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Abstract

Spatial quantification is a critical step in most computational pathology tasks, from guid-
ing pathologists to areas of clinical interest to discovering tissue phenotypes behind novel
biomarkers. To circumvent the need for manual annotations, modern computational pathol-
ogy methods have favoured multiple-instance learning approaches that can accurately predict
whole-slide image labels, albeit at the expense of losing their spatial awareness. We prove
mathematically that a model using instance-level aggregation could achieve superior spatial
quantification without compromising on whole-slide image prediction performance. We then
introduce a superpatch-based measurable multiple instance learning method, SMMILe, and
evaluate it across 6 cancer types, 3 highly diverse classification tasks, and 8 datasets involv-
ing 3,850 whole-slide images. We benchmark SMMILe against 9 existing methods, and show
that in all cases SMMILe matches or exceeds state-of-the-art whole-slide image classification
performance while simultaneously achieving outstanding spatial quantification.

Keywords: Computational Pathology, Multiple Instance Learning, Whole Slide Image
Classification, Spatial Quantification

1 Introduction

Spatial predictions are critical for computational pathology. For instance, pathologists assess

tissue samples visually, and explainable artificial intelligence (AI) tools are expected to produce

spatial maps to guide their attention [1–3] The discovery of spatial associations between tissue

phenotype and the corresponding genotype can provide biological insights [4, 5], guide biomarker

discovery [6, 7], and facilitate downstream tasks such as spatially resolved sequencing [8, 9].
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A key bottleneck in the development of spatially-aware computational pathology models is the

need for detailed spatial annotations, often unfeasible due to the vast scale of gigapixel images and

the need for specialized domain knowledge [10]. Multiple Instance Learning (MIL) has emerged

as the leading learning paradigm for whole-slide imaging (WSI) analysis [11], due to its ability

to efficiently utilize patient-level labels, which are readily obtainable from pathology reports.

The vast majority of MIL-based computational pathology models adopt a so-called

representation-based methodology with an attention mechanism to identify highly discrimina-

tive tissue regions, for example for cancer detection and diagnosis [12]. These approaches have

been hugely successful, achieving excellent slide-level classification performance. However, atten-

tion maps produced by representation-based MIL approaches are often imprecise and unreliable

for spatial analysis [13, 14]. This limitation significantly hampers the utility of these methods in

scenarios that require accurate phenotypic descriptions beyond a simple global label.

In this manuscript we introduce a new method that performs accurate spatial quantification

concurrently with WSI classification, called SMMILe (Superpatch-based Measurable Multiple

Instance Learning method). The method is based on instance-based MIL equipped with an

attention mechanism, a type of MIL with remarkable localization ability [15]. To address the

potential limitations of instance-based MIL approaches, specifically their inferior WSI-level pre-

diction capability and misdetection rate, SMMILe uses Neural Image Compression (NIC) [16], two

novel instance-based comprehensive attention modules, and a Bayesian refinement network. We

investigate the capabilities of SMMILe on 3 diverse families of pathology tasks in WSI analysis,

including metastasis detection, subtype prediction, and grading, presented as binary, multi-class,

and multi-label classification tasks. We study 8 datasets for 6 cancer types (Fig. 1a), including

lung, renal, ovarian, breast, gastric, and prostate cancer. We demonstrate that SMMILe achieves

state-of-the-art classification performance at the WSI level across cancer types (Fig. 1b). Impor-

tantly, it simultaneously provides spatial predictions that surpass 9 state-of-the-art computational

pathology methods by a large margin (Fig. 1c).
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Fig. 1: Study Overview and Evaluation. a, Study Overview. The distinct attention score
allocation mechanisms across different MIL methodologies are theoretically analyzed. Building
on this foundation, we present SMMILe, a novel MIL method, and compare it with nine SOTA
WSI classification techniques across six public and two in-house datasets. These datasets encom-
pass CPath tasks such as metastasis detection, subtype prediction, and ISUP grading across six
distinct cancer types. (see Methods for details on attention score allocation theorem, SMMILe
methodology, and evaluation datasets). b, Radar plot comparing the WSI-level classification per-
formance of SMMILe and baselines on all evaluation datasets, and examples of WSI predicted
labels by SMMILe. c, Radar plot comparing the patch-based spatial prediction performance
of SMMILe and baselines on all evaluation datasets, and examples of predicted spatial maps
by SMMILe. For binary and multi-class classification, red color represents the predicted tumor
region; for multi-label classification, different colors represent different predicted phenotypes.
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2 Results

2.1 Instance-based learning produces highly skewed attention maps by

design

Despite sharing a foundational MIL framework, instance-based (IAMIL) and representation-

based (RAMIL) multiple-instance learning methods diverge in their methodologies for assigning

attention scores to individual instances. Understanding these differences is critical to design a

framework that has the best of both worlds. With that objective, we analyze the mathemati-

cal formulation of the different frameworks by means of three theorems and a targeted synthetic

experiment (Section 4.1).

First, we find that, mathematically, RAMIL and IAMIL share a clear mutual link: RAMIL

with the most commonly used linear attention is strictly equivalent to Logit-based attention MIL

(LAMIL), a variant of IAMIL. The distinction in attention score allocation between LAMIL and

IAMIL is closely related to the properties of the output layer’s activation function.

Second, we find that as a consequence of its intrinsic mathematical formulation, IAMIL

assigns relatively lower attention scores to low-discriminative and non-discriminative instances,

and higher scores to those with highly discriminative power, compared to the allocation patterns

observed in LAMIL.

To examine the distinctions between RAMIL and IAMIL in the practical setting, we create

a distinguishable synthetic dataset with a ‘positive’ and a ‘negative’ class adhering to the MIL

settings (Fig. 2a, Supplementary Table 1). Then, we utilize the architecture of AB-MIL [17]

as the basis for RAMIL and modify it for IAMIL by conducting attention pooling at the instance

level (Fig. 2b, see Methods for details of theoretical findings and synthetic experiments). As

shown in Fig. 2c,d, we find that IAMIL tends to allocate attention scores to highly discrimina-

tive instances that are twice higher than RAMIL. However, other positive instances with lower

discriminative power have lower attention scores in comparison to those in RAMIL. In addition,

while the attention scores for most of the negative instances in IAMIL fall below 0.003, RAMIL

assigns a considerable portion above 0.01 – indicating that the negative instances are assigned

much lower attention scores by IAMIL as compared to RAMIL.

Together with our theoretical findings, these observations highlight the key limitation of

IAMIL: it produces highly skewed attention maps, focusing only on a limited subset of high-

discriminative regions within WSI, leading to a decreased recall rate for the relevant tissue regions.

Solving this critical shortcoming is the main barrier for IAMIL to achieve its potential as a

superior foundational approach for accurate spatial quantification in WSIs.
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Fig. 2: IAMIL versus RAMIL. a, Synthetic Data Generation. This synthetic MIL dataset
consists of two categories. For these, we designed three types of instance distributions using
Gaussian distributions: two are discriminative (positive) and one is non-discriminative (negative).
b, Frameworks of Three Attention MIL. First, all three methods calculate an attention score for
each instance by the attention network. Then, based on these scores, RAMIL combines data at
the representation level, LAMIL at the logit level, and IAMIL at the score level. c, Histograms
of raw attention scores for positive and negative instances. d, Histograms of softmax-normalized
attention score for positive and negative instances (RAMIL in blue, IAMIL in orange).
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2.2 Whole slide image classification

Building on from these results, we developed SMMILe, a superpatch-based measurable multiple

instance learning method. SMMILe is designed to benefit from the spatial awareness of IAMIL,

and equipped with custom modules that address the shortcomings identified previously.

SMMILe comprises a convolutional layer, an instance detector, an instance classifier, and

five novel modules (i.e., the slide pre-processing, the consistency constraint, the parameter-free

instance dropout, the delocalised instance sampling, and MRF-based instance refinement). The

convolution layer for the instance embeddings enhances their local receptive field. The instance

detector, designed with multiple streams, identifies the significance of each instance’s embed-

ding for different categories, facilitating multi-label classification tasks. The classifier assigns

each instance’s embedding to its respective category. Ultimately, the bag-level (WSI) classifi-

cation is determined by aggregating the product of detection and classification scores from all

instances (patches).

We evaluated the WSI-level classification performance of SMMILe on eight distinct cancer

datasets across three different categories of pathology tasks of increasing complexity.

The simplest category was binary classification. Both instances and bags are categorized into

only positive and negative classes (e.g. presence of cancer or not). As an example, we trained the

framework to detect breast lymph node metastases using the well-studied Breast (Camelyon16)

dataset [18]. We also studied multi-class classification, in which instances and bags can belong

to one of a number of positive categories, or to the negative class (e.g. different cancer subtypes

vs. no cancer). As an example, we studied four different examples of cancer subtyping tasks:

Lung (TCGA-LU, non-small cell lung cancer subtyping) [19, 20], Renal-3 (TCGA-RCC, renal

cell carcinoma subtyping, three categories) [21–23], Renal-4 (IH-RCC, renal cell carcinoma sub-

typing, four categories), and Ovarian (UBC-OCEAN, ovarian cancer subtyping) [24, 25]. Finally,

we considered the multi-label classification case, which remains relatively unexplored in previ-

ous computational pathology literature. Here a bag may contain instances of multiple positive

categories simultaneously, in addition to negative instances (e.g. mixed-type tumour). We eval-

uated three datasets for heterogeneity tumour analysis: Gastric (TCGA-STAD, gastric cancer

subtyping) [26], Gastric Endoscopy (IH-ESD, histotype classification for endoscopic submucosal

dissection specimens), and Prostate (SICAPv2, Gleason grading) [27].

All datasets were randomly divided at the patient level into five subsets to facilitate five-fold

cross-validation, with the results reporting the mean and variance for each metric.

We benchmarked SMMILe against the two fundamental attention-based MIL methods

(RAMIL and IAMIL), in addition to five current state-of-the-art MIL-based WSI classification
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methods: CLAM [28], DSMIL [29], TransMIL [30], DTFD-MIL [31], and AddMIL [13]. Moreover,

we consider two NIC-based WSI classification methods: the standard neural image compression

(NIC) approach [16], and NIC-WSS [32], an enhanced variant optimized for regional segmen-

tation. Except for the already tessellated Prostate dataset, we process these WSIs into patches

without overlapping. Patch embeddings are extracted from an identical layer (the third residual

block) of the ResNet-50, which has been pre-trained on the ImageNet dataset. This approach

is uniformly applied across all baselines, including two NIC-based methods initially utilizing an

encoder pre-trained on histopathological datasets, paralleling the encoder used in SMMILe to

ensure equitable comparison (see Methods for details of datasets and implementation).

SMMILe consistently surpasses comparative methods in WSI classification across nearly all

datasets for both accuracy and macro AUC score (Fig. 3a,c). SMMILe attains accuracy of

87.68%, 94.63%, and 87.32% on the Lung, Renal-3, and Prostate datasets, respectively, exceeding

the second-best methods by margins of 3.08%, 2.49%, and 2.92%. In the cases of Breast and

Ovarian datasets, while CLAM and DSMIL record the highest accuracy, SMMILe trails narrowly

by 1.2% and 0.2% in accuracy, respectively. However, SMMILe secures the top macro AUC

scores of 93.21% for the Breast dataset and 90.51% for the Ovarian dataset. The error bars

(Fig. 3a) and the box plot shapes (Fig. 3c) further underscore the robustness of SMMILe in

WSI classification across different datasets. The two methods based on NIC demonstrate sub-

optimal WSI classification performance on most datasets. This shortcoming originates mainly

from their intrinsic design, which is intended for handling WSI embeddings generated by pre-

trained encoders which are finely tuned for discriminative features pertinent to specific domains.

These results demonstrate that SMMILe can deliver superior and consistent WSI classification

performance across a wide range of cancer types and computational pathology tasks.

2.3 Spatial quantification and visualization

Beyond the accurate classification of entire WSIs, we wanted to assess the capabilities of SMMILe

for spatial quantification, i.e., patch-level classification, compared to existing methods. Spatial

ground truth annotations were available for eight datasets, either in their entirety (Breast, Gastric

Endoscopy, and Prostate datasets) or in part (Lung, RCC-3, RCC-4, and Gastric datasets).

The Ovarian dataset represents a unique case, with annotations available for only a subset of

patches within certain WSIs. Consequently, the evaluation of this dataset is confined to the spatial

quantification of these specifically annotated patches. None of the spatial annotations were used

for model training in any case.
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Fig. 3: Performance of WSI classification and spatial quantification. a-d, the WSI
classification (a,c) and spatial quantification (b,d) performance of different methods on eight
datasets, the accuracy, and macro AUC score are reported. In a, b, dashed lines represent the
performance of SMMILe. Error bars represent the standard deviation of 5-fold cross-validation.
In c, d, the individual model performance of each fold is shown via boxplot. e-f, the ablation
results of SMMILe. From left to right of e, the ablation setting of each variation, the macro AUC
score of each variation for WSI classification, and spatial quantification, respectively. In f, the
macro precision, recall, and F1 score of each variation for spatial quantification, respectively.

The derivation of patch-level predictions in representation-based attention MIL baselines

(RAMIL, CLAM, DSMIL, TransMIL, and DTFD-MIL) relies on the raw attention scores. In the

case of NIC and NIC-WSS, patch-level predictions are acquired from grad-CAM [33] outputs,

whereas, for the instance-based MIL methods (IAMIL, and AddMIL), predictions are based on

instance scores. SMMILe possesses an instance refinement network capable of directly generating

patch-level predictions.
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Across all evaluated datasets, SMMILe surpasses other methods by substantial margins (Fig.

3b,d and supplementary tables 3-10). It achieves macro AUC scores that either exceed or

approach 90% in nearly all datasets. An exception is the Gastric Endoscopy dataset, characterized

by its extremely imbalanced patient distribution, where SMMILe still demonstrates superior

performance. Specifically, SMMILe outperforms the second-best methods by over 20% on the

Lung, RCC-3, and RCC-4 datasets; by more than 10% on the Gastric, and Prostate datasets; by

nearly 10% on the Breast, and Gastric Endoscopy datasets. In the case of the Ovarian dataset,

given the incomplete and highly imbalanced patch-level annotations (a few non-tumor regions

are annotated) of this dataset, several methods report commendable accuracy and macro AUC

scores. However, while SMMILe only exceeds that of the second-best method (DTFD-MIL) by

3.29% in the macro AUC score, it significantly outperforms DTFD-MIL by 18.94% and 17.09%

in the accuracy and macro F1 score, respectively.

Meanwhile, SMMILe exhibits a significant improvement in macro precision, recall, and F1-

score (Supplementary Fig. 4), on the Lung, Ovarian, Renal-3, Renal-4, and Gastric datasets,

because WSIs in these datasets are diagnostic slides of primary tumors, encompassing a vast

array of both positive and negative instances. Consequently, SMMILe can effectively mitigate the

missed detection and false alarm issues that are prevalent with other baselines.

For the Breast dataset, characterized by a lower proportion of tumor area within each WSI,

which means the presence of tumors in only a few positive instances in most WSIs, IAMIL

manages to achieve commendable patch-level performance as well. However, the improvement of

SMMILe in the Prostate dataset is relatively modest when evaluated in terms of precision, and

recall. This dataset, comprising a modest collection of biopsy slides (153 in total), from which

only a limited quantity of instances can be generated, does not allow the proposed instance

refinement network to be fully leveraged due to the sparse availability of instances for training.

Nonetheless, SMMILe has a minimum of 17% improvement in macro AUC scores over other

baselines in the Prostate dataset, highlighting its superior capability in distinguishing instances

belonging to different histotypes.

Additionally, the spatial visualization results (Fig. 4) reveal that both representation-based

MIL (RAMIL, CLAM, DSMIL, TransMIL, DTFD-MIL) and NIC-based methods (NIC, NICWSS)

incur substantial false positive and false negative errors. Of these, NICWSS demonstrates better

consistency with respect to the ground truth. In general, instance-based MIL methods (IAMIL,

AddMIL) predominantly identify only a limited number of highly discriminative regions, aligning

with our theorem. SMMILe exhibits superior performance in spatial quantification, often pro-

ducing results nearly indistinguishable from the ground truth, even in challenging multi-label
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Fig. 4: Visualization of spatial quantification across eight datasets. In each dataset, the
predicted category of local regions is represented by different colors, whereas regions without color
are categorized as normal. The ground truth (GT) delineates the boundaries of tissue belonging
to different categories with lines of different colors. For TCGA-STAD and SICAPv2, GTs are
presented as patch-level masks. In the UBC-OCEAN case, the green annotation is normal tissue.

datasets. These results confirm that SMMILe successfully meets both objectives of precise WSI

classification and spatial quantification on various datasets.

2.4 Module integration improve SMMILe performance

We conducted comprehensive ablation studies to assess the contribution of each module in

SMMILe (Fig. 5a), including the consistency constraint, the parameter-free instance dropout
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(Fig. 5c), the delocalised instance sampling (Fig. 5d), the instance refinement network (Fig. 5e),

and the MRF constraint (Fig. 5e), each denoted as Cons, InD, InS, InR, and MRF, respectively.

From the WSI classification results (Fig. 3e, the first line chart), it is evident that the

baseline SMMILe configuration without any modules (index 0) establishes a robust benchmark,

attributable to the integration of the NIC feature compression layer with IAMIL. The InD

(index 2) and InS (index 3), acting as two forms of WSI-level augmentation strategies, further

enhance the performance of SMMILe across most datasets. However, there is an exception with

the Breast dataset, which focuses on breast cancer metastasis detection. Given that many WSIs

contain only a few positive instances (i.e., cancerous patches), InD and InS might, in certain

scenarios, mask all positive instances, adversely impacting the optimization process and the WSI

level classification performance of SMMILe. Moreover, the InR (index 4 and index 5) and MRF

(index 6) positively impact WSI classification performance by refining the decision boundaries

of the instance classifier, albeit to varying extents. Nonetheless, there are exceptions. The WSI

classification in the RCC-3 dataset is relatively straightforward, allowing all methods to achieve

high results. Elevating macro AUC performance from 99% to 100% is practically unattainable.

Additionally, the sparse presence of positive instances in the WSIs of the Breast and Gastric

Endoscopy datasets, along with the limited instance scenario in the Prostate dataset, reduces the

effectiveness of MRF (index 6). In certain cases, this reduction in effectiveness can even result in

decreased WSI classification performance.

From the patch-level spatial quantification results (Fig. 3e, the second line chart), it is appar-

ent that every module of SMMILe significantly enhances the spatial quantification performance

of SMMILe. Integrating with Cons (index 1), which is solely enacted on negative bags, leads to

a notable enhancement on the Breast and Gastric Endoscopy datasets, specifically, an increase

of 2% and 3% in macro AUC score, respectively. The InD (index 2) and InS (index 3) mod-

ules report enhancements in macro AUC scores ranging from 1-8%, across various datasets. InR

(index 4 and index 5) exerts a considerable impact across almost all datasets; for example, it

facilitates a macro AUC score improvement of approximately 11% for the RCC-4 dataset and 17%

for the Lung dataset. Meanwhile, by leveraging spatial smoothness, MRF (index 6) contributes

to additional improvements in macro AUC scores for all datasets, except for the Breast dataset,

where increases of about 1-8% are observed. Furthermore, more detailed metrics regarding spa-

tial quantification (Fig. 3f), including macro precision, recall, and F1-score, show that in most

datasets the baseline SMMILe (index 0) achieves good precision (Fig. 3f, the first bar chart),

but the recall is poor (Fig. 3f, the second bar chart). This aligns with our theoretical findings,
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which posit that instance-based attention MIL can accurately identify high-discriminative posi-

tive instances, yet often neglects many low-discriminative positive instances. Consequently, it can

be noted that each module enhances the recall capability of SMMILe while maintaining high pre-

cision, as well as improving the F1 score. It is noteworthy that the InR module (index 4, index 5,

and index 6), due to its capability to refine and align the decision boundaries for instance clas-

sification, contributes the most significant improvement to the performance of SMMILe in terms

of macro precision, recall, and F1-score.
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Fig. 5: Model Schema of SMMILe. a, Overview of SMMILe. b, Slide pre-processing. Each
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3 Discussion

To date, relying on patient-level diagnostic labels, which are easy to obtain, a vast number

of weakly supervised learning approaches, particularly MIL methods, have been developed for

WSI analysis. Most of them utilize attention-based representation-level aggregation for precise

WSI classification but overlook the spatial quantification required for many critical tasks and

discoveries in clinical pathology. Although these representation-based MIL methods can offer

spatial interpretability through the visualization of attention scores, which seems capable of

achieving spatial quantification, few works quantitatively assess their interpretability. Here, we

conducted a detailed evaluation of WSI-level classification and spatial quantification on 9 SOTA

weakly supervised WSI classification methods across 8 diverse datasets across 6 cancer types.

In addition to common binary and multi-class classification datasets, we also assessed 3 more

complex multi-label classification datasets. We demonstrated that although existing methods can

achieve satisfactory WSI classification performance, their spatial quantification capabilities are

inadequate for clinical applications and downstream analysis.

In this study, we delved into the theoretical underpinnings of how attention scores are allo-

cated differently across MIL methodologies, specifically between RAMIL and IAMIL. These

findings were further corroborated by synthetic experimentation. The theoretical exploration and

synthetic experimental evidence suggest that IAMIL, despite its inherent challenges (relatively

inferior bag-level prediction capabilities and a high precision yet low recall in positive instance

detection) holds superior potential for spatial quantification and interpretability in WSI analy-

sis compared to RAMIL. Subsequently, we illustrated that by integrating NIC, comprehensive

attention modules, and an instance refinement network into the IAMIL framework, it is possible

to develop a robust MIL method, SMMILe. Compared with other SOTA MIL methods, SMMILe

not only excels in superior and consistent WSI classification performance but also provides excel-

lent spatial quantification performance across a wide range of CPath tasks (metastasis detection,

subtyping, and grading), with only patient-level labels available for model training.

Furthermore, we demonstrated that the advancements in performance can be directly linked

to the innovative modules integrated within SMMILe. Specifically, NIC empowers SMMILe by

facilitating convolution operations that broaden the local receptive field of instance embeddings,

thereby boostingWSI classification performance. Two advanced comprehensive attention modules

(parameter-free instance dropout, and delocalised instance sampling) elevate SMMILe’s ability

to recognize positive patches with relatively low-discriminative features, improving its ability

to differentiate between such patches and those that are negative. Moreover, given that these

two modules incorporate stochastic processes, generating unique instance arrangements for each
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iteration, akin to WSI-level data augmentation also contributes to enhancing the classification

performance and robustness of SMMILe at the WSI level. Building on these enhancements, the

instance refinement network addresses a prevalent challenge in attention-based MIL methods:

the variability in the optimal decision threshold for attention scores at the patch level across

different WSIs. This variability complicates the task of selecting a universal threshold. The net-

work markedly bolsters SMMILe’s ability to discriminate at the patch level by learning a unified

decision boundary across different WSIs. When combined with the MRF energy constraint, it

further improves the spatial coherence of patch-level predictions, ensuring smoother transitions

and consistency in classifications across contiguous patches.

This work has certain limitations. While the evaluation has been performed on eight diverse

datasets, it was confined to H&E stained slides for histotype-based classification, due to the

available datasets; however, spatial quantification for (1) immunohistochemistry stained slides is

also a routine pathological analysis task; and (2) genotype-based classification task could provide

profound insights for understanding diseases, while the results of spatial quantification can be

validated through spatial transcriptomics. Additionally, the potential of SMMILe has not yet been

fully explored. Firstly, the scale of individual datasets is relatively small, with the largest dataset,

Lung (TCGA-LU), containing under 1,000 WSIs. Training on larger and more diverse datasets

could further enhance its performance. Secondly, the current instance embeddings are solely

based on the encoder pre-trained on ImageNet. Combining SMMILe with encoders meticulously

fine-tuned on large-scale pathological image databases could further boost its effectiveness.

In conclusion, we believe SMMILe possesses significant potential for clinical application: For

general pathology diagnostic tasks, SMMILe not only provides slide-level diagnoses but also offers

a comprehensive diagnostic rationale. For tasks involving the quantitative analysis of patho-

logical phenotypes, SMMILe enables precise spatial quantification, further supporting extensive

retrospective studies aimed at exploring the relationship between the proportions of different

pathological phenotypes and patient treatment responses or prognostic evaluations. For the task

of discovering new biomarkers, SMMILe has the potential to identify and quantify previously

unknown pathological phenotypes correlated with genotypes, thereby facilitating subsequent tar-

geted and quantitative analyses at the genetic level, such as single-cell and spatial transcriptomics

sequencing of subregions.
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4 Methods

4.1 RAMIL versus IAMIL

We delve into the distinct mechanisms of RAMIL and IAMIL, presenting novel theoretical con-

tributions that elucidate their differences. Central to our investigation are two pivotal questions,

addressed through three original theorems and a targeted synthetic experiment: (1) How does

the variation in the stage of attention aggregation lead to noticeable differences in the attention

score allocation? (2) How do these differences contribute to a reduced false positive rate in IAMIL

compared to RAMIL?

Our exploration of these questions reveals that, typically in the training process, IAMIL

assigns relatively lower attention scores to low-discriminative and non-discriminative instances,

and higher scores to those of high-discriminative, in comparison to the allocation patterns

observed in RAMIL.

Furthermore, it also disproves some previous interpretations regarding the inaccurate atten-

tion results in RAMIL [13]. Contrary to the belief that the attention score allocation in RAMIL

has poor interpretability due to instances contributing positively or negatively to bag-level pre-

dictions, or due to instance interactions at the classification stage, our findings suggest a different

explanation. In RAMIL, bag-level prediction logits can indeed be precisely decomposed into

marginal instance contributions as determined by the instance attention scores. However, the

properties of the output activation function result in a diminished contribution of these attention

scores to the bag-level prediction score. Consequently, during optimization, the loss constraint is

limited for attention score allocation, leading to a part of negative instances receiving relatively

high attention scores.

4.1.1 Preliminaries

Let {x1,x2, . . . ,xK} be a bag of instances (patches) extracted from a WSI X ∈ RW×H×3, with

the WSI-level label Y as the supervision, where xk ∈ RD×D×3 is a patch represented by its raw

pixels and K represents the number of instances in this bag. In WSI analysis, representation-

based MIL approaches have emerged as the dominant paradigm due to their superior bag-level

prediction performance [34–37]. These approaches typically involve three essential steps, which

are as follows: (1) Embedding all instances into the same representation space by utilizing the

pre-trained encoder e(·), a bag of representations is denoted as {h1,h2, ...,hK}, where hk =

e(xk). (2) Aggregating these instance-level representations into a bag-level representation H

by a permutation-invariant function, e.g., mean, and max pooling. (3) Mapping the bag-level
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representation to prediction score of each category (P = {P1, P2, . . . , PC} and C stands for the

number of categories) using the linear projection function f(·) with an output activation function

σ(·), e.g., sigmoid, and softmax. Take the mean pooling aggregation as an example, the bag-level

prediction score P can be represented in the following form:

P = σ

(
f(

1

K

K∑
k=1

hk)

)
, (1)

However, representation-based MIL approaches remain a challenge in obtaining individual

scores for each instance to ensure interpretability, which is of paramount importance in medical-

related applications [38]. An ingenious solution to address this issue is the utilization of attention-

based MIL pooling [17], named ABMIL, which incorporates an auxiliary network to generate

attention weights for the representation of each instance. This mechanism enables fully trainable

and highly flexible MIL pooling, while also providing easily interpretable individual scores for

each instance. Consequently, the bag-level prediction score P of RAMIL can be reformulated as:

P = σ

(
f(

K∑
k=1

ak ∗ hk)

)
, (2)

Despite the remarkable achievements of RAMIL, some researchers argued that their visual

interpretations are inexact and incomplete [13, 14]. Alternatively, the instance-based MIL

approaches adopt the strategy of “mapping first then aggregation”. The bag-level prediction score

P with the mean pooling aggregation can be formulated as:

P =
1

K

K∑
k=1

σ (f(hk)) , (3)

Following this strategy, scores for each instance can be naturally obtained, ensuring high inter-

pretability. Nonetheless, the utilization of instance-based MIL for WSI analysis remains limited.

This is attributed to the inaccurate instance labels, e.g., the pseudo label of non-discriminative

instances, during MIL training, which leads to insufficient training of the linear projection func-

tion f(·) responsible for predicting instance scores in Eq. (3), thereby affecting the bag-level

prediction [39]. A straightforward and reasonable solution is to introduce the attention mecha-

nism into the aggregation of instance-based MIL. It differs from RAMIL, where attention scores

are generated for the representation of each instance. In this case, the attention mechanism is

applied directly to the instance scores. This solution assumes that the attention scores could mit-

igate the negative impact of inaccurate instance scores. As a result, the bag-level prediction score
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P of IAMIL can be calculated as:

P =

K∑
k=1

ak ∗ σ (f(hk)) , (4)

where the logit of f(·) for kth instance is denoted as lk = f(hk). This formulation is essentially

the same as the Multiple Instance Detection Network (MIDN) [15] commonly used in WSOD.

MIDN treats the image as a bag and considers the regions generated by object proposal methods

as instances. The network is trained with two branches, one for detection and the other for

classification, corresponding to g(·) and f(·) in IAMIL. From Eq. (2) and Eq. (4), the only

distinction between RAMIL and IAMIL is identified in the integration stage of the attention

mechanism (Fig. 2b). Considering observations from substantial existing related works (Section

1), along with the spatial quantification in both methodologies fundamentally rely on the attention

scores (A = {a1, a2, . . . , aK}), it is reasonable to assume that even this slight distinction between

RAMIL and IAMIL can result in notable differences in how attention scores are allocated. This

insight prompts us to explore how these two methodologies diverge in their mechanisms for

assigning attention scores to individual instances, despite sharing a foundational MIL framework.

4.1.2 Connecting RAMIL with IAMIL

We start by converting the formulation of RAMIL (Eq. 2) into a form that parallels with IAMIL.

Theorem 1. RAMIL is rigorously equivalent to a specialized variant of IAMIL, wherein

aggregation is conducted at the logit level,

σ

(
f(

K∑
k=1

ak ∗ hk)

)
= σ

(
K∑

k=1

ak ∗ f(hk)

)
. (5)

This specific form of MIL termed Logits-based Attention MIL (LAMIL), was initially proposed

in [40] (without attention pooling) for WSOD (see Supplementary Proof 1 for details).

4.1.3 The Gradient Descent Process of Attention MIL

Building upon Theorem 1, the divergence between RAMIL and IAMIL is equivalent to the dif-

ference between Eq. (4) and the right side of Eq. (5), i.e., where the activation function σ(·) is

applied (Fig. 2). To simplify the following derivation, we extend the RAMIL and IAMIL to more

general frameworks. This involves utilizing the class-wise attention mechanism and taking the

sigmoid function as the output activation function σ(·). Consequently, the attention score ak is

expanded to a vector ak = {a1k, a2k, . . . , aCk }, where ack denotes the softmax normalized attention
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score of the k-th instance specific to category c. This configuration broadens the applicability of

attention MIL across various scenarios, including multi-label classification tasks.

Moreover, since the softmax function leads to entangled relationships between different

attention scores across instances, we use the expression of softmax normalized attention scores

ack = ez
c
k/
∑K

j=1 e
zc
j to replace each of them and assess the gradient descent process of zck in

RAMIL and IAMIL. Let lk = {l1k, l2k, . . . , lCk } represent the raw outputs (logits) of the linear pro-

jection function f(·), where lk = f(hk) and each lck signifies the logits value specific to category

c. Furthermore, let Lc denote the aggregated logits for category c, it can be defined as:

Lc =

K∑
k=1

ez
c
k∑K

j=1 e
zc
j

∗ lck, (6)

accordingly, the predicted score for category c in RAMIL is calculated as follows:

P̌c = σ(Ľc) =
1

1 + e
−

∑K
k=1

e
žc
k∑K

j=1
e
žc
j
∗ľck

, (7)

and the prediction score for category c in IAMIL is given by:

P̂c =

K∑
k=1

âck ∗ p̂ck =

K∑
k=1

eẑ
c
k∑K

j=1 e
ẑc
j

∗ 1

1 + e−l̂ck
, (8)

where p̂ck = σ(l̂ck). To theoretically explore the variation in the attention score allocation under

conditions where RAMIL and IAMIL are optimized to the same level, we posit the following

assumptions:

Assumption 1: Except for the two attention networks, denoted as ǧ(·) and ĝ(·), both models

share identical parameters in their pre-trained encoders e(·) and linear projection functions f(·),

which means l̂ci = ľci for any instance xi and category c.

Assumption 2: Upon training with the same dataset and employing an identical loss function, ∃

ǧc(·), ĝc(·) with weight w̌c
g, ŵ

c
g, for any c ∈ [1, C] and k ∈ [1,K − 1], the following two conditions

are satisfied: (1) the bag-level predictions of RAMIL and IAMIL for the same inputs are identical,

i.e., σ(Ľc) = P̌c = P̂c, for any category c. (2) The gradients of the final losses with respect to the

respective network parameters are equivalent, i.e., ∂Ľc

∂w̌c
g
= ∂L̂c

∂ŵc
g
.

Theorem 2. If Assumptions 1 and 2 hold, the relationship in magnitude between ǎci and âci

is directly proportional to the corresponding magnitude relationship between (σ(Lc) − σ(lci )) and
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∂σ(Lc)
∂Lc

(Lc − lci ), which is valid for any instance xi, i ∈ {1, 2, . . . ,K − 1}:

ǎci
âci

=
σ(Lc)− σ(lci )
∂σ(Lc)
∂Lc

(Lc − lci )
. (9)

Theorem 2 addresses the first question, asserting that the difference in the attention score

allocation between RAMIL and IAMIL is intrinsically linked to the properties of the activation

function σ(·) across the relevant interval (see Supplementary Proof 2 for details).

4.1.4 Properties of Activation Function in Local Intervals

Based on Theorem 2, we can infer that if the absolute distance |σ(Lc) − σ(lci )| surpasses the

projection of |Lc − lci | on the tangent line t(l), then the attention score ǎci allocated to the i-th

instance by RAMIL exceeds that assigned by IAMIL âci , where t(l) denotes the tangent line to

σ(l) at Lc. Conversely, if the projection on the tangent line is greater, the result is reversed.

Also, the activation function (sigmoid) exhibits concavity in the interval [0,∞) and convexity

in the interval (−∞, 0]. This dichotomous property markedly affects the relative magnitudes of

ǎci and âci . As a result, the magnitude relationship between them is not fixed but is intricately

linked to the interval demarcated by Lc and lci .

Theorem 3. If |lci | > |Lc| and Lc · lci > 0, then ǎci < âci . Conversely, if lci ∈

(min(Lc, Lint),max(Lc, Lint)), then ǎci > âci . where Lint is the additional intersection point

between t(l) and σ(l).

Typically, the i-th instance is considered to possess high discriminability if |lci | > |Lc|

and Lc · lci > 0. In contrast, the instances are regarded as relatively low-discriminative or

non-discriminative instances. Furthermore, owing to the specific properties of the additional inter-

section point, the conditions outlined in Theorem 3 cover nearly all instances, and few instances

are likely to satisfy the rest condition, i.e., |lci | > |Lint| and Lint · lci > 0 (see Supplementary

Proof 3 for details).

Theorem 3 responds to the second question, highlighting that IAMIL, in contrast to RAMIL,

tends to give higher attention scores to high-discriminative instances. Simultaneously, it assigns

lower attention scores, which are several times lower, to instances with relatively low discrim-

inability and those non-discriminative instances. Therefore, the instance-level classification results

derived from the distribution of attention scores, IAMIL exhibits a very low false positive rate

in comparison to RAMIL. However, this also results in only a small part of high-discriminative

instances receiving high attention scores, leading to a relatively lower recall rate for positive

instances of each category.

19

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 26, 2024. ; https://doi.org/10.1101/2024.04.25.24306364doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.25.24306364
http://creativecommons.org/licenses/by-nc-nd/4.0/


4.1.5 The Synthetic Experiment

In the previous section, we assert the near improbability of the condition |lci | > |Lint| and Lint·lci >

0. This assertion plays a critical role in delineating the differences in attention score allocation

between RAMIL and IAMIL. Consequently, to empirically observe the distributions of Lc, and

lci in both RAMIL and IAMIL, as well as to examine the distributions of the raw and softmax

normalized attention scores (zci , and aci ), we construct a synthetic dataset that follows the MIL

setting (Fig. 2a, Supplementary Table 1).

For this synthetic MIL dataset, we generate a set of bags with corresponding bag-level labels

where each bag consists of K instances, denoted as X̃ = {x̃1, x̃2, ..., x̃K}. Each instance is a

vector with d dimensional features, x̃k ∈ Rd. To simplify, this synthetic MIL dataset is defined

with two categories. Consequently, we establish three types of instance distributions, used to

generate discriminative (positive) instances for two categories, and non-discriminative (negative)

instances. Each instance distribution is comprised of Gaussian distributions with different means

and variances for each of the d dimensions, from which we sample each feature of instances.

Therefore, the bag of each category is composed of a random proportion r of positive instances

belonging to that category, supplemented with the remaining negative instances. It is important

to note that the positive instance distributions for the two categories are significantly different,

while their distributions, compared to the negative instances, are similar but non-overlapping.

This setup is designed to synthesize positive instances with high and low discriminative features.

Ultimately, the dataset comprises a total of 2,00 bags, each containing 1,000 instances. The ratio

of positive instances within each bag is randomly sampled from a range of 0.1 to 1. The dataset

is evenly distributed across the two categories, with each category consisting of 100 bags.

For model training, we utilize the architecture of AB-MIL[17] as the basis for RAMIL and

modify it for IAMIL by conducting attention pooling at the instance level. Given that the instance

x̃k is not an image, we omit the embedding step. Only the linear projection function f(·), with

4 hidden nodes, and the gated attention network g(·), with 8 hidden nodes in the first layer and

4 hidden nodes in the second layer, are used and trained. The loss function employed is binary

cross entropy computed for each category. The Adam optimizer is used, with the learning rate set

to 0.001. To ensure a consistent level of convergence between RAMIL and IAMIL, the training

process is stopped when the loss decreases below a fixed threshold, specifically 0.05.

We can observe that when the model converges, the values of |Lc| for most bags are greater

than 5 (Supplementary Fig. 3(a)), resulting in corresponding |Lint| values surpassing 144

(Supplementary Fig. 2(c)). The values of |lci | for most negative instances are less than 5
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(Supplementary Fig. 3(b)), which means they are positioned within the interval demar-

cated by Lc and Lint. Also, the values of |lci | for a few positive instances are greater than |Lc|

(Supplementary Fig. 3(c)). Following Theorem 3, this indicates that IAMIL assigns lower

attention scores to the majority of negative instances, while a minority of positive instances

receive higher attention scores compared to those assigned by RAMIL. This distinction is also

evident from the distribution differences of aci and zci in RAMIL and IAMIL (Supplementary

Fig. 3(d-g)).

4.2 SMMILe

Reiterating the definition in Section 4.1, a set of patches {x1,x2, . . . ,xK}, each of size D × D,

are extracted from a WSI X of size W × H, with the corresponding label Y . The objective of

SMMILe is to learn a transformation function that maps the set of patches {x1,x2, . . . ,xK} to

the WSI-level label Y. Concurrently, it also aims to predict instance-level labels y1, y2, . . . , yK

for each individual patch.

In MIL settings, supervision is exclusively available at the WSI level. Previous research has

predominantly focused on binary or multi-class classification, where each WSI is assigned to a

single category, i.e.,Y is represented as a scalar in binary classification or as a C-dimensional one-

hot vector in multi-class classification. In this paper, we expand SMMILe to accommodate multi-

label classification. Consequently, Y = {Y1, Y2, . . . , YC} is configured as a C-dimensional vector,

with each element Yc being a binary indicator that is independently distributed, representing

the presence or absence of each category in this WSI. This adaption aligns SMMILe with more

general CPath scenarios, capturing multiple phenotypic categories that may concurrently exist

in a single WSI.

4.2.1 Network Architecture

The proposed network architecture (Fig. 5) begins with a pre-trained encoder e(·), mapping

all instances {x1,x2, . . . ,xK} to a uniform embedding space {h1,h2, . . . ,hK}. Given the large

number of instances contained within each WSI, the encoder training becomes time-consuming

and computationally strenuous, leading to the parameters of the encoder generally being kept

frozen. In this paper, we employ the ResNet-50 [41], pre-trained on ImageNet [42], as our encoder

e(·). Feature maps are extracted following the third residual block and aggregated through global

average pooling, producing a 1024-dimensional embedding for each instance. This pre-trained

encoder has been demonstrated to be effective in numerous RAMIL studies for CPath [28, 30,

31, 43].
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Subsequently, a convolutional layer cov(·) is introduced, which further maps the instance

embeddings to a lower dimension. The parameters of cov(·) are trainable for increasing the flex-

ibility of the entire MIL framework. While existing works often employ a linear projection layer

for this function, we replace it with a convolutional layer to enhance the representation ability

of our framework for downstream tasks by introducing WSI-level local receptive fields. Similar

to NIC [16], we reposition the instance embeddings {h1,h2, . . . ,hK} according to their posi-

tions in the WSI, and fill other positions with zero embeddings, creating a compressed WSI

Hnic ∈ RW
D ×H

D×1024 to enable the convolution operation. We utilize 128 convolutional kernels

with size 3 × 3 and padding operation, ensuring that the size of the compressed WSI is main-

tained after convolution, i.e.,H′
nic = cov(Hnic), whereH

′
nic ∈ RW

D ×H
D×128. Then, the compressed

embeddings {h′
1,h

′
2, . . . ,h

′
K} of all instances can be obtained from H

′

nic based on their respec-

tive positions. It is important to note that when the size of convolutional kernels is set to 1× 1,

cov(·) degrades to a linear projection layer, which is particularly effective for specific MIL tasks

with very limited positive instances in each bag, such as cancer metastasis detection.

In the final stage, the compressed embedding of each instance h′
k, serves as the input for

an instance detector g(·) and an instance classifier f(·). The instance detector, analogous to the

attention network in RAMIL frameworks, utilizes the gated attention mechanism [17]. It com-

prises three linear projection layers with 64, 64, and C hidden nodes, respectively, assigning

category-wised raw attention scores {z1k, z2k, . . . , zCk } to each instance. Then these raw attention

scores {zc1, zc2, . . . , zcK} of each category are normalized via softmax function across all instances,

resulting in detection (attention) scores ac1, a
c
2, . . . , a

c
K , where the sum of them remains invariant

to K and equals to 1. The instance classifier f(·) is a linear projection layer with C hidden nodes.

It maps the compressed embedding h′
k of each instance to category-related scalars {l1k, l2k, . . . , lCk }.

These scalars are then normalized over categories using the softmax function for multi-class classi-

fication, or the sigmoid function for binary and multi-label classification, yielding the classification

scores {p1k, p2k, . . . , pCk } for each instance.

The bag-level prediction score Pc for each category is then obtained by taking the dot product

of classification and detection scores, and summing them up, as defined in the aggregation formula

in Eq. (4).

4.2.2 Instance-based Comprehensive Attention

To enhance the comprehensive attention capability of SMMILe toward all discriminative

instances, we adhere to the traditional MIL by categorizing bags into two types: negative bags and

positive bags. Negative bags do not contain any positive instances of any category, as exemplified
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by WSI of normal tissue; whereas positive bags include positive instances of one or several cate-

gories. We propose (1) an attention consistency constraint for negative bags; (2) a parameter-free

instance dropout module; and (3) a superpatches-based delocalised instance sampling module for

positive bags. It is worth noting that the instance dropout and instance sampling modules pre-

sented in this section introduce diversity in instance combinations of each bag, effectively serving

as two forms of bag-level augmentation. This, in turn, enhances the performance of bag-level

predictions.

Consistency Constraint

A bag is classified as negative only if none of the instances within it belong to a positive category.

Thus, the classification of negative bags should not rely on a subset of instances but rather on

all instances. Instead of applying the same attention mechanism to both negative and positive

bags like previous RAMIL approaches, we introduce a consistency constraint for the attention

mechanism, which restricts all instances in a negative bag should having the same attention score.

This consistency loss is defined as follows:

Lcons =
1

CK

C∑
c=1

K∑
i=1

(ack − āc)
2
, (10)

where āc = 1
K

∑K
k=1 a

c
k. By applying this MSE loss penalty, the attention scores across all

instances in a negative bag become uniform, effectively ensuring that no individual instance

makes special contributions to any category. This uniformity explicitly boosts the classification

accuracy for negative bags as well as the recognition ability of SMMILe to negative instances,

thereby implicitly improving the comprehensive attention for discriminative instances.

Parameter-Free Instance Dropout

The comprehensive attention capability of SMMILe is limited by focusing mainly on high-

discriminative instances and neglecting others. An intuitive idea is that during the training

process, omitting high-discriminative instances while retaining bag-level supervision could encour-

age the model to focus on the remaining discriminative instances. This approach introduces an

additional challenge: determining the ideal instance dropout rate. Specifically, excessive instance

dropout during early, unstable training phases may obstruct model convergence. In contrast, a

low dropout rate in stable phases offers limited benefits. Additionally, with substantial variation

in positive instance proportions across different bags, selecting a uniform dropout rate effective

for all bags is unfeasible.
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To resolve this issue, we design a parameter-free instance dropout module (Fig. 5c) Instead

of applying dropout to attention scores, which do not directly reflect the contribution of each

instance towards the bag-level prediction score, this module targets the instance scores (i.e.,

the product of classification and detection scores for each instance), which have strict marginal

contributions to the bag-level prediction score [13]. For a set of instance scores {Ic1 , Ic2 , . . . , IcK}

of a bag, where Pc =
∑K

k=1 I
c
k, and Ick = ack · pck, we first apply Min-Max normalization to obtain

normalized instance scores {Ĭc1 , Ĭc2 , . . . , ĬcK}. Then, a corresponding set of random floating-point

numbers {ηc1, ηc2, . . . , ηcK}, η ∈ [0, 1] is generated. We compare them pairwise to obtain the instance

drop masks {Oc
1, O

c
2, . . . , O

c
K}. Finally, these instance drop masks are applied to the instance

scores, and the bag-level prediction score with instance dropout for category c is computed as:

P dp
c =

K∑
k=1

Oc
k · Ick, (11)

where Oc
k = [Ĭck < ηck], [·] denoting an Iverson bracket. It can be observed that the proposed

instance dropout module does not require any additional hyperparameters. The decision to drop

an instance is based on its instance score Ick. The higher Ick, the less likely it is to meet the

condition Ĭck < ηck, making it more prone to be dropped.

Superpatch-based Delocalised Instance Sampling

Instance sampling emerges as another viable solution for enhancing the comprehensive attention

capability of SMMILe. By performing multiple rounds of random sampling within a bag, each

sampling generates a pseudo-bag composed of a subset of instances. The bag-level supervision is

then applied to guide predictions for these pseudo-bags. This approach enables the model to focus

on diverse sets of discriminative instances in each pseudo-bag, thus improving its comprehensive

attention ability. Nevertheless, this kind of random sampling is uncontrollable and may lead

to some pseudo-bags lacking positive instances, thereby introducing substantial noise into the

training process of the model. Here, we propose a superpatch-based delocalised instance sampling

module (Fig. 5d) to address this issue. Recall the compressed WSI Hnic we constructed for

a bag, wherein each pixel corresponds to a patch in the original WSI. We employ the Simple

Linear Iterative Clustering (SLIC) [44], a widely-utilized, non-trainable clustering-based partition

algorithm, to generate a set of superpatches {SP1,SP2, . . . ,SPS} fromHnic, where S indicates the

number of superpatches of each bag ((Fig. 5b)). This leads to patches that are spatially close with

similar representations being grouped into the same superpatch. Based on these superpatches,

instances of a bag can be divided into S subsets. By conducting T rounds of random sampling
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with replacement, where each round involves sampling one instance from each subset to create

a pseudo-bag with S delocalised instances, a total of T pseudo-bags are generated. The instance

sampling is also performed on instance scores directly. For t-th pseudo-bag, we have the sampled

instance scores {Ĩc1,t, Ĩc2,t, . . . , ĨcS,t} for category c, where Ĩcs is an instance score sampled from

superpatch SPs, and the bag-level prediction score of t-th pseudo-bag is calculated as:

P sp
c,t =

S∑
s=1

Ĩcs,t, (12)

Owing to the characteristic of superpatch, each pseudo-bag is composed of instances exhibiting

varied spatial and representation distributions, providing the necessary diversity to encom-

pass both positive and negative instances. Furthermore, sampling instances randomly from

superpatches in each round results in a diverse array of instance combinations. This variety mit-

igates the overshadowing effect of high-discriminative instances on low-discriminative instances

within the same pseudo-bag, consequently encouraging the model to focus more on those low-

discriminative instances. Additionally, integrating instance sampling with instance dropout is

particularly beneficial in scenarios where positive instances are predominant within a bag, such

as subtyping on primary tumor slides. The bag-level prediction score for the t-th pseudo-bag,

when instance dropout is applied, is computed as follows:

P sdp
c,t =

S∑
s=1

Oc
s · Ĩcs,t, (13)

where Oc
s is the instance drop mask for Ĩcs . This can be regarded as masking high-discriminative

superpatches.

Finally, all bag-level predictions generated by SMMILe, i.e., Pc, P
dp
c , {P sp

c,1, P
sp
c,2, . . . , P

sp
c,T }, and

{P sdp
c,1 , P sdp

c,2 , . . . , P sdp
c,T }, are supervised by bag-level label Yc of each category. The classification

loss for each bag is calculated as:

Lcls =
1

C

C∑
c=1

(
BCE(Pc, Yc) + BCE(P dp

c , Yc)
)

+
1

CT

T∑
t=1

C∑
c=1

(
BCE(P sp

c,t, Yc) + BCE(P sdp
c,t , Yc)

)
,

(14)

where BCE(P, Y ) stands for the binary cross entropy loss between the prediction P and the true

label Y .
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4.2.3 MRF-based Instance Refinement

The aforementioned modules endow SMMILe with the capability to distinguish between positive

and negative instances within each bag for different categories. However, due to the diversity

among different bags, such as variations in feature distributions and significant differences in the

proportions of positive instances, it is nearly impossible to choose a unified decision boundary

for instance-level classification across varying bags and categories. Consequently, we design an

instance refinement network to align features of instances of the same category within different

bags, thereby enabling us to learn a unified instance-level classification decision boundary across

diverse bags.

Instance Refinement Network

The instance refinement network is structured with N linear layers {v1(·), v2(·), . . . , vN (·)}. Each

layer is implemented with (C + 1) hidden nodes and employs a softmax activation function for

output generation. Here, C represents the number of categories for WSIs, excluding the negative

category. For the negative WSI, the label Y is encoded using a C-dimensional vector of zeros.

Consequently, the term (C+1) incorporates the negative category to account for instances. These

linear layers are assigned the identical task of generating predictions for individual instances but

involve different sets of instances with associated compressed embeddings and pseudo-labels for

training.

The challenge lies in acquiring pseudo-labels for network training. Leveraging the distinguish-

ing capability of SMMILe for instances of different categories within each bag, we propose an

online sample selection and labeling strategy. During each epoch of training, we can obtain a set

of instance scores {Ic1 , Ic2 , . . . , IcK} for category c from SMMILe. From this set, we select the top

θ percent of instances, labeling them as belonging to category c. This selection is restricted to

the categories present in each bag. For negative samples, we first compute the mean score across

different categories for each instance, represented as Īk = 1
C

∑C
c=1 I

c
k. Subsequently, we select the

bottom θ percent of instances from these averages {Ī1, Ī2, . . . , ĪK}, labeling them as negative, i.e.,

category (C+1). Consequently, the first linear layer v1(·) is trained using the compressed embed-

dings and pseudo-labels of the selected instances, represented as {(h′
1, y̆

1
1), (h

′
2, y̆

1
2), . . . , (h

′
J , y̆

1
J)},

where J denotes the total number of selected instances, and y̆1j is the first-round pseudo-label of

j-th selected instance.

Building on the concept of self-training, we employ the prediction results of instances from

v1(·) to supervise the learning of v2(·), and similarly for subsequent layers, to achieve a higher

degree of instance refinement. Specifically, the compressed embeddings of all instances in a bag are
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fed into vn(·), yielding prediction scores of these instances, denoted by {pn
1 ,p

n
2 , . . . ,p

n
K}, where

pn
k = vn(h

′
k) is a (C+1)-dimensional vector, where each element represents the probability of the

instance belonging to a corresponding category. Then, the proposed online sample selection and

labeling strategy is employed here, the selected instances and (n+1)-round pseudo-labels are used

to train the subsequent linear layer v(n+1)(·). It is crucial to note that since each linear layer in

the instance refinement network can generate predictions for the negative category (C+1), there

is no requirement for a separate selection process for negative samples, except for the training

process of v1(·). Also, the instances selected for each linear layer are likely to differ, while the total

number J remains constant. Through this strategy, every linear layer in the instance refinement

network can be concurrently trained with the SMMILe primary network in each epoch. The

refinement loss is defined as:

Lref =
1

NJ

N∑
n=1

J∑
j=1

CE
(
pn
j , y̆

n
j

)
, (15)

where CE(p, y) stands for the categorical cross entropy loss between the prediction p and the

pseudo-label y. The optimization process of the instance refinement network also facilitates learn-

ing more uniform discriminative instance features (generated by cov(·)) across different bags,

which enhances the bag-level prediction performance of SMMILe.

superpatch-based MRF Constraint

Nevertheless, the proposed sample selection strategy, which treats each instance as an indepen-

dent entity and only high-scoring instances from each category can be used for supervision,

may induce prediction biases in the instance refinement network. Moreover, the current instance

refinement network ignores the spatial relationship between instances (patches) within a bag

(WSI), which is important for the comprehensive detection of positive instances. Therefore, we

introduce a superpatch-based MRF constraint that incorporates local spatial smoothness at the

WSI level. This constraint requires the minimization of both the first-order energy within each

superpatch and the second-order energy between adjacent superpatches. Consider the n-th lin-

ear layer vn(·). The prediction scores for instances within the superpatch SPs are represented as

{pn
1 ,p

n
2 , . . . ,p

n
|SPs|}, where |SPs| signifies the count of instances in this superpatch. Furthermore,

the prediction score for superpatch SPs is calculated as p̄n
s = 1

|SPs|
∑|SPs|

i=1 pn
i , and it is surrounded

by Ms adjacent superpatches, whose prediction scores are denoted by {p̄n
s,1, p̄

n
s,2, . . . , p̄

n
s,Ms

}. The

MRF constraint loss for superpatch SPs, incorporating both first-order and second-order energy,
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is defined as follows:

Lmrf =
1

N

N∑
n=1

 λ1

|SPs|

|SPs|∑
i=1

∥pn
i − p̄n

s ∥
2

+
λ2

Ms

Ms∑
m=1

∥∥p̄n
s,m − p̄n

s

∥∥2) .

(16)

where λ1 and λ2 control the balance between first-order and second-order energy. This constraint

can implicitly propagate the pseudo-label information of high-scoring instances to the local regions

constrained by superpatches, thereby enhancing the spatial smoothness of instance prediction

scores.

4.3 Evaluation Datasets

Breast (Camelyon16) [18], employed for metastasis detection in breast cancer, exemplifies a clas-

sic binary classification task in WSI analysis. It comprises 399 WSIs with or without metastasis,

each accompanied by detailed pixel-level annotations.

Lung (TCGA-LU) employed for subtyping in non-small cell lung cancer, comprises a total of

937 WSIs, categorizing them into two subtypes: adenocarcinoma (LUAD) [19] and squamous cell

carcinoma (LUSC) [20]. The cancerous region of 523 WSIs was entirely annotated at the pixel

level by two experienced pathologists and four medical students.

Ovarian (UBC-OCEAN) [25] employed for subtyping in ovarian cancer, comprises a total of

513 WSIs, categorizing them into five subtypes: high-grade serous cancerous (HGSC), low-grade

serous cancerous (LGSC), endometrioid cancerous (EC), clear cell carcinoma (CC), and mucinous

cancerous (MC). Part of the cancerous, healthy, or necrotic regions of 152 WSIs were annotated,

we combined the healthy and necrotic annotations to categorize them as normal tissue.

RCC-3 (TCGA-RCC) includes a total of 660 WSIs, with three subtypes, clear cell RCC

(CCRCC) [21], papillary RCC (PRCC) [22], and chromophobe RCC (CHRCC) [23]. The cancer-

ous region of 338 WSIs was entirely annotated at the pixel level by two experienced pathologists

and four medical students.

RCC-4 (IH-RCC) collected from the First Affiliated Hospital of Xi’an Jiaotong University, with

ethical approval (KYLLSL2021-420). It encompasses 563 WSIs from 168 patients across four RCC

subtypes, CCRCC, PRCC, CHRCC, and Renal Oncocytoma (ROCY), with approximately 40

patients per subtype. The cancerous region of 138 WSIs was entirely annotated at the pixel level.

Gastric Endoscopy (IH-ESD) collected from the First Affiliated Hospital of Xi’an Jiaotong

University, with ethical approval (KYLLSL2022-333). It includes 99 patients with early gastric
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cancer Endoscopic Submucosal Dissection (ESD) specimens, a total of 286 WSIs. Each WSI was

meticulously annotated at the pixel level, with three categories, i.e., tumor, inflammation, and

normal tissue.

Gastric (TCGA-STAD) [26], comprising 339 Whole Slide Images (WSIs), was sourced from the

TCGA Database. As the TCGA database does not provide detailed classification information

for gastric adenocarcinoma, two pathologists with over a decade of experience classified all WSIs

following the World Health Organization (WHO) histological classification system [45]. At the

same time, they performed a detailed, patch-level annotation on 128 WSIs, identifying three tissue

subtypes: highly differentiated (papillary and tubular), poorly differentiated, and mucinous.

Prostate (SICAPv2) [27], a publicly available prostate Gleason grading dataset, includes 153

WSIs labeled with categories G3, G4, G5, and normal tissue. This dataset provides tessellated

patches with corresponding coordinates. Although the majority of patches come with annota-

tions, a notable subset is devoid of labels. Two experienced pathologists provided supplementary

annotations for these unlabelled patches.

Except for the already tessellated Prostate dataset, we process these WSIs into tiles of

2048×2048 pixels for 40x magnification and 1024×1024 pixels for 20x magnification without

overlapping, thereby standardizing the input for consistent model training and evaluation. How-

ever, the Breast dataset presents a unique case. Given the variable sizes of tumor metastasis

regions in this dataset, where some WSIs exhibit remarkably small tumor regions, we opt for a

finer tessellation resolution of 512×512 pixels for the WSIs from this dataset. For the tessellated

patches, we assign labels based on the predominant category within their representative regions,

provided that pixel-level annotations are available. Additionally, some datasets (Breast, Gastric

Endoscopy, and Prostate) include WSIs classified under the “Normal” category, indicating that

all tessellated patches from these WSIs are normal (negative instance). Refer to Supplementary

Table 1 for statistics of these datasets.

4.4 Implementation details

Patch embeddings used for all methods are extracted from (the third residual block of the

ResNet-50, which has been pre-trained on the ImageNet dataset. Where possible, configurations

were aligned with the original implementations or their corresponding publications. It is, how-

ever, important to underline that the majority of these baselines are not intrinsically designed

to accommodate multi-label classification tasks. Thus, modifications were introduced to these

methods, with a particular emphasis on enhancing the attention aggregation mechanism, thereby
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extending their functionality to support multi-label classification. There is an exception, Trans-

MIL is based on the self-attention mechanism and cannot be modified to multi-class attention.

Therefore, in the experiment, TransMIL is unable to output patch-level predictions in multi-label

datasets. Also, a weighted sampling technique is incorporated during the sample selection phase

for all baselines, including the proposed SMMILe, to mitigate the issue of class imbalance. Fur-

thermore, except for SMMILe, which possesses an instance refinement network capable of directly

generating patch-level predictions, the derivation of patch-level predictions in representation-

based attention MIL baselines, such as RAMIL, CLAM, DSMIL, TransMIL, and DTFD-MIL,

relies on the raw attention scores. In the case of NIC and NIC-WSS, patch-level predictions are

acquired from grad-CAM outputs, whereas for IAMIL, AddMIL, and the variants of SMMILe

without integrating with the instance refinement network (Section 2.4), predictions are based on

instance scores.

In the configuration of SMMILe, the kernel size of convolutional layer cov(·) is set to 1 × 1

for the Camelyon16 dataset, and 3× 3 for other datasets. The super-patches are generated using

the Simple Linear Iterative Clustering (SLIC) over-segmentation algorithm, as implemented in

the scikit-image package. Considering both the high spatial homogeneity and the significant

proportion of tumor areas in WSIs of multi-class classification datasets, the initial size of super-

patches is set to 5×5 for multi-class datasets and 3×3 for others. Also, the integration of instance

sampling with dropout is specifically utilized for multi-class classification datasets. The total

number of sampling rounds T is set to 10, and the control parameters for the MRF constraint,

λ1 and λ2, are fixed at 0.8 and 0.2, respectively, for all datasets.

The training of SMMILe is divided into two stages. In the first stage, the primary network

of SMMILe is trained using the consistency loss Lcons and the bag-level classification loss Lcls

for a maximum of 200 epochs. In the second stage, the number of linear layers N in the instance

refinement network is set to 3, and the sample selection rate θ is established at 10 percent for

each category. Both the primary and instance refinement networks are then trained using all

loss functions, including Lcons, Lcls, Lref , and Lmrf , for a maximum of 100 epochs. The Adam

optimizer is used with a learning rate of 2e−5, and an early stopping strategy is implemented for

both stages. For inference, the bag-level output score Pc for each category and the instance-level

output scores {pN
1 ,pN

2 , . . . ,pN
K} from the last linear layer vN (·) are employed as the prediction

results for the WSI and the corresponding patches, respectively. For all experiments, we used

patient-level 5-fold cross-validation to estimate the predictive performance of each model. For

each fold, four-fifths of the data were used to create a train-validation split (90%-10%), and the
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remaining fifth of the data was used as a test set. We use PyTorch for model implementation and

the experiments are performed on a workstation with two NVIDIA 2080 Ti GPUs.

5 Data availability

TCGA data (TCGA-LU, TCGA-RCC, and TCGA-STAD) including whole-slide images and

diagnostic labels are available at https://portal.gdc.cancer.gov. Other publicly available datasets

can be accessed in their corresponding data portals: Camelyon16 (https://camelyon16.grand-

challenge.org/), UBC-OCEAN (https://www.kaggle.com/competitions/UBC-OCEAN),

SICAPv2 (https://data.mendeley.com/datasets/9xxm58dvs3/1), The pixel-level annotations for

TCGA-LU and TCGA-RCC are partially available at https://sites.google.com/view/aipath-

dataset/home. The rest of the pixel-level annotations for TCGA-LU and TCGA-RCC, patch-level

annotations, and fine-grained subtype labels for TCGA-STAD will be released upon publication.

Two in-house datasets (IH-RCC and IH-ESD) were collected with IRB approval for the current

study, and there are no plans to make them publicly available.

6 Code availability

The code for training SMMILe will be released upon publication. We have documented the

details of model architecture and training, guaranteeing the reproducibility of SMMILe within

the research community.
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Supplementary

1 Proofs

Proof of Theorem 1. Revisiting f(·), typically designed as a linear projection involving two train-

able vectors, denoted as w and b. The attention scores are generated by g(·) with softmax

normalization over the instances, thereby ensuring that
∑K

k=1 ak = 1. Expanding Eq. (2), we

derive:

P = σ

(
f

(
K∑

k=1

ak ∗ hk

))

= σ

(
wf

(
K∑

k=1

ak ∗ hk

)
+ bf

)

= σ

(
K∑

k=1

ak ∗wfhk +

K∑
k=1

ak ∗ bf

)

= σ (a1(wfh1 + bf ) + . . .+ aK(wfhK + bf ))

= σ

(
K∑

k=1

ak ∗ f(hk)

)
.

(17)

where the bag-level logit is aggregated as L =
∑K

k=1 ak ∗ lk, lk = f(hk). The resultant form

represents a unique variant of IAMIL, which aggregates the raw outputs (logits) of f(·) followed

by the activation function σ(·).

Proof of Theorem 2. Utilizing the chain rule of differentiation, the partial derivative of Ľc with

respect to w̌c
g is formulated as:

∂Ľc

∂w̌c
g

=
∂Ľc

∂P̌c

∗ ∂P̌c

∂žci
∗ ∂žci
∂w̌c

g

, (18)

also, the partial derivative of L̂c with respect to ŵc
g is described as:

∂L̂c

∂ŵc
g

=
∂L̂c

∂P̂c

∗ ∂P̂c

∂ẑci
∗ ∂ẑci
∂ŵc

g

, (19)

Moreover, the derivative of P̌c in relation to žci is computed as:

∂P̌c

∂žci
=

∂σ(Ľc)

∂Ľc

∗
ľci e

žc
i
∑K

j=1 e
žc
j − ež

c
i
∑K

k=1 e
žc
k ľcj

(
∑K

j=1 e
žc
j )2

=
∂σ(Ľc)

∂Ľc

∗ ež
c
i (ľci − Ľc)∑K

j=1 e
žc
j

,

(20)
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and the derivative of P̂c with respect to ẑci is calculated as:

∂P̂c

∂ẑci
=

eẑ
c
i

1

1+e−l̂c
i

∑K
j=1 e

ẑc
j − eẑ

c
i
∑K

k=1 e
ẑc
k ∗ 1

1+e−l̂c
k

(
∑K

j=1 e
ẑc
j )2

=
eẑ

c
i (p̂ic − P̂c)∑K

j=1 e
ẑc
j

,

(21)

In light of Assumption 2, we deduce:

∂Ľc

∂P̌c

∗ ∂P̌c

∂žci
∗ ∂žci
∂w̌c

g

=
∂L̂c

∂P̂c

∗ ∂P̂c

∂ẑci
∗ ∂ẑci
∂ŵc

g

, (22)

where ∂Ľc/∂P̌c = ∂L̂c/∂P̂c. Furthermore, it can be readily demonstrated that ∂žci /∂w̌
c
g is equiv-

alent to ∂ẑci /∂ŵ
c
g. This equivalence arises because the values of these two partial derivatives are

exclusively dependent on the architecture of the attention networks and the input vector hi (with

žci = ǧc(hi) and ẑci = ĝc(hi)), which remain consistent across RAMIL and IAMIL. Consequently,

we can infer that:
∂P̌c

∂žci
=

∂P̂c

∂ẑci

∂σ(Ľc)

∂Ľc

∗ ež
c
i (ľci − Ľc)∑K

j=1 e
žc
j

=
eẑ

c
i (p̂ic − P̂c)∑K

j=1 e
ẑc
j

ež
c
i∑K

j=1 e
žc
j

/
eẑ

c
i∑K

j=1 e
ẑc
j

=
P̂c − p̂ic

∂σ(Ľc)

∂Ľc
(Ľc − ľci )

ǎci
âci

=
σ(Ľc)− σ(ľci )
∂σ(Ľc)

∂Ľc
(Ľc − ľci )

.

(23)

Proof of Theorem 3. Firstly, The tangent line t(l) of σ(l) at Lc can be mathematically expressed

as:

t(l) =
e−Lc l

(1 + e−Lc)2
+

1 + e−Lc − Lce
−Lc

(1 + e−Lc)2
, (24)

Given that the sigmoid function σ(l) has a single inflection point at l = 0, and asymptotic

property towards positive and negative infinity, it can be inferred that the tangent line t(l)

intersects with σ(l) at an additional point, denoted as (Lint, σ(Lint)), where t(Lint) = σ(Lint).

Importantly, the product of Lc and Lint is negative, i.e., Lc · Lint < 0. The sole exception to

this rule occurs when Lc = 0, in which case there is only one intersection point, Lc = Lint = 0.

Moreover, it can be readily demonstrated using the geometric approach (Suppplementary Fig.
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(a) (b)

Supplementary Fig. 1: In conditions where Lc is (a) greater than 0, and (b) less than 0, the
geometric proof regarding Theorem 3 is presented.

1) that if lci ∈ (min(Lc, Lint),max(Lc, Lint)), then |σ(Lc) − σ(lci )| > |∂σ(Ľc)

∂Ľc
(Ľc − ľci )|, and vice

versa.

Secondly, the intersection point Lint can be expressed as:

t(Lint) = σ(Lint)

Lint = σ(Lint)(e
−Lc + eLc + 2)− eLc + Lc − 1,

(25)

which is related to Lc. However, it does not have an analytical solution. Alternatively, we analyze

the properties of Eq. (25) and give a series of discrete solutions using Newton’s method. The

first-order derivative of Eq. (25) with respect to Lc can be expressed as:

∂Lint

∂Lc
= σ(Lint)(e

Lc − e−Lc)− eLc + 1, (26)

with Taylor expansion of eLc and e−Lc , we have:

∂Lint

∂Lc
= 2σ(Lint)

∞∑
n=0

(Lc)
2n+1

(2n+ 1)!
−

∞∑
n=0

(Lc)
n

n!
+ 1

= (2σ(Lint)− 1)

∞∑
n=0

(Lc)
2n+1

(2n+ 1)!
−

∞∑
n=1

(Lc)
2n

2n!
,

(27)

The second-order derivative of Eq. (25) with respect to Lc can be expressed as:

∂2Lint

∂2Lc
= σ(Lint)(e

Lc + e−Lc)− eLc , (28)
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(a) (b) (c)

Supplementary Fig. 2: (a) Estimation results of Lint using Newton’s method with different
Lc. The ratio of ǎci to âci with different lci and Lc, (b) when Lc > 0, (c) when Lc < 0.

with Taylor expansion of eLc and e−Lc , we have:

∂2Lint

∂2Lc
= 2σ(Lint)

∞∑
n=0

(Lc)
2n

2n!
−

∞∑
n=0

(Lc)
n

n!

= (2σ(Lint)− 1)

∞∑
n=0

(Lc)
2n

2n!
−

∞∑
n=0

(Lc)
2n+1

(2n+ 1)!
.

(29)

Since Lc ·Lint < 0, if Lc > 0, it follows that (2σ(Lint)−1) < 0, indicating that ∂Lint/∂Lc < 0

and ∂2Lint/∂
2Lc < 0. Similarly, if Lc < 0, the first-order derivative ∂Lint/∂Lc is still less than

0, but the second-order derivative ∂2Lint/∂
2Lc > 0. If and only if Lc = 0, ∂Lint/∂Lc and

∂2Lint/∂
2Lc are equal to 0. These properties of Eq. (25) indicate that (1) the distance between

Lc and Lint increases as the absolute value of Lc increases, and (2) the rate of change for the

absolute value of Lint also increases as the absolute value of Lc increases.

To elucidate the relationship between Lc and Lint more explicitly, we employed New-

ton’s method to solve Eq. (25). For Lc = {0, 1, 2, 3, 4, 5}, the corresponding Lint values are

{0.00,−2.22,−6.37,−18.09,−51.60,−144.41}, respectively. For Lc < 0, the Lint values are the

negatives of their respective positive counterparts (Supplementary Fig. 2c). The results reveal

that as Lc varies, the distance between Lc and Lint changes at an almost exponential rate.

Furthermore, we calculated the ratio of ǎci to âci across different lci and Lc values

(Supplementary Fig. 2a,b). It can be seen that when the absolute value of Lc is relatively large,

the ratio of ǎci to âci significantly exceeds 1 in most intervals, highlighting a substantial diver-

gence between RAMIL and IAMIL in terms of attention scores allocated for low-discriminative

and non-discriminative instances.

Considering the properties of the additional intersection point Lint, along with the expected

convergence of σ(Lc) towards either 0 or 1, a relatively large magnitude of |Lc| is often observed,

typically exceeding 5 in most cases (Supplementary Fig. 3a). Consequently, this results in
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|Lint| being greater than 100. It becomes evident that satisfying the condition |lci | > |Lint| and

Lint · lci > 0 is improbable. Moreover, for the majority of instances that meet the condition

lci ∈ (min(Lc, Lint),max(Lc, Lint)), the value of ǎci is expected to be several times greater than

that of âci .

Although these proofs have been proven using the sigmoid function, their applicability extends

universally to the softmax function. Under the assumption that the raw outputs of other categories

remain constant, and focusing solely on the relationship between the attention score ack and the

prediction score Pc for a single category, the softmax function can be effectively simplified to

1/(1 + cst · e−Lc), where “cst” represents a constant. Notably, this simplified representation of

the softmax function exhibits properties analogous to those of the sigmoid function.

2 Hyperparameter Analysis

Here, we investigate the influences of two important hyperparameters for SMMILe on the Lung

and Prostate datasets, (1) the initial size of super-patches for SLIC, from 2 × 2 to 6 × 6, and

(2) The total number of instance sampling rounds, {1, 5, 10, 15}. We can see that both the

WSI-level and patch-level classification performance of SMMILe is influenced by these two param-

eters (Supplementary Fig. 5). The impact on WSI-level classification performance is minimal,

with variations generally within 1%, in contrast, patch-level classification performance experi-

ences changes in the range of 3-4%. The number of instance sampling rounds has a negligible

effect on the performance of SMMILe, except when the rounds are set to 1, where lower diver-

sity leads to decreased performance, and settings of 5, 10, and 15 rounds yield similar results.

On the other hand, the initial size of super-patches has a more significant impact on the per-

formance of SMMILe. Both excessively large (6 × 6) and small (2 × 2) super-patches result in

diminished performance, with the optimal parameters differing across datasets. For instance, the

Lung dataset, characterized by larger WSI sizes and better spatial consistency, benefits more

from larger sizes like 4 × 4 and 5 × 5, whereas in the Prostate dataset, where biopsy slide sizes

are smaller, super-patches of 3× 3 size perform better.

5
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Supplementary Table 1: Settings for Synthetic Dataset Generation and
Experimental Model Training

Setting Value

Number of Classes 2

Embedding Dimension of Each Instance 3

Positive Distribution (Class 0) Norm(-3.0,0.5);Norm(-2.0,0.5);Norm(3.0,0.5)

Positive Distribution (Class 1) Norm(-2.0,0.5);Norm(-3.0,0.5);Norm(3.0,0.5)

Negative Distribution Norm(1.0,0.5);Norm(-2.5,0.5);Norm(2.0,0.5)

Number of Bags per Class 200

Number of Instances per Bag 1000

The Ratio of Positive Instance per Bag [0.1,1.0]

Attention Mechanism Gated

Attention Network Feature Dimensions 8, 4

Dropout Rate 0.25

Optimizer Adam

Learning Rate 1e-3

Weight Decay 1e-5

Stop Point (BCE loss) 0.05

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Supplementary Fig. 3: Histograms for five times synthetic experiments: (a) Lc for bags; (b)
lci , (d) aci , and (f) zci for positive instances; (c) lci , (e)a

c
i , and (g) zci for negative instances. The

y-axes of histograms for aci (d) and (e) are on a logarithmic scale.
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Supplementary Table 3: The comparison results (present in
%) on Breast (Camelyon16). The best results are highlighted
in boldface

Method
WSI Classification Spatial Quantification

Acc AUC Acc AUC

RAMIL 83.45±7.69 87.74±3.90 57.71±9.29 75.81±2.89

IAMIL 82.76±3.71 89.66±5.08 93.33±5.59 78.23±3.59

CLAM 83.96±5.84 87.98±4.45 60.91±9.60 76.34±3.51

DSMIL 74.94±4.72 84.00±5.90 85.22±3.95 81.74±7.68

TransMIL 80.46±5.38 87.23±5.91 66.71±7.29 72.32±4.21

DTFD-MIL 83.21±3.24 90.05±4.61 67.54±9.60 79.79±3.51

AddMIL 60.41±3.19 77.81±4.21 53.68±3.58 58.59±5.56

NIC 42.85±6.39 43.82±3.50 65.74±5.35 65.47±4.90

NIC-WSS 41.87±5.26 46.79±4.52 66.42±4.48 59.45±6.49

SMMILe 82.43±2.75 90.51±3.27 95.70±1.61 89.28±2.06

Supplementary Table 4: The comparison results (present
in %) on Lung (TCGA-LU). The best results are highlighted
in boldface

Method
WSI Classification Spatial Quantification

Acc AUC Acc AUC

RAMIL 82.85±3.54 90.44±1.89 50.10±3.13 57.42±3.44

IAMIL 80.81±3.06 88.55±2.05 46.47±3.37 58.86±2.97

CLAM 83.77±3.88 90.74±2.83 53.48±2.83 57.22±3.73

DSMIL 84.60±1.07 91.62±1.13 56.36±3.06 54.84±3.12

TransMIL 81.26±2.11 88.64±1.89 48.15±4.39 56.75±3.97

DTFD-MIL 81.01±0.66 89.63±1.59 58.33±3.63 61.79±2.34

AddMIL 78.74±2.16 83.79±2.94 42.22±3.86 49.11±3.49

NIC 48.15±0.85 62.17±3.07 57.13±5.02 50.87±3.14

NIC-WSS 64.78±9.63 76.11±7.83 63.88±2.82 63.73±0.99

SMMILe 87.68±0.82 93.72±1.01 73.35±2.83 85.84±0.93

Supplementary Table 5: The comparison results (present
in %) on Ovarian (UBC-OCEAN). The best results are high-
lighted in boldface

Method
WSI Classification Spatial Quantification

Acc AUC Acc AUC

RAMIL 75.08±5.15 91.60±2.72 75.46±8.85 86.59±2.48

IAMIL 66.85±9.69 89.58±4.30 13.28±1.94 81.10±10.51

CLAM 73.86±3.07 91.58±2.23 69.23±8.13 79.85±4.15

DSMIL 75.84±5.86 92.54±2.35 57.30±7.87 73.22±3.70

TransMIL 65.20±7.75 87.89±2.95 19.44±6.44 46.44±3.28

DTFD-MIL 65.69±4.51 87.58±3.69 73.05±14.78 89.29±5.61

AddMIL 69.99±3.82 89.80±2.27 12.46±2.31 61.67±7.95

NIC 45.41±6.27 80.64±6.78 53.87±2.26 43.95±9.28

NIC-WSS 51.72±4.05 83.59±3.34 57.56±1.12 42.23±5.95

SMMILe 75.64±4.59 93.21±1.07 91.99±0.50 92.58±2.29
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Supplementary Table 6: The comparison results (present in
%) on Renal-3 (TCGA-RCC). The best results are highlighted
in boldface

Method
WSI Classification Spatial Quantification

Acc AUC Acc AUC

RAMIL 90.63±3.08 97.52±1.36 49.59±2.56 50.75±2.34

IAMIL 90.01±1.65 97.31±0.69 43.88±4.16 62.04±2.72

CLAM 92.14±3.18 98.28±1.06 53.06±2.05 55.97±1.97

DSMIL 89.57±2.96 97.31±1.05 54.21±3.05 58.25±3.09

TransMIL 89.85±2.39 97.49±0.70 53.25±3.50 47.11±3.76

DTFD-MIL 89.48±4.37 96.71±1.90 59.80±3.81 56.47±3.46

AddMIL 88.45±3.32 96.95±1.56 43.49±4.47 47.85±5.29

NIC 85.15±3.02 94.47±4.62 50.69±7.24 48.97±4.89

NIC-WSS 86.97±1.73 97.07±0.89 64.63±6.12 68.57±8.26

SMMILe 94.63±2.56 99.00±0.63 78.77±4.34 90.89±4.39

Supplementary Table 7: The comparison results (present
in %) on Renal-4 (IH-RCC). The best results are highlighted
in boldface

Method
WSI Classification Spatial Quantification

Acc AUC Acc AUC

RAMIL 77.55±3.63 90.75±3.40 44.29±2.46 53.55±3.52

IAMIL 81.63±1.97 92.67±1.73 34.95±2.70 59.43±0.78

CLAM 80.38±3.19 92.33±2.70 59.04±2.43 60.14±2.05

DSMIL 82.70±2.12 93.28±2.48 48.93±3.49 51.31±4.64

TransMIL 81.69±2.90 92.91±1.87 42.46±5.26 48.96±3.64

DTFD-MIL 79.70±3.12 91.08±2.59 52.27±4.83 56.03±2.43

AddMIL 73.33±6.50 86.18±3.06 47.69±2.29 50.70±4.16

NIC 68.51±5.47 83.86±3.14 52.25±3.22 50.20±1.42

NIC-WSS 73.10±2.61 88.71±1.98 63.13±0.68 57.09±2.59

SMMILe 87.17±1.46 94.96±2.26 80.54±1.76 91.07±0.89

Supplementary Table 8: The comparison results (present
in %) on Gastric Endoscopy (IH-ESD). The best results are
highlighted in boldface

Method
WSI Classification Spatial Quantification

Acc AUC Acc AUC

RAMIL 88.29±3.17 86.82±6.40 58.66±1.14 63.21±2.04

IAMIL 87.12±2.99 86.77±6.23 55.38±1.07 67.08±8.38

CLAM 88.46±3.11 88.20±3.72 59.10±2.21 63.82±3.12

DSMIL 86.86±2.78 86.10±3.40 59.21±3.72 65.44±2.22

TransMIL 88.54±3.77 86.18±6.51 - -

DTFD-MIL 83.78±0.47 81.71±6.84 54.44±2.86 62.70±2.14

AddMIL 86.12±2.19 85.25±3.92 46.22±6.22 50.13±3.42

NIC 81.65±2.72 77.09±3.56 48.81±2.85 51.68±3.24

NIC-WSS 79.03±2.65 77.43±8.38 48.25±1.09 51.99±2.74

SMMILe 90.36±3.39 92.97±3.14 61.86±1.61 76.53±2.79
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Supplementary Table 9: The comparison results (present in
%) on Gastric (TCGA-STAD). The best results are highlighted
in boldface

Method
WSI Classification Spatial Quantification

Acc AUC Acc AUC

RAMIL 81.35±2.44 82.03±3.96 68.88±4.30 76.56±2.77

IAMIL 80.24±3.87 81.55±4.30 59.48±5.22 75.75±4.87

CLAM 81.83±3.21 83.51±4.69 68.91±2.01 76.53±1.74

DSMIL 75.39±1.66 80.94±4.39 71.02±6.80 76.05±6.51

TransMIL 75.41±3.80 81.38±6.38 - -

DTFD-MIL 73.90±1.90 77.49±3.95 50.88±4.65 49.78±3.30

AddMIL 74.01±1.04 79.60±3.66 36.08±3.71 42.56±6.23

NIC 76.86±3.86 76.11±4.36 60.35±3.15 62.36±5.63

NIC-WSS 68.38±5.17 69.63±7.00 52.52±7.17 56.82±3.61

SMMILe 82.54±1.97 83.31±3.37 75.16±1.64 89.70±2.55

Supplementary Table 10: The comparison results (present
in %) on Prostate (SICAPv2). The best results are highlighted
in boldface

Method
WSI Classification Spatial Quantification

Acc AUC Acc AUC

RAMIL 83.29±3.65 88.68±3.00 65.45±1.67 66.65±1.46

IAMIL 84.40±4.38 89.44±2.60 62.31±2.76 71.52±1.15

CLAM 83.92±3.71 89.00±3.26 62.31±2.76 66.24±2.37

DSMIL 72.33±3.60 87.61±3.52 66.41±3.72 72.26±2.22

TransMIL 72.76±3.98 86.66±3.04 - -

DTFD-MIL 70.18±2.95 82.96±4.07 60.73±2.99 56.29±4.48

AddMIL 70.61±3.41 85.01±4.82 52.70±3.51 52.98±2.48

NIC 79.44±3.27 79.72±5.78 63.03±2.07 67.43±2.44

NIC-WSS 67.81±6.10 70.59±5.36 52.32±1.04 57.94±1.50

SMMILe 87.32±3.50 90.75±3.56 72.38±3.55 89.49±2.66
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Supplementary Fig. 4: Spatial quantification results (present in %) for different methods across
diverse datasets: (a) macro precision, (b) macro recall, (c) macro F1-score.
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Supplementary Fig. 5: The WSI classification and spatial quantification results with differ-
ent superpatch initial sizes and instance sampling rounds on (a,b) Lung (TCGA-LU) and (c,d)
Prostate (SICAPv2) datasets, respectively.

Supplementary Fig. 6: Visualization of spatial quantification results of cases from Breast
(Camelyon16). GT in the first row.
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Supplementary Fig. 7: Visualization of spatial quantification results of cases from Lung
(TCGA-LU). GT in the first row.

Supplementary Fig. 8: Visualization of spatial quantification results of cases from Ovarian
(UBC-OCEAN). GT in the first row.

Supplementary Fig. 9: Visualization of spatial quantification results of cases from Renal-3
(TCGA-RCC). GT in the first row.
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Supplementary Fig. 10: Visualization of spatial quantification results of cases from Renal-4
(IH-RCC). The annotated green color represents normal tissue. GT in the first row.

Supplementary Fig. 11: Visualization of spatial quantification results of cases from Gastric
Endoscopy (IH-ESD). The annotated yellow and blue colors represent tumor and inflammation,
respectively. GT in the first row.

Supplementary Fig. 12: Visualization of spatial quantification results of cases from Gastric
(TCGA-STAD). The annotated red, blue, and green colors represent highly-differentiate, poorly-
differentiate, and mucinous, respectively. GT in the first row.
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Supplementary Fig. 13: Visualization of spatial quantification results of cases from Prostate
(SICAPv2). The annotated red, blue, and green colors represent G3, G4, and G5 Gleason grading,
respectively. GT in the first row.
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