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Abstract 
 
 Phenotypic heterogeneity in early language, intellectual, motor, and adaptive 
functioning (LIMA) features are amongst the most striking features that distinguish different 
types of autistic individuals. Yet the current diagnostic criteria uses a single label of autism and 
implicitly emphasizes what individuals have in common as core social-communicative and 
restricted repetitive behavior difficulties. Subtype labels based on the non-core LIMA features 
may help to more meaningfully distinguish types of autisms with differing developmental paths 
and differential underlying biology. Using relatively large (n=615) publicly available data from 
early developing (24-68 months) standardized clinical tests tapping LIMA features, we show 
that stability-based relative cluster validation analysis can identify two robust and replicable 
clusters in the autism population with high levels of generalization accuracy (98%). These 
clusters can be described as Type I versus Type II autisms differentiated by relatively high 
versus low scores on LIMA features. These two types of autisms are also distinguished by 
different developmental trajectories over the first decade of life. Finally, these two types of 
autisms reveal striking differences in functional and structural neuroimaging phenotypes and 
their relationships with gene expression. This work emphasizes the potential importance of 
stratifying autism by a Type I versus Type II distinction focused on LIMA features and which 
may be of high prognostic and biological significance. 
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The diagnostic concept of autism has been anything but stationary over time1. To 
illustrate this non-stationarity, consider that the autism of several decades ago was a population 
largely comprised of individuals with the core social-communication (SC) and restricted 
repetitive behavior (RRB) issues, but also frequently possessed profound issues in non-core 
features such as language, intellectual, motor, and adaptive functioning (features that are 
henceforth referred to as acronym ‘LIMA’). In contrast, the autism of today is largely 
comprised of individuals with varying and sometimes subtle core SC and RRB issues, but 
whom are much more likely to not have such profound LIMA difficulties2. As a likely result 
of these changes over time, we have seen phenomena such as increasing heterogeneity3, 
prevalence4, decreasing effect sizes5, and a change in views about autism, particularly from the 
neurodiversity perspective. Thus, it is no surprise that the most contentious debates in the field 
today deal with topics that ultimately boil back down to contrasting the relative importance of 
core SC and RRB versus non-core LIMA features. This can be seen when in debates contrasting 
medical versus social perspectives6, vocabulary and language use7, and debate regarding 
different subtyping approaches (e.g., prototypical autism, profound autism)8–10 versus 
‘spectrum’/continuous models (e.g., autistic traits, polygenic risk)11,12.  

 
Our contention is that the autism spectrum has become too wide to be meaningful as a 

whole when it comes to finding explanations about differential biology, outcomes, and 
responses to treatment (i.e. an acronym we label as the ‘BOT’ objectives1). Thus, at least for 
the purposes of the BOT objectives, we suggest that autism must be split into different types 
of autisms distinguished by non-core LIMA features. Owing to terminology already in use in 
the literature regarding dual perspectives of autism as ‘disability’ (i.e. the medical model) 
versus a ‘difference’ (i.e. social models such as neurodiversity), we propose that an initial split 
of autism be one of two highly differentiated early developmental and behavioral types – that 
is, one of profound ‘disability’ (Type I) versus one of a ‘difference’ (Type II). Furthermore, 
these contrasting types are hypothesized to be most prominently differentiated over 
‘development’. Putting together these 3 ‘D’ words – ‘disability’ versus ‘difference’ over 
‘development’ – we propose a framework called AUTISMS-3D (henceforth referred to as 
A3D). In simple terms, the A3D model suggests that when one focuses on the non-core LIMA 
features, autism can be thought of as at least two different types that contrast disability versus 
difference over development.       

 
A key distinction separating A3D from other approaches8,9,13 is the idea that these 

theorized autism subtypes are evident and detectable with unsupervised data-driven approaches 
in early development. In past work utilizing just the domains of the Vineland Adaptive 
Behavior Scales (VABS), we showed that stability-based relative clustering validation could 
be applied to separate the predicted Type I versus Type II autisms with very high 
generalizability accuracy in new unseen datasets14. Thus, unsupervised data-driven discoveries 
can be immediately translated into supervised prediction models that can generalize with very 
high accuracy and highlight the A3D subtype distinction. This attribute of the A3D approach 
separates it from past issues that have been present with subtyping in autism. One of the 
primary reasons for abandoning DSM-IV subtype labels of PDD-NOS, Asperger Syndrome, 
high- and low-functioning autism labels was because of the lack of agreement between expert 
clinicians in making such labels15. Even with more recent suggestions such as the label of 
‘profound autism’9, it could be argued that the defining boundaries for that label are still based 
on potentially arbitrary and/or hard cutoffs for age (e.g., >8 years) and IQ (e.g., IQ<50). 
Furthermore, the Lancet commission suggested the use of a label like profound autism be 
primarily administrative9, leaving a gap with regard to how research might be able to utilize a 
label that picks up on a similar kind of conceptual distinction. In contrast to the approach of 
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focusing on ‘prototypical autism’, A3D again separates itself by not relying on subjective 
expert clinical judgement for making such a distinction. While there is no substitute for expert 
clinical judgement as the gold standard for making the autism diagnosis itself, for making these 
types of subtype distinctions A3D makes the prediction that subtypes based on LIMA features 
will be evident in robust statistical differences that unsupervised data-driven models will be 
able to detect with very high generalizability accuracy. In this work, we go beyond past work 
utilizing VABS domains14 to measure early developing skills in all four pillars of non-core 
LIMA features. We predict that Type I versus Type II autisms will be evident via stability-
based relative clustering validation16. Furthermore, we predict that the theorized Type I versus 
Type II autisms will be heavily differentiated in developmental trajectories tested with 
longitudinal data over the first 5-6 years of life. 

 
Given one of the field’s over-arching research priorities is to better understand 

differential biology characteristic of many autisms (i.e. the ‘B’ in the ‘BOT’ objectives)1, 
another goal of the A3D model is to test hypotheses regarding whether these two 
phenotypically differentiated types are also sensitive indicators of differential underlying 
neurobiology. In related past work, we utilized a stratification approach based on early 
language outcomes (ELO) and showed that the distinction between good versus poor ELO is 
indicative of types with differential underlying early neurobiology17–20. However, this 
stratification approach leverages only one of the four pillars of non-core LIMA features we 
hypothesize to be relevant (i.e. language). Thus, in the current work, we seek to evaluate how 
autism subtypes predicted from A3D (based on the full set of LIMA features) may match up in 
terms of early functional neural systems response to speech and structural neuroimaging 
phenotypes (e.g., surface area and cortical thickness) that had been previously identified to be 
highly important in ELO subtypes17,18. 

Methods 
 
NDA dataset  
 

The primary dataset used in this work for the purposes of building a generalizable 
stratification model comes from the National Institute of Mental Health Data Archive (NDA) 
(https://nda.nih.gov/). NDA includes several datasets that measure two standardized early 
clinical measures that are integral for this work – the Mullen Scales of Early Learning (MSEL) 
and Vineland Adaptive Behavior Scales (VABS). All MSEL and VABS data from NDA was 
downloaded in February 2022 for further analysis in this work. MSEL and VABS data from 
NDA was then filtered, preprocessed and analyzed for the existence of stable and highly 
replicable theoretically predicted autism subtypes (e.g., Type I and Type II) in early ages via 
unsupervised data-driven approaches (i.e., reval)16. We downloaded all available MSEL21 and 
VABS (i.e., VABS 2nd edition parent and caregiver form or survey form; VABS 3rd 
edition)22,23 within the age range of 0-68 months. VABS standard scores from communication, 
daily living skills, socialization, and motor domains were extracted for use in further data 
analysis. For MSEL data, we extracted chronological age at MSEL assessment as well as age-
equivalent scores for visual reception (VR), fine motor (FM) and receptive and expressive 
language (RL; EL) subscales. Next, we implemented a series of data cleaning steps that entailed 
selecting only individuals with an autism diagnosis, dropping duplicate data, extracting the 
earliest available time point for individuals with longitudinal data, selecting only individuals 
whose MSEL and VABS data were assessed not more than one year apart, and finally drop 
individuals with more than one missing subscale for each of the instruments used (Fig 1A). 
After data cleaning, a total of n=615 autistic individuals remained for further downstream 
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analysis. Data from individuals with more than one data point were also utilized for the 
subsequent longitudinal analysis sought to test the hypothesis that the subtypes’ developmental 
trajectories heavily differentiate over the first 5-6 years of life (MSEL n=179; VABS n=354). 

 
Before doing the primary downstream reval clustering analysis on the NDA dataset, we 

had to address the batch effect caused by the presence of different VABS versions (e.g., VABS 
Edition 2 which comprises either the caregiver or survey forms, as well as VABS 3rd edition). 
For each of the VABS domains, we apply a batch correction factor to adjust the raw data. These 
factors correspond to the beta coefficients estimated in a linear model with VABS standard 
scores as the dependent variable and VABS version as the independent variable with age and 
sex as covariates). Batch correction factors are taken from Mandelli et al.,14 since they were 
estimated in a bigger sample size within the age range of interest for this work (n= 604, age 0-
72 months). To project out batch-related variability brought on by the VABS version, the 
correction factors (i.e., beta coefficients) were multiplied against the raw data and then the 
difference was removed from the raw VABS domain standard scores. Subsequent reval 
clustering analyses were carried out with version-corrected VABS data. 
 
UCSD dataset  

 
To test the stratification model for differences in developmental trajectories using a 

dataset that is independent of the NDA dataset used to build the stratification model, we utilized 
a longitudinal phenotypic dataset from the University of California, San Diego (henceforth 
referred to as UCSD ACE). This study was approved by the Institutional Review Board at 
University of California, San Diego. This dataset comprises longitudinal VABS and MSEL 
measurements from n = 1487 autistic children. The enrollment of most individuals into the 
UCSD ACE dataset started from ~12 months using a combination of population-based autism 
risk screening and community referrals 24. Longitudinal data was collected every six months 
from the initial intake assessment until the age of 5-6 years of age, and included a 
comprehensive battery of assessments such as VABS, MSEL, and the Autism Diagnostic 
Observation Schedule (ADOS-2)25. Clinical diagnosis of autism was made at by expert 
clinicians at the UCSD ACE center. To match the age range of the NDA subtyping model, we 
only included a subset of children with an assessment between the ages of 24 and 68 months 
in the current study. The NDA subtype prediction model was used to predict subtype labels for 
the UCSD ACE dataset based on VABS - MSEL scores at the first assessment time point 
between 24-68 months.  

 
A subset of autistic and non-autistic from the UCSD dataset (autism n=81; n=37 

typically developing (TD); n=19 language or developmental delays (LD/DD)) with structural 
(MRI) and functional MRI (fMRI) and blood leukocyte gene expression data was also 
analyzed. This dataset was previously reported in past papers examining heterogeneity in early 
language outcomes (ELO)17–19. Here we applied the A3D prediction model to label autistic 
individuals in this imaging dataset as either Type I and Type II and then test if such labels are 
sensitive to differential underlying neurobiology. For details on data collection and processing 
of UCSD neuroimaging and gene expression data, see the section on neuroimaging and gene 
expression data.  

 
Phenotypic measures utilized in NDA and UCSD ACE datasets 
 
Vineland Scales of Adaptive Behavior (VABS) 
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The VABS is a widely used standardized and semi-structured caregiver interview for 
assessing adaptive functioning in typical and clinical populations throughout the lifespan22,23. 
For children within the age range included in this work (£ 68 months) the VABS assesses 
adaptive functioning skills within four domains: communication, daily living skills, 
socialization, and motor skills. In this work, we used standardized scores for each domain. 
Standardized scores are computed to indicate where an individual scores relative to typically 
developing age-appropriate norms, whereby for each standardized score, the mean is 100 and 
the standard deviation is 15.  

 
Mullen Scales of Early Learning (MSEL) 
 

The MSEL is a standardized assessment for non-verbal cognitive, motor, and language 
skills that can be administered in children aged 0-68 months21. In this work, four MSEL 
subscales were utilized which are relevant for assessing non-core autism characteristics within 
the A3D framework: visual reception (VR), fine motor (FM), receptive language (RL), 
and expressive language (EL). For each subscale, Developmental quotients (DQ) were 
computed as (age-equivalent/chronological age)*100, to have age-standardized scores centered 
around a value of 100. Computation of MSEL DQ scores eliminates some known issues with 
floored MSEL t-scores but also allows for MSEL to be used in further data analysis for 
clustering with compatible age-standardized scores consistent with VABS (e.g., age-
standardized scores centered at a value of 100 to indicate normatively age-appropriate skill 
level). For evaluating MSEL developmental trajectories, we utilized MSEL age-equivalent 
scores. 
 
Stability-based relative clustering validation analysis (reval) 
 

Our primary stratification model utilizes an unsupervised data-driven clustering 
approach that seeks to identify the optimal number of clusters with optimal level of 
generalizability in new data. This approach is based on stability-based relative clustering 
validation16,26, whereby we transform the unsupervised learning framework into a classification 
problem which allows for immediate translation of data-driven clustering solutions into 
supervised classification models that can be empirically demonstrated to be robust and 
generalizable partitions of the autism population. Stability-based relative clustering validation 
analysis was implemented with our Python library called reval16. The reval algorithm is shown 
in Fig 1C and can be described in the following series of steps. First, the dataset is split into 
independent training (dataset Xtr) and validation (dataset Xval) sets. Within the training set (Xtr), 
reval splits the data into an internal training (Xtr_tr) and test (Xtr_ts), with the goal to identify the 
optimal number of clusters (k). Clustering algorithm Αk is then fit to both Xtr_tr and Xtr_ts and 
produces clustering labels Ytr_tr and Y tr_ts respectively. A classifier (Φtr_tr) is then trained on 
[Xtr_tr, Ytr_tr] and then fit to Xtr_ts to predict labels Ytr_ts_pred. Misclassification error is computed 
by comparing the Αk’s clustering labels (Ytr_ts) to a classifier’s (Φtr_tr) predicted labels 
(Ytr_ts_pred). The reval algorithm iterates this procedure over a range of possible k clusters, and 
then identifies the optimal k that minimizes misclassification error on the internal test set 
(Xtr_ts). Misclassification error is the normalized Hamming distance between the actual 
clustering labels (Ytr_ts) versus the classifier’s (Φtr_tr) predicted labels (Ytr_ts_pred). However, 
because of the non-uniqueness of clustering labels, reval permutes the labels (Ytr_ts) and uses 
the Kuhn-Munkres algorithm to identify the labeling solution that minimizes misclassification 
error. This final measure of misclassification error is called ‘clustering stability’26 and this 
index ranges from 0-1, with lower values indicating more stable and reproducible clustering 
solutions. Stability is then normalized to the stability of random labelings to arrive at the final 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 8, 2024. ; https://doi.org/10.1101/2024.05.08.24307039doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.08.24307039
http://creativecommons.org/licenses/by-nc-nd/4.0/


measure of normalized stability. Thus, the overall first goal in reval is to identify the clustering 
solution Αk that minimizes normalized stability. Once the optimal k is identified from the 
training set, we then train a classifier (Φtr) on the entire training set at the optimal k, and then 
apply it to held-out validation set (Xval). Clustering labels (Yval) obtained on the validation set 
Xval are then compared to the classifier’s (Φtr) predicted labels (Yval_pred) and we compute a 
measure of generalizability accuracy operationalized as 1-misclassification error. Clustering 
solutions with high generalizability accuracy are the solutions we seek, as they are informative 
to solutions that have high potential to generalize well on the larger autism population. 
Furthermore, if generalization accuracy is very high, the output of reval is a classifier (i.e. 
prediction model) which we can use on new independent datasets to predict subtype labels 
(e.g., Type I vs Type II).  
 

Before running reval we first select data and features from the NDA dataset for use in 
clustering. For selecting NDA data, we utilized all available data from participants that had 
both MSEL and VABS between 24-68 months, and whereby the MSEL and VABS are sampled 
within 12 months of each other. For individuals with repeated MSEL and VABS measures (i.e. 
longitudinal data) the very first snapshot of MSEL and VABS was utilized for clustering. The 
features selected comprise all MSEL subscales (EL, RL, VR, FM) and VABS domains 
(Socialization, Communication, Daily Living Skills, Motor). Standardized scores from both 
measures were utilized for clustering, alongside the age at time of assessment. VABS 
standardized scores were already available on NDA. However, for the MSEL subscale scores 
are represented on NDA as age-equivalent scores.  

 
Before entering the reval clustering analysis, the data is split into independent training 

(Xtr) and validation (Xval) sets (training set = 67%; test set = 33%) while balancing the splits 
for variables such as age, sex, and VABS version. Three preprocessing steps are then applied. 
First, we impute missing values with a k-Nearest Neighbors imputation algorithm where the 
number of neighbors is identified via grid search (sklearn.impute.KNNImputer). The next two 
steps are ones where the parameters are fit on the training set and then applied to the validation 
set - scaling each feature in the dataset to mean of 0, standard deviation (SD) of 1 
(sklearn.preprocessing.StandardScaler) and applying the dimensionality reduction technique 
Uniform Manifold Approximation and Projection (UMAP)27 (https://umap-
learn.readthedocs.io/en/latest) (n_neighbors = 30, min_dist = 0.0, n_components = 2, 
random_state = 42, metric = Euclidean) to reduce the number of features from 8 to 2 (Fig 1B). 

 
While the reval clustering approach is meant to ensure the stability of clustering 

solutions, the optimal k that is determined must still be tested for whether it is a solution 
indicative of a situation where actual true clusters exist. To test the solution against the null 
hypothesis that no clusters are apparent in the data, we utilized a Monte Carlo simulation 
framework meant to test whether the data originate from a single multivariate Gaussian null 
distribution. This test was implemented with the sigclust library in R 28 with number of 
simulations set to 10,000. 

 
Longitudinal analyses 
 

The reval modeling identifies subtypes from a single snapshot of early MSEL and 
VABS scores that represent LIMA features. To test whether the subtypes are different in later 
developmental trajectories in language, cognitive, motor, and adaptive domains, we ran 
longitudinal analyses on a subset of NDA individuals with repeated measures over time (Fig 
1D). The reasoning behind conducting this analysis is that the subtypes within the A3D 
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frameworks are predicted to have different developmental outcomes; while early 
developmental trajectories are meant to be suggestive of the rate of growth, they should also 
be predictive of future developmental outcomes. Longitudinal modeling was implemented 
using a linear mixed effect model (e.g., lmer from the lme4 R library), whereby MSEL age-
equivalent or VABS standard scores were the dependent variable and age, subtype and the 
age*subtype interaction were fixed effects and with random effects of age with random 
intercepts and slopes grouped by subject. We also ran longitudinal modeling with a second 
independent dataset from UCSD (n=1,487). Here we applied the NDA subtyping model to 
earliest intake (between 24-68 months) MSEL and VABS scores from the UCSD dataset to 
generate subtype labels (Fig. 1E). Similar linear mixed effect modeling was used to test age, 
subtype, and age*subtype interactions as fixed effects and with age as random intercepts and 
slopes group by subject. 
 
Neuroimaging and gene expression data acquisition and preprocessing 
 
           All structural and functional neuroimaging data utilized in this work has been previously 
published in work examining ELO stratification (i.e. fMRI17,18, sMRI19). In this work, we take 
all data utilized in this past work and re-analyze it with different autism subtype labels (i.e. 
A3D Type I vs Type II). To briefly recap characteristics of this data and how it was initially 
collected, all neuroimaging data was collected during natural sleep at UCSD on a 1.5 Tesla 
General Electric MRI scanner. High-resolution T1-weighted IR-FSPGR (inversion recovery 
fast-spoiled prepared gradient recalled) anatomical scans were used for analyses of structural 
morphometry (surface area, cortical thickness) and for use during normalization steps in 
preprocessing fMRI data (parameters: TE (echo time) = 2.8 ms, TR (repetition time) = 6.5 ms, 
flip angle = 12°, bandwidth = 31.25 kHz, field of view = 24 cm, and slice thickness = 1.2 mm). 
Cortical morphometric measurements such as surface area (SA) and cortical thickness (CT) 
were derived from Freesurfer processing of the anatomical T1 data19. These morphometric 
measures were estimated from a genetically-sensitive parcellation known as GCLUST29,30. All 
SA and CT data analyzed here are identical to those reported in prior work19. fMRI data used 
in this work is identical to the data in previous papers on ELO17,18, and thus all details of the 
language paradigm and imaging acquisition parameters apply (i.e. single-echo echoplanar 
imaging (EPI) sequence; echo time = 30 ms; repetition time = 2500 ms; flip angle = 90°; 
bandwidth = 70 kHz; field of view = 25.6 cm; in-plane resolution = 4 × 4 mm; slice thickness 
= 4 mm; 31 slices). Preprocessed data was then input into single-subject general linear models 
(GLM) and was utilized for re-analysis17, but whereby new tests in this work specifically 
examine group differences using the new A3D stratification model (e.g., Type I vs Type II) 
and to compare the A3D stratification model to the previously reported ELO stratification 
model17,18. Both whole-brain activation mapping per each group and region of interest (ROI) 
analyses for between-group comparisons were used. In both whole-brain and ROI analysis 
models, sex and age at scan were included as covariates of no interest. Whole-brain mapping 
was thresholded using a voxel-wise FDR correction at q<0.0531. The ROIs utilized in this 
analysis were the same 4 meta-analytic ROIs used in prior work17,18, which were derived from 
Neurosynth for the term ‘language’ and comprise left and right hemisphere temporal and lateral 
frontal cortices. Model comparison between ELO and A3D models was implemented using the 
Akaike Information Criterion (AIC) statistic. Models with lower AIC are considered better and 
we considered the model sufficiently better if the difference in AICs was greater than 1032. 

 
In this work, we also re-analyzed neuroimaging-gene expression relationships with 

partial least squares (PLS) analysis33, similar to previously reported in papers on ELO 
stratification18,19. The neuroimaging and blood leukocyte gene expression data re-analyzed was 
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identical to those used in this past work18,19. However, in the current work we examine these 
relationships in the A3D stratification model (e.g., Type I vs Type II). To briefly recap how 
this data was initially collected and analyzed, all blood gene expression data was collected at 
UCSD. Four to six milliliters of blood was collected into EDTA-coated tubes from toddlers on 
visits when they had no fever, cold, flu, infections, or other illnesses, or use of medications for 
illnesses 72 h before the blood draw. Blood samples were passed over a LeukoLOCK filter 
(Ambion) to capture and stabilize leukocytes and immediately placed in a –20 °C freezer. Total 
RNA was extracted according to standard procedures and manufacturer’s instructions 
(Ambion). LeukoLOCK disks (Ambion cat no. 1933) were freed from RNAlater, and Tri-
reagent (Ambion cat no. 9738) was used to flush out the captured lymphocytes and lyse the 
cells. RNA was subsequently precipitated with ethanol and purified though washing and 
cartridge-based steps. The quality of the mRNA samples was quantified according to the RNA 
Integrity Number (RIN): values of 7.0 or greater were considered acceptable34, and all 
processed RNA samples passed RIN quality control. Quantification of RNA was performed 
with a NanoDrop spectrophotometer (Thermo Scientific). Samples were prepared in 96-well 
plates at a concentration of 25 ng/μl.  

 
RNA was assayed at Scripps Genomic Medicine for labeling, hybridization, and 

scanning with the Illumina BeadChip pipeline (Illumina) according to the manufacturer’s 
instructions. All arrays were scanned with the Illumina BeadArray Reader and read into 
Illumina GenomeStudio software (version 1.1.1). Raw data were exported from Illumina 
GenomeStudio, and data preprocessing was performed with the lumi package35 for R 
(http://www.R-project.org/) and Bioconductor (http://www.bioconductor.org/)36. Raw and 
normalized data are part of larger sets deposited in the Gene Expression Omnibus database 
(GSE42133 and GSE111175).  

 
A larger primary dataset of blood leukocyte gene expression was available from 383 

samples from 314 toddlers 1–4 years old. The samples were assayed with the Illumina 
microarray platform in three batches. The datasets were combined by matching the Illumina 
Probe ID and probe nucleotide sequences. The final set included a total of 20,194 gene probes. 
Quality-control analysis was performed to identify and remove 23 outlier samples from the 
dataset. Samples were marked as outliers if they showed low signal intensity (average signal 
two SD lower than the overall mean), deviant pairwise correlations, deviant cumulative 
distributions, deviant multidimensional scaling plots, or poor hierarchical clustering, as 
described elsewhere37. The high-quality dataset included 360 samples from 299 toddlers. High 
reproducibility was observed across technical replicates (mean Spearman correlation of 0.97 
and median of 0.98). Thus, we randomly removed one of each of two technical replicates from 
the primary dataset. The 20,194 probes were then collapsed to ~14,000 genes (14,313 for the 
fMRI-gene expression dataset18; 14,426 for the structural MRI-gene expression dataset19) on 
the basis of picking the probe with maximal mean expression across samples. Data were 
quantile normalized and then adjusted for batch effects, sex, and RIN. The batch-, sex-, and 
RIN-adjusted data were used in all further downstream analyses. 

 
WGCNA analysis was used to reduce several thousands of highly correlated genes 

down to a less redundant number of gene co-expression modules to utilize in the PLS analysis. 
The WGCNA analysis is described in past papers18,19, and is briefly recapped here. WGCNA 
is implemented with the WGCNA library in R38. Correlation matrices estimated with the robust 
correlation measure of biweight midcorrelation and then converted into adjacency matrices that 
retained the sign of the correlation. These adjacency matrices were then raised to a soft power 
of 16. This soft power was chosen by finding the first soft power for which a measure of R2 
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scale-free topology-model fit saturated at least above R2 > 0.839, and the slope was between –
1 and –240. The soft-power-thresholded adjacency matrix was then converted into a topological 
overlap matrix (TOM) and then a TOM dissimilarity matrix (1 – TOM). The TOM dissimilarity 
matrix was then input into agglomerative hierarchical clustering with the average linkage 
method. Gene modules were defined from the resulting clustering tree, and branches were cut 
with a hybrid dynamic tree-cutting algorithm (deepSplit parameter = 4). Modules were merged 
at a cut height of 0.2, and the minimum module size was set to 100. Only genes with a module 
membership of r > 0.3 were retained within modules. For each gene module, a summary 
measure called the ME was computed as the first principal component of the scaled 
(standardized) module expression profiles, and these ME values were utilized in further PLS 
analyses. We also computed module membership for each gene and module. Module 
membership indicated the correlation between each gene and the ME. Genes that could not be 
clustered into any specific module were left within the M0 module, and this module was not 
considered in any further analyses.  

 
Partial least squares (PLS) analysis33 was utilized to examine neuroimaging-gene 

expression relationships and was implemented in an identical manner as prior work18,19. To 
briefly recap, PLS allows for identification of latent imaging-gene expression variable pairs 
(LV) that maximally explained covariation in the dataset and which are uncorrelated with other 
latent variable pairs. The strength of such covariation was denoted by the singular value (d) for 
each brain–behavior LV, and hypothesis tests were made via with permutation tests on the 
singular values. Furthermore, identifying brain regions that most strongly contribute to each 
LV pair was made via bootstrapping, whereby a bootstrap ratio was created for each voxel and 
represented the reliability of that voxel for contributing strongly to the LV pattern identified. 
The bootstrap ratio was roughly equivalent to a Z statistic and could be used to threshold data 
to find voxels that reliably contribute to an LV pair. The PLS analyses reported here were 
implemented within the plsgui MATLAB toolbox (http://www.rotman-baycrest.on.ca/pls/). 
The imaging data for fMRI was single-subject t-statistic maps, while for structural MRI 
imaging data GCLUST parcellated surface area and cortical thickness measures were used. 
WGCNA module eigengene values were inserted for the gene expression data in the PLS 
analysis. For statistical inference on identified imaging-gene expression LV pairs, a 
permutation test was run with 10,000 permutations. To identify reliably contributing 
voxels/brain regions for imaging-gene expression LVs and to compute 95% CIs on 
correlations, bootstrapping was used with 10,000 resamples. Bootstrap ratios (BSR) were used 
to visualize patterns across the brain, with larger BSRs indicating stronger and more reliable 
contributions to significant imaging-gene expression LVs. The strength of imaging-gene 
expression correlations for significant LVs was displayed as a bar graph with 95% bootstrap 
CIs as error bars. Gene coexpression modules in which the 95% CIs did not encompass 0 were 
denoted ‘nonzero’ association modules. All other modules in which the 95% CIs included 0 
were denoted ‘zero’ modules.  
 
Gene set enrichment analyses 
  
 Our PLS analyses highlight non-zero modules that significantly contribute the imaging-
gene expression association effects. Thus, we utilized genes from non-zero modules and then 
tested them for enrichment with an independent gene list of attenuated transcriptomic regional 
identity (ARI) genes, isolated in post-mortem cortical tissue of autistic individuals41. This 
analysis was done to test how genes isolated assayed from blood leukocytes and associated 
with imaging phenotypes in autism may overlap with genes isolated as dysregulated in their 
cortical patterning directly in cortical tissue of autistic patients. Gene set enrichment analyses 
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were implemented using custom R code written by MVL that computes hypergeometric P 
values and enrichment ORs. The background pool for these enrichment tests set to the number 
of total genes assessed in our prior papers (e.g., 14,31318; 14,42619). After all enrichment tests 
were computed, results are interpreted only if the enrichment was statistically significant after 
FDR correction for multiple comparisons at a threshold of q < 0.05.  
 
Data availability 

 
All data utilized in this work can be found in the National Institute of Mental Health 

Data Archive (NDA; https://nda.nih.gov). For the UCSD ACE data, the data are available on 
NDA through collection IDs 9, 2466, 2968, 2290 and 2115.  

 
Code availability  
 

Analysis code to reproduce the analyses and figures is available on GitHub 
(https://github.com/IIT-LAND/a3d_msel_vabs). The reval Python library can be found on 
GitHub (https://github.com/IIT-LAND/reval_clustering) and the documentation at 
https://reval.readthedocs.io. The Shiny app that allows users to input their own MSEL and 
VABS data and get subtype predictions can be found at 
https://landiit.shinyapps.io/Autisms3D/.  

 

 
Figure 1: Schematic of data analysis workflow/pipeline. This figure shows a workflow of the 
analyses conducted in this work. Panels A and B depict how we select, clean, and preprocess 
data from the National Institute of Mental Health Data Archive (NDA). To identify subtypes in 
a data-driven manner, we used stability-based relative clustering validation analysis (reval) 
(panel C) on a final sample of 615 autistic children aged 24-68 months. Subtypes are tested 
for their prognostic validity (panel D) utilizing longitudinal data from NDA. The stratification 
model was tested again for developmental trajectory differences in an independent longitudinal 
dataset from UCSD ACE (panel E-F). Subtypes were also tested for neurobiological 
differentiation using structural and functional neuroimaging data and relationships to blood 
leukocyte gene expression patterns (panel G). 
 
Results 
 
Detection of Type I versus Type II autisms in early development 
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The first objective of this work was to test whether it is possible to detect autism Type 

I and Type II subtypes in early development, as predicted by the A3D model. Stability-based 
relative clustering validation (reval)16 identified a two-cluster solution as the optimal solution 
and which generalizes with 98% accuracy in the independent NDA validation dataset (Fig 2A). 
SigClust analysis confirms that this solution is indeed indicative of true clusters that heavily 
deviate from the null hypothesis of that the data come from one originating multivariate 
Gaussian distribution (p = 9.99e-5; Fig 2B). The subtypes conform to the predicted Type I 
(‘disability’) versus Type II (‘difference’) distinction, as they show a marked separation 
between high versus very low scores across all LIMA features (Fig 2C). Notably, the 
distinction here is not based on hard cutoffs. Rather, distributions for all subscales/domains 
overlap to some extent, but effect sizes remain rather large throughout (Cohen’s d > 0.96) 
(Supplementary Table 1). The fact that distributions overlap and yet a classifier can still make 
accurate labelings with 98% accuracy indicates the robustness of such an approach over-and-
above other heuristic methods typically used in clinical practice such as hard cut-off 
thresholding. 
 
Differential developmental trajectories for Type I vs Type II autisms  
 

We next tested if A3D Type I versus Type II autisms differed in terms of subsequent 
developmental trajectories taken over the first decade of life (Fig 2D-E). For each MSEL 
subscale, we found highly significant age*subtype interactions in both NDA and UCSD ACE 
datasets (Supplementary Tables 2-3). This interaction effect can be described by slower and 
less steep trajectories for Type I compared to Type II and indicates that Type II autism develops 
language, fine motor, and non-verbal cognitive skills at a much faster rate. For VABS 
trajectories we did not find any significant age*subtype interactions in the NDA, although the 
slopes appear qualitatively different (Supplementary Table 2). In contrast, significant 
age*subtype interactions appear in the UCSD ACE dataset for all VABS domains except for 
the motor domain (Supplementary Table 3). Notably, the larger longitudinal sample size for 
the UCSD ACE dataset (n =1,487) may imply that such subtle yet significant effects here were 
not detected in NDA because of lower statistical power. VABS trajectory differences can be 
described as Type II autism have much less steep decline in skills over time compared to Type 
I autism. Overall, these results showcase that Type I and Type II autisms can be characterized 
by not just initial large differences in early LIMA features, but also by differential rates of 
development over the first decade of life. Thus, if Type I vs Type II autisms are a distinction 
between profound disability versus difference, these results show that those descriptions are 
increasingly more prominent as development progresses. 
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Figure 2: Robust and highly generalizable early distinctions between Type I versus Type II 
autisms. Panel A shows that a 2-subtype solution is the optimal clustering solution that 
minimizes normalized stability via stability-based relative clustering validation (reval). This 
solution generalizes with 98% accuracy in the held-out NDA validation dataset. Panel B shows 
UMAP density plots that depict separated peaks of distributions for Type I (blue) and Type II 
(orange) autism subtypes. Panel C plots the standardized scores across all MSEL and VABS 
features to describe how subtypes manifest as relatively low (Type I; blue) versus high (Type 
II; orange) scores across all features. Panels D-E show plots of developmental trajectories for 
the Type I (blue) and Type II (orange) autisms, respectively for NDA (D) and UCSD ACE (E) 
datasets.  
 
Differential functional neural responses to speech 
 
 In the next analysis we examined fMRI responses to speech between A3D Type I and 
Type II autisms. Prior work using early language outcome (ELO) subtype labels showed that 
autism with poor ELO does not robustly activate language-sensitive superior temporal 
cortices17,18. Since the same fMRI data was re-analyzed in this work, we first examined how 
well the A3D labels might correspond to the ELO subtype labels. In contrast to the ELO model, 
the A3D model breaks down into a somewhat different distinction (χ2 = 14.21, p = 0.0001) 
(Supplementary Table 4). Type I individuals in A3D are about 17% of all autistic individuals 
in the fMRI dataset, and all Type I individuals in A3D would be labeled in the Poor subtype of 
the ELO model. In contrast, all individuals labeled in the Good subtype under the ELO model 
fell into the Type II A3D subtype (Supplementary Table 4). This contrast between models and 
how labels are made indicates that the Type I label from A3D is much more conservative than 
the ELO model.  
 
 Despite the considerable difference in subtype labels between the models, whole-brain 
maps show a quite similar activation patterns in each subtype between ELO and A3D models. 
The robust activation patterns observed in TD and LD/DD non-autistic comparison groups are 
largely preserved, particularly in left hemisphere superior temporal cortex, in the ELO Good 
and A3D Type II subtypes. In contrast, very little is identified in the ELO Poor and A3D Type 
I subtypes (Fig 3A). This qualitatively may suggest that very similar fMRI differences are 
apparent across the ELO and A3D models. To test this in a more targeted way for specific brain 
regions sensitive to language, we conducted region of interest (ROI) analyses around 4 regions 
(bilateral  temporal and frontal cortex regions) that meta-analytic evidence shows are sensitive 
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to language processing17,18. Here we find robust evidence that the ELO pattern of the Poor 
subtype showing a lack of left hemisphere superior temporal cortex (LH temporal) response to 
speech is similarly evident in the Type I subtype from A3D, but with somewhat larger effect 
sizes in A3D (Fig 3B; Supplementary Table 5A). Model comparisons with the Akaike 
Information Criterion (AIC) show that ELO and A3D models are equally good at explaining 
variance in functional neural responses to speech (ELO AIC = -446.59; A3D AIC = -447.92, 
Supplementary Table 5B). The slightly lower AIC for the A3D model may be due to marginally 
stronger effect sizes for TD vs Type I and LD/DD vs Type I, compared to the ELO TD vs Poor 
and LD/DD vs Poor comparisons (Fig 3B). Similar effects also emerge with ELO and A3D 
models showing very similar AIC values in RH superior temporal cortex (RH temporal) (Fig 
3C; Supplementary Table 5B, while little to no group differences are apparent in LH and RH 
frontal ROIs for either ELO or A3D (Supplementary Table 5B). 
 
Differential large-scale associations between fMRI response and gene expression 
 
 We next compared how functional neural response to speech is related to gene 
expression patterns measured in blood. In our prior work on the ELO model, we found evidence 
for a large-scale fMRI-gene expression relationship whereby such relationships are relatively 
distinct between TD and autism subtypes18 (Fig 3D). The same analysis applied to the A3D 
model reveals a very similar relationship (LV1: d  = 110.73, p = 1.99e-4, percentage 
covariance explained = 34.16%), comprising many of the same frontal and temporal regions, 
but additionally showing prominent contributions of lateral parietal areas connected by the 
arcuate fasciculus in language-sensitive areas42 (Fig 3E). Additionally, the correlations 
between specific non-zero gene co-expression modules apparent in the Type I subtype (Fig 3E) 
are much stronger than similar relationships observed in the ELO Poor subtype (Fig 3D). Thus, 
much like the prior analysis showing similar differences in fMRI activation response to speech, 
associations with functional genomic mechanisms also appear to be quite similar in A3D vs 
ELO, albeit with slightly stronger effect in A3D. 
 

 
Figure 3:  Functional neural response to speech and associations with gene expression. 
Panel A depicts whole-brain analysis maps for each of the groups under study. All maps are 
thresholded at voxel-FDR q<0.05, except for LD/DD, Poor and Type I groups, which are 
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thresholded at cluster-forming p<0.05 and cluster FDR q<0.05 for visualization purposes. 
Panel B depicts standardized effect sizes (Cohen’s d) for the LH temporal ROI for all pairwise 
group comparisons for A3D (top) and ELO (bottom) stratification models. The asterisks and 
green outlined cells indicate statistical significance at p<0.05. Similar effect size heatmaps are 
shown in panel C for the RH temporal ROI. Panels D and E show results for the PLS analysis 
of fMRI-gene expression relationships in the ELO (D) and A3D (E) models. The whole-brain 
map show brain bootstrap ratios (BSR) to indicate which voxels most strongly contribute to 
the fMRI-gene expression relationship. The heatmaps to the right on each panel shows each 
gene co-expression module (rows) and groups (columns). The modules of importance are 
highlighted with green outlines (non-zero modules) as they contain a correlation whose 95% 
bootstrap CIs do not encompass zero. 
 
Differential genomic cortical patterning of cortical surface area  
 
 In prior work we also reported that genomic cortical patterning of surface area and 
cortical thickness manifest differently in ELO subtypes19. In the next analysis, we revisit that 
same dataset and apply the A3D model. Similar to the comparison of fMRI ELO vs A3D 
models in terms of sample sizes, in this analysis of structural imaging phenotypes the A3D 
model was again more conservative in labeling individuals as Type I (17% of all autistic 
individuals) compared to the ELO model Good vs Poor distinction (χ2 = 13.36, p = 0.0002) 
(Supplementary Table 4). PLS analyses of surface area in the ELO model revealed on one 
significant LV pair, interpreted as a normative cortical patterning effect with similar 
associations found in the TD and autism Good subtype, whereas such patterns were absent in 
the autism Poor ELO subtype19 (Fig 4A). In contrast, analysis of the A3D model reveal 2 
significant LV pairs, with LV1 being an effect showing effects exclusively in the Type I 
subtype (LV1: d = 4.22, p = 1.99e-4, percentage covariance explained = 26.78%; Fig 4B). The 
LV2 recapitulates the normative surface area patterning effect found in the ELO model (LV2: 
d = 3.57, p = 1.99e-4, percentage covariance explained = 19.21%; Fig 4C), whereby similar 
correlations are found in TD and Type II. However, LV2 also reveals opposite effects occurring 
for Type I in some modules (e.g., M4, M6), and additional modules with important non-zero 
effects that are exclusive to Type I (e.g., M11, M12). Thus, although retaining a similar 
normative surface area patterning effect, the A3D model is additionally sensitive to an effect 
for how surface is atypically patterned specific to the Type I subtype. 
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Figure 4: Gene expression associations with cortical surface area. Results for PLS analyses 
on the phenotype of cortical surface area for the ELO (A) or A3D (B, A3D SA LV2; C, A3D SA 
LV1) models. The parcellated brain maps show brain bootstrap ratios (BSR), whereby more 
extreme BSRs indicate brain regions that more strongly contribute to the LV relationship. The 
heatmap on the right of each panel shows correlations with each gene co-expression module 
(rows) and each group (columns). The important non-zero modules are highlighted as cells 
with green outlines.  
 
Differential genomic cortical patterning of cortical thickness 
 
 Next, we looked at genomic patterning of cortical thickness. The ELO model had 
previously revealed 2 different effects on cortical thickness – LV1 being a normative effect 
with similar associations in TD and the autism Good ELO subtype (Fig 5A) and LV2 being an 
atypical effect on cortical thickness specific to the autism Poor ELO subtype19 (Fig 5B). The 
A3D model reveals only one significant LV pair (A3D CT LV1: d = 4.98, p = 9.99e-5, 
percentage covariance explained = 35.33%; Fig 5C). However, A3D CT LV1 is an effect that 
encompasses both the normative effect (e.g., similar non-zero modules (M1, M16) shared by 
TD and Type II) and an atypical effect specific to Type I (e.g., non-zero modules that are unique 
to Type I (M3, M5, M6, M9, M12), or which appear in Type I but in the opposite directionality 
(M7) from TD and Type II). Qualitatively, similar non-zero modules appear present for both 
TD and Good or Type II subtypes in both models. In contrast, somewhat different non-zero 
modules appear that are unique to the Poor group in ELO CT LV2 compared to Type I in A3D 
CT LV1.  
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Figure 5: Gene expression associations with cortical thickness. Results for PLS analyses on 
the phenotype of cortical thickness for the ELO (A, ELO CT LV1; C, ELO CT LV2) or A3D (B, 
A3D CT LV1) models. The parcellated brain maps show brain bootstrap ratios (BSR), whereby 
more extreme BSRs indicate brain regions that more strongly contribute to the LV relationship. 
The heatmap on the right of each panel shows correlations with each gene co-expression 
module (rows) and each group (columns). The important non-zero modules are highlighted as 
cells with green outlines. 
 
Overlap with genomic cortical patterning effects in post-mortem cortical tissue 
 
 A caveat to the analyses showing large-scale associations (e.g., cortical patterning 
effects) between imaging phenotypes and gene expression is that these data deal with gene 
expression patterns measured peripherally in blood leukocytes. However, a recent paper on 
broad transcriptomic dysregulation across cortical regions in post-mortem cortical tissue 
reveals a potentially similar kind of pattern effect for how gene expression is dysregulated 
across the cortex in autism41. Thus, we took the opportunity here to assess whether there is 
indeed overlap between genes that show an atypical transcriptomic regional identity (ARI) 
effect in post-mortem cortical tissue and the genes that pop up in our imaging-gene expression 
association analysis (i.e. genes from non-zero modules). Here we find that fMRI non-zero 
module genes from both the ELO and A3D model significantly overlap with ARI genes 
identified in post-mortem cortical tissue41 (Fig 6A). With regard to structural cortical patterning 
of surface area and cortical thickness, we also find significant overlap between Gandal’s ARI 
gene set and genes from PLS effects that are interpreted as showing normative patterning 
effects in TD and ELO Good or A3D Type II subtypes (e.g., similar non-zero modules and 
associations). In contrast, PLS LVs interpreted as specific atypical effects in ELO Poor or A3D 
Type I subtypes do not show strong overlap with Gandal’s ARI gene set (Fig 6B; 
Supplementary Table 6). The A3D CT LV1 effect, characterized by a mixture of shared 
normative effects between TD and Type II versus specific atypical effects in Type I, was an 
exception, as the enrichment with ARI genes was trending on significance after FDR correction 
(FDR q = 0.055; Supplementary Table 6). Thus, these analyses are primary validation for the 
idea that imaging-blood gene expression associations revealed here and in our prior work can 
pick up on similar genes that when measured in cortical tissue, show atypical gene expression 
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patterning dysregulation in autism. In particular, when our analyses of blood gene expression 
identify normative patterning effects shared in TD and ELO Good or A3D Type II subtypes, 
these effects are quite similar to those appearing in the ARI gene list from post-mortem cortical 
tissue.  
 

 
Figure 6: Enrichment analysis showing overlap between attenuated transcriptomic regional 
identity (ARI) genes detected in post-mortem cortical tissue and non-zero modules detected 
in imaging-gene expression PLS analyses. Panel A depicts a schematic of how these 
enrichment analyses were conducted. A gene set known as attenuated transcriptomic regional 
identity (ARI) genes were extracted from a prior study on post-mortem cortical tissue in autistic 
patients41. These ARI genes are genes that have substantial between-region gene expression 
differences in non-autistic brains, but much more attenuated regional identity differences in 
gene expression in autism. ARI genes are depicted in blue in the Venn diagram. In green, the 
Venn diagram shows our set of genes isolated from PLS imaging-gene expression association 
analyses. The degree of overlap is then tested with enrichment odds ratios and hypergeometric 
p-values. Panel B shows a heatmap of the enrichment odds ratios (numbers in the center of 
each cell) whereby color in each cell indicates the -log10(p-value) for each hypergeometric 
test. Cells with a thick black outline indicate enrichment tests that pass at FDR q<0.05, while 
cells with smaller thin black outline pass at FDR q<0.1. The columns in the heatmap represent 
comparisons when the gene list derives from the ELO (left) or A3D (right) model. Each row of 
the heatmap indicates a different gene list extracted from PLS analyses, with the top row 
indicating genes from non-zero modules in PLS analyses that examine fMRI responses to 
speech. The remaining rows depict comparisons where the PLS gene lists come from 
associations with surface area (SA) or cortical thickness (CT) and we have annotated with 
rows can be interpreted as effects indicative of ‘normative patterning’ effects (effects driven 
by TD correlations and which are shared in Good ELO or Type II A3D subtypes) versus 
atypical patterning effects (e.g., effects driven specifically in the ELO Poor or Type I A3D 
subtypes. 
 
Discussion 
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This work offers a key proof-of-concept for the A3D model approach to stratifying 
autism into phenotypically, biologically, and developmentally-meaningful subtypes. The A3D 
model suggests that a first-level split in the autism population should be between subtypes 
differentially characterized by profound disability (Type I) versus difference (Type II) and that 
such a distinction is evident from early in life and continually emerges throughout later 
development. At the basis for differentiating Type I versus Type II autisms under A3D are the 
non-core LIMA features. An unsupervised data-driven modeling approach can identify these 
types in an automated fashion with high degree of accuracy in generalizing to new data. To 
accelerate research progress in the field testing these subtypes, we have developed a freely 
available web application that will allow researchers to insert their own MSEL and VABS data 
and immediately get subtype labels (https://landiit.shinyapps.io/Autisms3D/). 

 
In addition to providing a robust, reproducible, and highly generalizable prediction 

model for detecting Type I versus Type II autisms, we have also provided replicable evidence 
in two independent longitudinal datasets demonstrating that identification of such subtypes in 
early points in development is predictive of later differences in developmental trajectories over 
the first decade of life. This key feature of the results brings together the ‘developmental’ 
component of A3D by showing that the subtypes can be identified early and that such early 
generated subtype labels are indicative of different developmental paths as they grow older. 

 
In this work, we also tested the A3D model to determine whether the subtype labels are 

sensitive to differences at the level of neuroimaging phenotypes and relationships to gene 
expression. The A3D model highlights several distinctions that are very similar in nature to the 
previous ELO stratification model17–19. The similar biological sensitivity of A3D and ELO is 
important, since the two models do differ substantially in terms of labels, with A3D potentially 
being much more conservative. Some subtle and qualitative differences did emerge between 
A3D and ELO with respect to how neuroimaging phenotypes are related to gene expression. 
First, regarding fMRI-gene expression associations, it was clear that the A3D model generally 
produces associations in Type I that are a bit stronger than those seen in the ELO Poor subtype. 
Second, regarding surface area-gene expression associations, A3D revealed two kinds of 
associations – one being a normative effect shared between TD and Type II, and a separate 
atypical effect apparent only in Type I. This can be contrasted to only a normative genomic 
patterning effect on surface area in the ELO model. Finally, whereas CT-gene expression 
associations in the ELO model comprised two orthogonal effects – one normative and shared 
between TD and Good subtype, while another is atypical specifically in the Poor subtype – the 
A3D model identifies only one latent variable pair that captures both the CT normative 
patterning effect in TD and Type II, but also capture atypical patterning in different co-
expression modules for Type I. These types of subtle and qualitative differences may be 
important for distinguishing A3D from the ELO model. Given that A3D tends to identify 
somewhat larger effects alongside unique imaging-gene expression relationships for Type I 
and/or relationships with opposing directionality in Type I compared to Type II and TD, it 
could be inferred that A3D may be better than ELO at highlighting biology in the most 
profoundly affected autistic individuals compared to the ELO model. However, we also 
emphasize the large degree of similarities between results from A3D and ELO. This overlap 
illustrates that both ELO and A3D are detecting differential biology that is otherwise hidden 
from case-control modeling. A limitation/caveat to underscore about the neuroimaging results 
is that current sample sizes, particular for Type I in A3D, are relatively small. Thus, future 
work should attempt to replicate and extend these findings in larger samples.  
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To conclude, we demonstrate that the autism Type I and Type II subtypes, as described 
by A3D theoretical framework, are present in early development and that their early 
developmental trajectories are markedly different in language, motor, intellectual and adaptive 
skills. This work proves the usefulness of the A3D model in parsing autism heterogeneity 
highlighting important differences that, already proved to be in the short term, have the 
potential to be a good prognostic model for long term outcomes. To provide a complete tool 
for A3D model application, future works should aim to implement a stratification model to 
distinguish Type I and Type II subtypes in autistic individuals older than 68 months.  
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Supplementary Table Legends 
 
 Supplementary Table 1: Standardized effect sizes describing magnitude of difference 
between MSEL and VABS scores for Type I versus Type II in NDA. Magnitude of difference 
between Type I versus Type II are reported in this table as standardized effect sizes (Cohen’s 
d) for all MSEL and VABS scales in NDA Training and Validation sets. 
 
 Supplementary Table 2: Linear mixed effect models (LMEs) for longitudinal VABS 
and MSEL data from the NDA dataset. LMEs are computed with a fixed effect of age, subtype, 
and age* subtype interaction. Random effects are intercepts and slopes grouped by subjects. 
 
 Supplementary Table 3: Linear mixed effect models (LMEs) for longitudinal VABS 
and MSEL data from the UCSD ACE dataset. LMEs are computed with a fixed effect of age, 
subtype, and age* subtype interaction. Random effects are intercepts and slopes grouped by 
subjects. 
 
 Supplementary Table 4:  Sample sizes for fMRI and MRI datasets, broken down by 
ELO and A3D subtype labels. Confusion matrices are shown in these tables to showing 
correspondence between A3D and ELO autism subtype labels in the UCSD ACE fMRI and 
MRI datasets. 
 
 Supplementary Table 5: AUTISMS-3D model ROI analysis. Table A shows the results 
from the ROI analysis of the AUTISMS-3D model; ANOVA's F and p values are reported for 
the effects of Subtype, Sex, and Age at scan. Significant p-values (<0.05) are highlighted. Table 
B reports the AIC comparison between the AUTISMS-3D and ELO models. Delta AIC are 
reported as absolute values, the best model is highlighted. 
 
 Supplementary Table 6. Gene set enrichment analysis. This table shows results for 
the gene set enrichment analysis between Partial Least Square (PLS) gene list and attenuated 
transcriptomic regional identity (ARI) genes. Each row indicates a different gene list extracted 
from PLS analysis. LV1 = Latent Variable 1; SA = Surface Area; CT =  Cortical Thickness; 
OR = Odds Ratio. Normative refers to patterning effect driven by TD and Type II/ELO Good 
individuals, while Atypical refers to patterning effects driven by Type I/ELO poor. 
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