, first dorsal 
interosseous and vastus lateralis 

Reduced recruitment of motor units 
in the right tibialis interior and right 
vastus medialis muscles. Discrete 
recruitment of muscle fibres in the 
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the right vastus lateralis muscle. muscles. Denervation-reinnervation 
changes were evident in the right 
deltoid, biceps brachii and triceps 
brachii muscles. 

right gastrocnemius muscle. 
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