
Highlights

GenAI Exceeds Clinical Experts in Predicting Acute Kidney Injury
following Paediatric Cardiopulmonary Bypass1

Mansour Sharabiani, Alireza Mahani, Alex Bottle, Yadav Srinivasan, Richard
Issitt, Serban Stoica

• LLMs outperform clinical experts in predicting risk of AKI after pae-
diatric CPB.

• LLMs generate clinically plausible explanations and hypotheses using
embeddings.

• Successful application of LLMs in paediatric CPB suggests potential in
other specialised fields.

• Fine-tuning LLMs on domain data and forming ensembles of AI and
clinical experts may boost accuracy.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 2, 2024. ; https://doi.org/10.1101/2024.05.14.24307372doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2024.05.14.24307372
http://creativecommons.org/licenses/by-nc-nd/4.0/


GenAI Exceeds Clinical Experts in Predicting Acute

Kidney Injury following Paediatric Cardiopulmonary

Bypass2

Mansour Sharabiania,1,∗, Alireza Mahanib,1,∗∗, Alex Bottlea, Yadav
Srinivasanc, Richard Issittd, Serban Stoicae

aSchool of Public Health, Imperial College London, UK
bStatman Solution Ltd., 128 City Road, London, EC1V 2NX, UK

cCardiac Surgery Department, Great Osmond Street Hospital for Children, London, UK
dPerfusion Department, Great Osmond Street Hospital for Children, London, UK

eCardiac Surgery Department, Bristol Royal Children’s Hospital, Bristol, UK

Abstract

The emergence of large language models (LLMs) offers new opportunities
to leverage, often unused, information in clinical text. This study examines
the utility of text embeddings generated by LLMs in predicting postopera-
tive acute kidney injury (AKI) in paediatric cardiopulmonary bypass (CPB)
patients using electronic health record (EHR) text, and to explore methods
for explaining their output. AKI is a significant complication in paediatric
CPB and its prediction can significantly improve patient outcomes by en-
abling timely interventions. We evaluate various text embedding algorithms
such as Doc2Vec, top-performing sentence transformers on Hugging Face,
and commercial LLMs from Google and OpenAI. We benchmark the out-of-
sample predictive performance of these ‘AI models’ against a ‘baseline model’
as well as an established clinically-defined ‘expert model’. The baseline model
includes patient gender, age, height, body mass index and length of opera-
tion. The majority of AI models surpass, not only the baseline model, but
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also the expert model. An ensemble of AI and clinical-expert models im-
proves discriminative performance by nearly 23% compared to the baseline
model. Consistency of patient clusters formed from AI-generated embed-
dings with clinical-expert clusters - measured via the adjusted rand index
and adjusted mutual information metrics - illustrates their medical validity.
We use text-generating LLMs to explain the output of embedding LLMs,
e.g., by summarising the differences between AI and expert clusters, and/or
by providing descriptive labels for the AI clusters. Such ‘explainability’ can
increase medical practitioners’ trust in the AI applications, and help generate
new hypotheses, e.g., by correlating cluster memberships with outcomes of
interest.

Keywords: generative artificial intelligence, text embedding, electronic
health records, cardiopulmonary bypass, acute kidney injury, spherical
k-means

1. Introduction

While traditional predictive models rely on structured data and/or expert-
defined features, the emergence of large language models (LLMs) offers new
opportunities to leverage unstructured text - e.g., clinical notes in electronic
health records (EHRs) - for predictive modelling. Postoperative acute kidney
injury (AKI) is a critical complication in paediatric patients undergoing car-
diopulmonary bypass (CPB). Accurate prediction of AKI can significantly
improve patient outcomes by enabling timely interventions. This study aims
to assess the utility of text embeddings generated by LLMs in predicting
AKI in paediatric CPB patients, and to explore methods for explaining their
output and improving their predictive power.

Text embedding involves converting text — whether a single word, or a
sequence of words forming a sentence, paragraph, or an entire article — into
a numeric vector. Embedding techniques range from simple (e.g., bag-of-
words, TF-IDF) to advanced (e.g., transformer-based LLMs). Modern text
embedding models often produce high-dimensional vectors that are designed
to preserve contextualised semantics of the input (natural language). Em-
bedding a text string produces a vector, and thus embedding a text column
results in a numeric matrix (Figure 1). Each column of this matrix can be
treated as a feature in a predictive model.
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1.1. Related Work and Our Contributions

While text embeddings are often integral components of search engines,
chatbots, information retrieval and recommender systems, their application
in predictive models has received less attention. Pham et al [1] used em-
beddings derived from clinical text data to model patient trajectories and
predict disease progression in individuals with diabetes and mental health
conditions. Yan et al [2] conduct a systematic review of studies using un-
structured clinical text in machine learning (ML) for prediction, early de-
tection, and identification of sepsis. They conclude that combining text and
structured data predicts sepsis earlier and more accurately than structured
data alone. Kumar et al [3] use features extracted from word embeddings of
clinical notes in classical machine learning as well as deep learning classifiers
for predicting patient comorbidities. Khattak et al [4] provide a survey of
word embeddings for clinical text, and discuss applications such as predicting
unplanned readmission after discharge [5] and ICD code prediction [6].

While previous work has provided some evidence for the value of text
embeddings in predictive tasks in medicine, our research makes several novel
contributions. Firstly, we have included the latest public models from Ope-
nAI and Google in our benchmarks, as well as several high-ranking sentence
transformer models on Hugging Face, according to the Massive Text Embed-
ding Benchmark (MTEB). This is important given the rapid pace of progress
in the field. Secondly, our choice of problem and data (see Material and Meth-
ods) allowed us to use clusters defined by clinical experts as benchmarks for
both intrinsic and extrinsic evaluation of clusters formed from LLM-produced
text embeddings. Also, since each value in the text fields consists of one or
more standardised medical codes (see, e.g., left side of Figure 1), we are able
to apply a ‘Bag-of-Codes’ (BoC) encoding algorithm to each text field (see
Material and Methods). By comparing the performance of BoC against LLM
embeddings, we are able to assess the contribution of semantics and contex-
tual information captured by the LLMs. Finally, our intuitive approach for
leveraging text-generating LLMs to interpret the output of embedding LLMs
is, to our knowledge, a practical ’explainability’ solution.

2. Material and Methods

2.1. Data Collection and Preparation

The data is based on a retrospective analysis of patients aged 18 and
younger (maximum age treated at the institution), who underwent cardiac
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surgery with CPB at Great Ormond Street Hospital for Children, London.
The cohort was selected using a National Institute for Cardiovascular Out-
comes Research (NICOR) validated data set for patients operated on between
April 2019 and April 2021. For further details on data collection, see [7].

For outcome, we focus on postoperative AKI. In particular, we consider
the following five outcomes:

• Creatinine ratio: Ratio of postoperative to baseline serum creatinine.

• Urine output (0.5): Length of time (in hours) within the 48 hours after
CPB when patient’s urine output per hour is below 0.5 ml per kilogram
of body mass.

• Urine output (0.3): Same as above, but comparing urine output to a
0.3 ml per kilogram of body mass (per hour) threshold.

• KDIGO-Ordinal : An integer, ordinal score from 0 to 3, defined from
using a combination of the above three numbers, per KDIGO proto-
col [8].

• KDIGO-Binary : A binary indicator of severe AKI. It is 1 if KDIGO-
Ordinal is 2 or more, and 0 otherwise.

(For predictive tests, we focused on ‘KDIGO-Binary’ as outcome, while for
explainability analyses, we considered all five outcomes.)

A set of ‘baseline’ patient attributes were included in this analysis: gen-
der, age, height and weight, as well as the length of operation. Note that age,
height and weight were all recorded as of the start of operation. Weight and
height were transformed to BMI and ‘residual’ height. The former followed
the standard definition, while the latter was defined as the percent devia-
tion of height from the predictions of a LOESS (locally estimated scatterplot
smoothing) model that regressed height on age and gender.

The EHR text data included patient diagnoses (diagnosis), and oper-
ations performed (operation). Each text field value is an ordered set of
standardised medical codes, with first entries representing primary codes.
Expert-defined clusters for diagnosis (called, ‘broad diagnosis grouping’ or
BDG) and operation (called, ‘transformed specific procedure’ or TSP) were
also obtained using the Partial Risk Adjustment in Surgery (PRAiS) v2 pro-
tocol [9]. PRAiS is a model developed in the UK to predict 30-day mortality
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risk after paediatric heart surgery. The BDG and TSP groupings are defined
and used in the PRAiS risk model as categorical variables.

After removing operations with missing values, we are left with 780 data
points. Table 1 provides a summary of the data.

2.2. Software and Compute Environment

The initial data preparation steps were performed in R 4.4.0 [10]. All
remaining steps were performed in Python 3.11.7. All Python and R scripts
were executed on a 64-bit Windows 11 PC running on Intel(R) Core(TM) 7
150U 1.80 GHz, with 16 GB of installed RAM.

2.3. Text Embeddings

Each text entry consisted of one or more standardised medical codes.
Each medical code entry is an integer, followed by a text description. The
order of the codes has medical significance: The most important codes -
e.g., patient’s primary diagnosis - are listed first. An example of an entry
for the diagnosis field is: 155516. Cardiac conduit failure;103604.

Aortic regurgitation - acquired;090101. Common arterial trunk.
Each text field entry is transformed into a numeric vector, using various

encoding/embedding algorithms:

1. Bag-of-Codes (BoC): Each medical code gets a binary indicator, and
each text field entry gets 1’s for all medical codes present in the string,
and 0’s for others. The output dimension is thus dictated by the number
of distinct medical codes used for each field, which is 282 and 179 for
diagnosis and operation, respectively. This is a generalisation of
one-hot encoding, where multiple levels of a categorical variable are
not mutually exclusive. This is also similar to the standard bag-of-
words (BoW) approach, where we treat each medical code as a word.
(However, unlike BOW, in BoC the entries are binary, i.e., the same
code cannot appear more than once in a text field.) Note that using the
BoC method is possible in our problem since - as illustrated earlier - the
text fields are not free-format, but rather a collection of standardised
entries. BoC serves as a reference, against which more sophisticated
embedding algorithms (discussed below) are benchmarked.

2. Doc2Vec [11]: We used the implementation by the gensim Python pack-
age. Both distributed bag-of-words (DBOW) and distributed memory
(DM) versions were tested, using values of 10, 100, 1000 for number of
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training epochs, and values of 40, 400 and 4000 for output dimension
(i.e., length of embedding vector).

3. Open-Source LLMs : We used the publicly-available, top-ranking mod-
els from the MTEB leaderboard for embedding models [12], plus
pubmedbert-base-embeddings-matryoshka (which is a medically-specialised
embedding model), all-MiniLM-L6-v2 (which is a small model built
on a distilled, pre-trained model) and ClinicalBERT. The models were
downloaded from the Hugging Face repository using the
sentence-transformers Python package. With the exception of the
last model, all others have been fine-tuned for embedding tasks. For
ClinicalBERT, we added mean pooling to the last hidden layer to con-
vert token embeddings to sentence embeddings. While it is technically
more appropriate to refer to the sentence-transformer model built on
ClinicalBERT as ClinicalBERT+mean pooling, hereafter we will refer
to this model as simply ClinicalBERT for brevity.

4. Commercial LLMs : We used OpenAI and Google embedding LLMs
via their web APIs, accessed through Python packages openai and
vertexai, respectively. OpenAI offers three embedding models,
text-embedding-3-large, text-embedding-3-small and
text-embedding-ada-002, with output dimensions of 3072, 1536 and
1536, respectively. Hereafter, and for brevity, we will refer to them
as OpenAI-large, OpenAI-small and OpenAI-ada, respectively. For
Google, we used two models, text-embedding-004 (or Google-004

for short), and textembedding-gecko@003 (Google-gecko for short),
both with an output dimension of 768. To use Google’s embedding
models, we must also specify a ‘task’ parameter, with options be-
ing RETRIEVAL QUERY, RETRIEVAL DOCUMENT, SEMANTIC SIMILARITY,
CLASSIFICATION, CLUSTERING, QUESTION ANSWERING and
FACT VERIFICATION. (The last three tasks are only applicable to the
Google-004 model.)

2.4. Fine-Tuning

We curated 1593 title/abstract pairs from the PubMed online database,
using the keywords ‘acute kidney injury AND cardiopulmonary bypass’.
(PubMed was accessed using the Bio Python package.) These pairs were
used to fine-tune three LLMs: ClinicalBERT,
PubMedBERT-embeddings and MiniLM-L6-v2. The loss function used was
MultipleNegativesRankingLoss in the sentence-transformers library.
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In a nutshell, this loss function forces the embedding vectors for matching
title/abstract pairs to be more similar (measured by their cosine distance)
than non-matching pairs formed by random shuffling of titles and abstracts
in the same batch. We used the following parameters for fine-tuning the
LLM: maximum number of epochs (20), learning rate (1e-6), warmup ratio
(0.1), fraction of data used for early stopping (0.25), early-stopping patience
(3 epochs), early-stopping threshold (0.0).

2.5. Spherical K-Means Clustering

We use ‘spherical’ k-means, which we implemented in Python, for clus-
tering patients according to their text embedding vectors. This is a variant
of standard k-means, where the metric used to measure the distance between
two vectors x and y is changed from L2 norm (i.e., (x−y)T (x−y)) to ‘cosine
distance’, DC(x,y):

DC(x,y) = 1− xTy

(xTx)1/2 (yTy)1/2
(1)

This metric is invariant with respect to the length of the two vectors, focusing
only on their angles and thus making it a suitable choice for text embedding
vectors that are L2-normalised, i.e., xTx = 1. (Note that while L2 and cosine
distances would produce identical assignments of points to clusters, they
would differ in the centroid update step of the k-means clustering algorithm.)
One exception is the BoC method, which does not produce L2-normalised
vectors (in fact the number of medical codes present in the text field for
a given patient - which is equal to the L1 norm of the BoC vector - has
potentially relevant information), and hence we applied standard k-means
clustering to BoC embeddings, rather than spherical k-means.

2.6. Cluster Similarity Metrics

We use two symmetric metrics to quantify the degree of similarity between
two clustering algorithms: 1) adjusted rand index (ARI) [13], and 2) adjusted
mutual information (AMI) [14]. In both cases, the adjustment subtracts a
baseline value to account for the possibility of ARI/AMI values occurring
by chance, and also divides by the possible range of the value to achieve a
normalised score that has an upper bound of 1, and produces values close
to 0 for two clusters with no concordance. Calculations were done using the
metrics module of the scikit-learn Python package.
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2.7. Predictive Contribution of Embeddings

To quantify the contribution of text embeddings towards predicting AKI,
we perform spherical k-means clustering - as discussed earlier - on the embed-
ding vectors produced by the LLMs and other embedding algorithms listed
in Text Embeddings. We then proceed to include the cluster ‘soft’ mem-
bership data as features - alongside the baseline features mentioned in Data
Collection and Preparation - in a binary classification model. We compare
the area under ROC (AUC) of models trained on cluster features based on
different embedding models (the ‘AI models’) against each other, as well as
against the model using expert clusters instead of embedding-based clusters
(the ‘expert model’). In both types of models, we separately train two mod-
els, one using the diagnosis clusters alongside the baseline variables, and
one using the operation clusters added to baseline variables. The predicted
probabilities of these two models are averaged to form the final prediction.

2.8. Hyperparameters

As mentioned in Text Embeddings, two of the embedding algorithms that
we used have hyperparameters: Doc2Vec (number of training epochs, output
dimension) and Google (embedding task). In both cases, we calculate the
average AUC across all CV folds for each hyperparameter value or combi-
nation (and within each sub-model, such as the DBOW and DM versions of
Doc2Vec), and choose the hyperparameter value that produced the highest
AUC.

There are two other important hyperparameters in our experiments. First
is the number of clusters in (spherical) k-means. For cluster consistency
expeirments, we chose this to be equal the number of expert clusters (which
is 11 for diagnosis and 15 for operation). This removes the confounding
effect of the number of clusters from calculations of the ARI/AMI consistency
metrics. In the predictive models, we used a round value of 10 for both
text fields. The second hyperparameter is the number of dimensions of the
embedding vector to include in downstream steps. For instance, one can
choose the first 100 elements of a 768-dimensional embedding vector, or apply
dimensionality-reduction techniques such as Principal Components Analysis.
Here, we chose to always feed the entire embedding vector to the downstream
clustering algorithms. Tuning these two hyperparameters and studying their
effect on consistency of clusters with experts and/or predictive performance
of models will be a topic of future research.
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2.9. Ensemble Models

We used a simple, weighted-average ensemble approach, applied to the
predicted probability of severe AKI produced by each constituent of the en-
semble model. In the ‘AI Ensemble’, two models were included with 2:1
weights: OpenAI’s text-embedding-3-large (weight of 2) and Google’s
textembedding-gecko@003 using the task CLASSIFICATION (weight of 1).
In the ‘AI + Expert’ ensemble, the Expert model was added to the AI en-
semble, with a weight equal to 1/10th of OpenAI’s weight. These weights
were chosen based on limited trial-and-error. Applying more sophisticated
ensemble techniques is another topic for future research.

2.10. Explainability

Text-generating LLMs were used in two explainability roles. First, we
asked OpenAI’s gpt-4o model to summarise the differences between AI clus-
ters that were created by applying spherical k-means to the operation em-
beddings, and the corresponding expert clusters (TSP). A detailed descrip-
tion of the prompt and LLM response is provided in Appendix A.

Secondly, we asked the same OpenAI model as well as Google’s
gemini-1.5-pro model to provide descriptive and distinct labels for clusters
formed from a concatenation of diagnosis and operation embeddings. In
this task, we used the ‘structured output’ features of OpenAI and Google to
ensure that the LLM response was formatted in a predictable structure. This
allows for automated creation of downstream tables and figures. Details can
be found in Appendix B. This explainability task is completed by computing
the rank correlation - using Kendall’s tau - of the five AKI-related outcome
metrics defined in Section 2.1 vs. membership in each of the embedding-based
clusters.

Note that both of the above explainability tasks involve long prompts
(e.g. > 50,000 tokens) that would exceed all but the latest generations of
OpenAI and Google models which are equipped with long context windows.

2.11. Benchmarking

For quantifying the consistency of AI and expert clusters, we took the
average ARI/AMI scores from 10 runs of spherical k-means. Within each
run, we used 10 random initialisations of cluster centroids, where the cluster
with the smallest total within-cluster distance is selected. Number of clusters
was pre-selected to match the number of expert clusters (11 for diagnosis
and 15 for operation).
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In predictive experiments, we used 250-times repeated, 10-fold cross-
validation to compare the AUC of different models. To maximise compara-
bility of results, we fixed the random seed when calling the RepeatedKFold

function of scikit-learn. For each run, therefore, we obtained 2500 AUC
numbers, which we use to perform statistical analyses such as paired t-test.

To quantify the stability of AI clusters, we applied spherical k-means
to concatenated embeddings of diagnosis and operation fields, produced
by the OpenAI-large model. This was repeated 10 times, each time using
100 random starts and 10 clusters. We then calculated average ARI/AMI
scores between all 45 (10×9/2) unique pairs of clustering runs. The clusters
were mapped across runs using a greedy algorithm for maximising member
overlap. See Appendix C for the source code and explanation of the cluster
mapping algorithm.

Next, for each of the 10 clustering runs, we used a similar process to
that outlined in the Explainability to solicit cluster labels from OpenAI and
Google models. We split the 10 clustering runs evenly between OpenAI and
Google. Labels were aligned across runs using the mapping generated per
above.

3. Results

3.1. Consistency of AI and Expert Clusters

Table 2 shows the ARI and AMI scores between AI clusters formed from
operation and diagnosis text fields and their expert counterparts. The
positive values of these metrics - which remove a baseline effect due to chance
- indicate a statistically significant, although imperfect, consistency between
the two approaches in extracting information from the underlying text fields.

Further evidence for sensibility of AI clusters is that AI and expert clusters
corresponding to the same text field (operation or diagnosis) are more
consistent than clusters based on non-matching fields. At the same time,
the fact that non-matching clusters also have non-zero consistency can be
explained by the correlation between a patient’s diagnoses and the operations
performed on them.

Figure 2 shows the average ARI and AMI scores for diagnosis and
operation fields using embeddings produced by different LLMs. The mean
and 95% confidence intervals for the BoC approach are included as horizon-
tal lines for comparison. We see that the majority of LLMs produce clus-
ters that have higher consistency with expert clusters, compared with BoC.
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OpenAI-large has the highest combined ranking across both text columns,
i.e., most consistency with experts. Since BoC - unlike domain experts - is
not context aware and does not use the information captured in the order of
entries of multiple codes for a single patient, our results suggest that LLMs
are successful at extracting medically-relevant information using the context
provided by the entire text string, including the order of code entries.

We asked OpenAI’s gpt-4-turbo model to summarise and explain the
differences between AI and expert clusters. As seen in the excerpt below, it
produced an insightful and plausible answer:

Partition 2 [experts] appears more segmented, potentially dividing pa-
tients by broader surgical categories, like major surgery types (Aortic
arch repairs, Tetralogy of Fallot repairs, Norwood procedures, etc.).
This suggests a more high-level clustering compared to the specific pro-
cedural focus in Partition 1 [AI] ...

Please note that the partition labels in square brackets are added by us; in
other words, we did not relay any information to the LLM about which data
partition corresponds to AI and which one corresponds to experts. Appendix
A contains the full text of the prompt provided to the LLM and its response.

3.2. Predictive Performance of Embeddings

Figure 3 compares the area under receiver operating characteristic curve
(AUC) for predicting ‘AKI-Binary’ using various embedding approaches (as
well as the ‘No Embedding’ and ‘Ensemble’ options) against the ‘Expert
Model’. Among the individual algorithms tested, OpenAI-large (second
bar from left) outperforms all others, including the expert model (horizontal
line). The ClinicalBERT model, despite not being fine-tuned for sentence
embedding, shows competitive performance, being the top open-source model
and only behind OpenAI and Google.

Forming an ensemble of AI and expert models further improves perfor-
mance (leftmost bar). This is expected since, while AI models exhibit high
correlation of fold-level errors amongst themselves, their correlation with the
expert model is significantly smaller. For instance, average correlation be-
tween pairs of AI models in the group is 92.8%, while their average correlation
with the expert model is 83.0%. This is in line with results presented ear-
lier in Table 2 showing an imperfect consistency between the AI and expert
clusters.
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Compared to the baseline model, we achieved nearly 23% discriminative
power improvement corresponding to AUC improvement from 67.2% (base-
line model) to 71.1% (the final model).

We also tested the impact of fine-tuning three open-source LLMs on the
predictive performance of models trained on their text embeddings. Results
are shown in Table 3. For two of the three models tested, there is modest
performance improvement, while for the third model - which has the highest
pre-tuning performance - we see performance degradation.

3.3. AI Explainability

Average ARI/AMI scores across all 45 pairs of 10 clustering runs de-
scribed in Benchmarking are 83% and 89%, respectively, indicating high
stability of AI-generated clusters across runs. Similarly, after mapping the
clustering runs using the algorithm described in Appendix C, the average
member overlap across all pairs is 86%.

Cluster labels produced by OpenAI and Google - as well as their odds-
ratios - were quite consistent. Table 4 shows cluster labels for two OpenAI
and two Google runs. The full mapping table is provided as a supplementary
material (see Appendix D).

We can gain further insight by considering how the underlying metrics
that feed into the calculation of the KDIGO score correlate with the AI-
generated clusters. Figure 4 summarises this analysis. We make a few ob-
servations:

• Two groups show consistent, statistically significant deviation from the
rest: heart transplants show higher risk for all AKI outcomes vs. other
CPB clusters, and ASD repairs show lower risk than the rest.

• For TGA, there is a higher risk of low urine output (especially for length
of time below 0.3 ml/kg/hr) that is statistically-significant, even after
adjusting for multiple testing. However, this is not reflected in KDIGO
outcomes and their changes are statistically insignificant.

• For the Fallot group, serum creatinine ratio is significantly higher than
the rest, and ordinal KDIGO score is also nearly significant (after
multiple-testing adjustment).

• For the Conduit group, we see protection in terms of creatinine ratio,
which is borderline significant.
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• For the VSD group, we see significant protection in terms of urine
output.

All of the above observations fit with intuition of clinical experts (co-authors
of this paper) and are also consistent with what is being observed in practice.

4. Discussion

This study demonstrates the value of LLMs in predicting postoperative
AKI in paediatric CPB patients. The superior performance of LLMs, even in
a highly specialised domain, underscores their versatility and power. Predic-
tion may also be further improved by forming ensembles of multiple LLMs
and clinical expert models. On the other hand, we show that text-generating
LLMs can successfully summarise the output of embedding LLMs, resulting
in explainable AI classifications. This is a promising way to enhance trust in
the use of AI prediction in medical settings and to provide deeper insights
into the clinical questions.

In our experiments with embedding vectors, we used their full length in
downstream clustering algorithms. Alternatively, we could explore the ef-
fect of applying dimensionality-reduction to embedding vectors. With many
recent embedding models having been trained using the Matryoshka loss
function [15], a stand-alone dimensionality-reduction step may not even be
necessary. Yet the number of dimensions to keep would still be a hyper-
parameter that requires tuning - e.g. via grid search - as part of the overall
predictive modelling process.

Weighted-ensemble approach is effective; however, there is room for im-
provement. Firstly, we only included two AI models in the ensemble; adding
more models to the ensemble could provide further improvement. Also, de-
termining the weights can be done more systematically, e.g. using ensemble
techniques such as stacked generalisation [16]. However, the main focus of
this paper was not investigating ensemble of AI models.

Latest advances by two leading commercial providers of AI - OpenAI
and Google - greatly facilitated our ‘explainability’ framework. Firstly, the
increased context length of the LLMs (128k tokens for OpenAI’s gpt-4o and
> 2 million tokens for Google’s gemini-1.5-pro-001) was key to our ability
to execute the cluster labeling task in a single pass. This is because our
prompt had in excess of 50k tokens, due to a large payload that included
the text columns of interest for the entire training data. For LLMs with
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short context length, a potential solution would be to implement a multi-
stage approach, e.g., by first creating labels for each cluster in isolation, and
wrapped in a for loop, and then doing a second round of interaction with the
LLM to tune the labels and make them more differentiated.

Secondly, we took advantage of the structured/JSON output modes of-
fered by OpenAI and Google models. Enforcement of a data structure allows
for automation of downstream tasks, which in our case amounted to creat-
ing summary tables showing rank correlation of membership on each cluster
with outcomes. Such table summaries were the foundation for creation of
Figure 3.

One potential limitation of our work is that we we were not able to use
any text information that could possibly lead to patient identification. This
limitation is likely to be repeated in practice given the utmost importance
of respecting patient confidentiality. Most likely, adding further text data
would have resulted in much better prediction and explainability and clinical
insight. On the other hand, this limitation led us to use text fields that
contain standardised medical codes - for patient diagnoses and procedures -
which, in turn, allowed us to benchmark our prediction and clinical findings
against existing clinical expert classification.

Our limited experiments with fine-tuning point to its potential role in
improving predictive performance. While we indirectly incorporated the out-
come variable by including the AKI keyword in our PubMed search, yet we
did not use our training data - text or outcome columns - directly in the
fine-tuning process. This and other variations on fine-tuning are the subject
of future research.

While we have illustrated the value of Generative AI in predictive mod-
elling, many practitioners may be reluctant to use LLMs due to perceived or
real technical barriers. To help overcome such barriers, we will be releasing
a Python implementation of various steps discussed in this paper, includ-
ing embedding of a text column, applying spherical k-means, and soliciting
cluster interpretation from LLMs.

5. Conclusion

Rapid advances in quality, accessibility and user-friendliness of modern
LLMs indicate a promising future for their application in predictive analytics,
including in specialised medical domains. Their ability to match or surpass
clinical expert models, coupled with our proposed solutions for explainability
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and performance improvement, positions LLMs as valuable assets in clinical
research and practice. Future work will focus on applying our lessons and
techniques in other medical domains, and exploring additional strategies to
further enhance their explainability and predictive performance.

6. Figures and Tables

Figure 1: Illustration of the text embedding concept. Left: A text column representing the
planned CPB procedures for 10 paediatric patients. Each entry is an ordered collection of
standardised medical codes (numeric codes, followed by text). Right: The corresponding
embedding matrix produced by OpenAI’s text-embedding-3-large model, with each
observation represented by a high-dimensional, numeric vector (rows). While only 10
columns of the embedding matrix are shown here, modern LLMs produce vectors of much
larger dimensions.
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Table 1: Summary of dataset used in this paper. Number is parentheses indicate percent-
ages of total data. Numbers in brackets represent the interquartile range. Note that for
30-day mortaility calculation, sample size is slightly smaller.

Variable Value
Number of operations 780

Number of unique patients 736
KDIGO-Ordinal

0 315 (40)
1 266 (34)
2 121 (16)
3 78 (10)

KDIGO-Binary
0 581 (74)
1 199 (26)

Median age (months) at operation 8.3 [3.1 - 43.5]
Range 0.1 - 188.3

Median BMI at operation 15.3 [13.6 - 16.7]
Range 8.3 - 32.9

Mean/std of height residual -0.001/0.07
Median operation time (minutes) 86 [57 - 122]

Range 10 - 471
30-day mortality (757 operations)

Observed 2 (0.26)
Predicted (PRAiS) 11 (1.5)

Table 2: Consistency between ‘expert’ clusters (rows) and ‘AI’ clusters (columns), mea-
sured by the ARI and AMI metrics (1st/2nd numbers in each cell, respectively). AI
clusters are generated by applying spherical k-means to text embedding vectors produced
by OpenAI-large. Expert clusters are defined by the PRAiS v2 risk model. See Material
and Methods for further details.

AI Clusters
Expert Clusters Diagnosis Operation

Diagnosis (BDG) 0.31 / 0.44 0.21 / 0.32
Operation (TSP) 0.27 / 0.40 0.29 / 0.48
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Figure 2: Consistency of AI and expert clusters based on diagnosis (left) and operation

(right) text fields. Consistency is defined as the average of ARI and AMI scores between
AI and expert data partitions. Confidence intervals are based on the 10 repeats of k-means
clustering, each using 10 random initialisations of centroids. For Bag-of-Codes (BoC), we
used standard k-means, while spherical k-means was used for AI embeddings. Horizontal
lines represent mean (solid line) and 95% confidence intervals (dashed lines) for the BoC
method. Error bars for each embedding model also represent the 95% CI.
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Figure 3: Out-of-sample AUC of binary classifiers using clusters generated - via spherical
k-means - from text embedding vectors produced by various LLMs. The horizontal lines
represents the performance of a baseline model that does not use any embeddings, as well
as an expert-based model, which takes the average predicted probability of two binary
classifiers, each using expert clusters for diagnosis and operation as categorical variables,
alongside baseline attributes. ‘Ensemble Model’ predictions are a weighted average of
‘OpenAI-large’, ‘Google-gecko’ and ‘Expert’ models.

LLM Before After Change P-value
PubMedBERT-embeddings 69.09 69.20 0.11 1e-3
MiniLM-L6-v2 69.39 69.54 0.15 2.8e-5
ClinicalBERT 70.35 69.85 -0.50 < 1e-5

Table 3: Impact of fine-tuning on AUC (in percentage terms) of models trained on clusters
formed - via spherical k-means - from three open-source embedding models. P-values are
based on paired t-test of fold-level errors, formed from 250-times repeated, 10-fold cross-
validation.
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Table 4: Comparison of two cluster labels produced by OpenAI and two by Google,
each produced for clusters that were output of spherical k-means with a different set of
100 random initialisations. Cluster numbers across runs 1-3 were mapped to run 0 to
maximise their member overlap using a greedy algorithm described in the Appendix. The
group highlighted in red shows statistically significant association with increased AKI risk,
while the group highlighted in green shows significant association with reduced AKI risk.
‘Short Label’ column matches x axis values in Figure 3.
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Figure 4: Average rank correlation (measured via Kendall’s tau) of AKI-related out-
comes with membership in each of the 10 clusters defined by applying spherical k-means
to a concatenation of OpenAI-large model’s embedding of diagnosis and operation

text columns. Each clustering run is subsequently labelled 10 times by text-completion
LLMs, five times using OpenAI’s gpt4-turbo model and five times using Google’s
gemini-1.5-pro model. See Section 2.1 for definition of AKI metrics. Clusters are sorted
from left to right in decreasing average operation time, which is displayed as a blue line
(right y axis). Inner grey band reflects the 95% confidence interval, outside of which cor-
relations are statistically significant. The outer grey band is similar, but after Bonferroni
correction for multiple testing, using 50 tests (5 outcome variables × 10 clusters). Note
that cluster (x axis) labels are abbreviated versions of the longer, more descriptive cluster
labels produced by the LLMs, as listed in Table 4.
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10. Glossary

• Acute Kidney Injury (AKI): A sudden decrease in kidney func-
tion, often occurring after surgery, particularly in paediatric patients
undergoing cardiopulmonary bypass (CPB).

• Adjusted Mutual Information (AMI): A measure of agreement
between two clusterings, adjusted for chance, based on the mutual in-
formation between the clusterings.

• Adjusted Rand Index (ARI): A metric used to measure the simi-
larity between two data clusterings, adjusted for the chance grouping
of elements.

• Area Under the Receiver Operating Characteristic Curve (AUC):
A performance measurement for classification models at various thresh-
old settings, indicating the ability of the model to distinguish between
classes.

• Bag-of-Codes (BoC): A text embedding technique where each med-
ical code in a patient’s record is represented as a binary indicator in a
vector.
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• Cardiopulmonary Bypass (CPB): A technique used during heart
surgery where a machine temporarily takes over the function of the
heart and lungs, allowing surgeons to operate on a still heart.

• Cross-Validation (CV): A statistical method used to estimate the
performance of machine learning models, where the data is split into
multiple folds, and the model is trained and validated on different folds.

• Doc2Vec: A text embedding technique that learns distributed rep-
resentations of documents, allowing for the transformation of entire
documents into fixed-length vectors.

• Ensemble Model: A machine learning technique that combines the
predictions of multiple models to improve accuracy and robustness.

• Explainability: Techniques used to interpret and understand the pre-
dictions made by complex machine learning models, often to increase
trust and provide insights into the decision-making process.

• Fine-Tuning: The process of adjusting a pre-trained model on a new
dataset, typically with a smaller learning rate, to adapt the model to
a specific task or domain.

• Hyperparameters: Parameters of a machine learning model that are
set before training and control the learning process, such as the number
of clusters in k-means or the learning rate in neural networks.

• KDIGO: Kidney Disease Improving Global Outcomes; a set of guide-
lines used to define and classify the severity of acute kidney injury.

• Large Language Models (LLMs): Advanced machine learning mod-
els, often based on transformer architectures, that are trained on vast
amounts of text data and can perform a variety of natural language
processing tasks.

• Partial Risk Adjustment in Surgery (PRAiS): A model used in
the UK to predict 30-day mortality risk after paediatric heart surgery,
incorporating various clinical variables.

• Spherical K-Means: A variant of the k-means clustering algorithm
that uses cosine distance instead of Euclidean distance, making it suit-
able for clustering high-dimensional data like text embeddings.
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• Text Embedding: A method of converting text into numeric vectors
that capture the semantic meaning of the text, used in machine learning
models for various predictive tasks.
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Appendix A. AI Explaining AI - Part 1

Appendix A.1. Prompt

The following shows the prompt preamble and sample data that follows
it, asking OpenAI’s gpt-4-turbo model to interpret the difference between
two partitions of patients according to their planned operations. One par-
tition was generated by applying spherical k-means to embeddings of the
operation field by the OpenAI-large embedding model (‘AI cluster’). The
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other partition was created by using the PRAiS v2 protocol (‘expert clus-
ter’). As can be seen below, the prompt did not reveal to the LLM which
partition corresponded to AI/expert cluster:

A group of pediatric patients have undergone cardiopulmonary
bypass surgery (CPB). For each patient, we have one or more
numeric codes and their associated descriptions concatenated via
’;’ into a single sting. Each patient is printed on a single line. The
codes represent one or more surgical procedures performed during
the CPB. The dataset has been partitioned into 15 groups by two
different clustering methods (Partition 1 and Partition 2), based
on the aforementioned text entries for the patients. Clusters of
patients in each partitioning scheme are separated by multiple
blank lines. The two partitioning of patients are printed below.
Note that the input to the two partitioning schemes has been an
identical set of patients, with each patient having the same exact
text entry in both cases. Please provide a brief interpretation of
the most salient differences between the two partitions:

Partition 1:

120102. Atrial septal defect (ASD) secundum closure with direct
suture
120103. Atrial septal defect (ASD) secundum closure with patch
120103. Atrial septal defect (ASD) secundum closure with patch;123463.
Pacemaker system placement: permanent epicardial
120110. Sinus venosus defect (ASD) closure
120101. Atrial septal defect (ASD) secundum closure
120055. Coronary sinus interatrial communication (ASD) repair
120103. Atrial septal defect (ASD) secundum closure with patch;120102.
Atrial septal defect (ASD) secundum closure with direct suture
120103. Atrial septal defect (ASD) secundum closure with patch;123246.
Pericardial window creation
120143. Atrial septectomy
120103. ATRIAL SEPTAL DEFECT (ASD) SECUNDUM CLO-
SURE WITH PATCH
120102. Atrial septal defect (ASD) secundum closure with direct
suture;121731. Aortopexy
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120822. Subaortic obstruction relief
120713. Left ventricular outflow tract obstruction relief;124232.
Implantable cardioverter & defibrillator (ICD) implantation: epi-
cardial
120641. Right ventricular outflow tract obstruction relief
...
...

==============================

Partition 2:

121640. Supravalvar aortic stenosis repair
120131. COR TRIATRIATUM (DIVIDED LEFT ATRIUM) RE-
PAIR; 120103. ATRIAL SEPTAL DEFECT (ASD) SECUN-
DUM CLOSURE WITH PATCH
120816. Closure of multiple ventricular septal defect (VSD)s
121640. Supravalvar aortic stenosis repair;121302. Pulmonary
valvotomy: open
121602. Aortic valvotomy: open;121640. Supravalvar aortic steno-
sis repair
122911. Rastelli procedure: intraventricular left ventricle to aorta
tunnel & right ventricle to pulmonary artery conduit;120803.
Ventricular septal defect (VSD) closure using patch;120102. Atrial
septal defect (ASD) secundum closure with direct suture
121640. Supravalvar aortic stenosis repair;121830. Aortic arch
repair
120131. Cor triatriatum (divided left atrium) repair
120131. COR TRIATRIATUM (DIVIDED LEFT ATRIUM) RE-
PAIR

120300. Mitral valvar procedure
121630. Ross procedure: aortic valve or root replacement with
pulmonary autograft & pulmonary valvar replacement
120822. Subaortic obstruction relief
...
...
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Appendix A.2. LLM Response

Below is the full text of OpenAI’s gpt-4-turbo response to the above
prompt:

Partition 1 and Partition 2 present two different clustering method-
ologies based on a range of complex cardiopulmonary bypass
(CPB) surgeries. Here are some observations that highlight dif-
ferences in the clustering approach and organization of these par-
titions:

1. **Partition Focus**: - **Partition 1** appears to group data
based on specific types and complexities of surgeries, with more
focus on nuanced relationships between different surgeries com-
mon in pediatric cardiology (e.g., combinations of ASD repair
methods, valve repairs, and VSD closures). - **Partition 2** ap-
pears more segmented, potentially dividing patients by broader
surgical categories, like major surgery types (Aortic arch repairs,
Tetralogy of Fallot repairs, Norwood procedures, etc.). This sug-
gests a more high-level clustering compared to the specific proce-
dural focus in Partition 1.

2. **Detail of Procedure Combination**: - **Partition 1** shows
detailed combinations of surgeries, indicating a clustering based
on specific multi-procedural patient cases (e.g., ASD closure com-
bined with VSD closure and pulmonary artery reconstructions).
- **Partition 2** while still detailed, often seems to place cases in
broader procedural categories rather than intricate combinations,
hinting at clustering by primary or most substantial procedure
types.

3. **Repetition and Organization**: - **Partition 1** presents
a form of clustering where similar procedures are often grouped
together irrespective of the additional minor procedures, likely
showing clusters based on primary intervention. - **Partition
2** regularly reuses certain procedures across different clusters,
possibly categorizing based on a combination of the surgical pro-
cedure and some other clinical factors like patient demographics
or surgical outcomes.

4. **Consistency and Case Sensitivity**: - Both partitions no-
tably mix cases with varying capitalizations and details in the
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procedure descriptions, which suggests that the clustering isn’t
strictly dependent on textual exactness but rather on the proce-
dural content. However, **Partition 1** seems to tolerate more
variations within clusters, while **Partition 2** may be using a
stricter or different set of criteria likely incorporating additional
clinical variables beyond just procedural similarity.

5. **Cluster Titles and Patient Outcomes**: - Neither parti-
tion explicitly titles their clusters, which requires interpretation
based on the listed procedures alone. However, the clustering
logic in **Partition 2** may hint at broader outcome-based or
pathology-based groupings (such as focusing on all patients un-
dergoing arterial switch operations, regardless of accompanying
procedures).

6. **Granularity**: - **Partition 1** tends to have finer gran-
ularity, focusing on the specific procedural nuances. **Partition
2**, while detailed, appears geared towards broader surgical cat-
egories, potentially suited for analyses like resource allocation or
broad outcome studies.

The differences suggest diverse utility: **Partition 1** is more
suitable for studies needing detailed procedural interconnections
(useful in operational research, detailed post-operative compli-
cations studies) while **Partition 2** could better serve broad-
brush analyses such as policy-making, general clinical outcomes,
or resource planning. The choice between partitions would de-
pend on the specific needs of the research or administrative tasks
at hand.

Appendix B. AI Explaining AI - Part 2

In this section, we present the details of the interaction with OpenAI and
Google LLMs to solicit cluster labels, based on the descriptions of diagnosis
and operation codes associated with each CPB. We take advantage of the
‘structured output’ feature that has been added to OpenAI’s most advanced
models. For Google, we use the JSON output option that is also available
for the most recent models.
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Appendix B.1. Using OpenAI’s Structured Output

OpenAI’s structured output feature is an evolution of their JSON mode.
As of this writing, it is available for gpt-4o-mini-2024-07-18 or later, or
for gpt-4o-2024-08-06 or later. See here for details.

To use this feature, we define the classes that capture what we expect
to get back for each cluster. Here, we indicate to the LLM that we want
to get 1) the group number (consistent with the group numbers provided in
the prompt body), 2) short description of each group, 3) long description of
each group. Optionally, one can add specific character/word limits for the
short and long descriptions in the prompt instructions (see Appendix B.3),
or otherwise modify the template as necessary for each project:

class GroupLabel(BaseModel):

group_number: int

description_short: str

description_long: str

class MultipleGroupLabels(BaseModel):

groups: list[GroupLabel]

We can now submit a completion request to OpenAI by passing in the class
MultipleGroupLabels:

response = openai_client.beta.chat.completions.parse(

model = 'gpt-4o'

, messages = [

{"role": "system", "content": prompt_instructions},

{"role": "user", "content": prompt_body}

]

, response_format=MultipleGroupLabels

)

The arguments prompt instructions and prompt body are discussed fur-
ther down.

Appendix B.2. Using Google’s Structured Output

For google, we use a JSON template to convey our expectations about
the response structure. Below is the schema definition:
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response_schema = {

"type": "object",

"properties": {

"groups": {

"type": "array",

"items": {

"type": "object",

"properties": {

"group_number": {"type": "integer"},

"description_short": {"type": "string"},

"description_long": {"type": "string"},

},

"required": [

"group_number", "description_short"

, "description_long"

],

},

},

},

"required": ["groups"],

}

which is included in the following request:

response = model.generate_content(

prompt_full

, generation_config = GenerationConfig(

response_mime_type = "application/json"

, response_schema = response_schema

)

)

In the above, model is a properly instantiated GenerativeModel model de-
fined in the vertexai.generative models module, and prompt full is the
concatenation of prompt instructions and prompt body, discussed next.

Appendix B.3. Prompt

The prompt consists of two sections: 1) the preamble or instructions to
the LLM, and 2) the body, containing data in numbered clusters that must be
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described by the LLM. Below is the instructions paragraph, corresponding
to the case where clusters have been created using both diagnosis and
operation fields:

Prompt Instructions

The following is a list of 963 pediatric patients undergoing cardiopul-
monary bypass. Each row contains one or more surgical procedures,
separated by ’;’. These are followed by one or more diagnoses, also
separated by ’;’. Patients have been grouped into 10 groups, according
to their diagnoses and procedures. Please suggest group labels that
are representative of their members, and also distinct from each other:

The body consists of group (or cluster) number, followed by observations
in that group. For each observation, the value of the relevant text field(s) is
are printed. In cases where we combine multiple text fields, we preface each
text field with the name ofthe field. Below is an excerpt to illustrate the
point. (Italics and boldface are added for highlighting in the manuscript,
and prompts submitted to LLMs are plain text.)
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Prompt Body

Group 1:

Operations : aortic root replacement: valve sparing technique ||
Diagnoses : aortic regurgitation; congenital anomaly of aortic valve;
doubly committed juxta-arterial ventricular septal defect (vsd) with
anteriorly malaligned fibrous outlet septum and perimembranous
extension
Operations : scimitar syndrome (partially anomalous pulmonary
venous connection) repair || Diagnoses : partial anomalous pulmonary
venous connection of scimitar type
Operations : aortic valvar replacement using mechanical prosthesis;
left ventricular outflow tract obstruction relief || Diagnoses : aortic
regurgitation; lv outflow tract obstruction; aortic valvar stenosis -
congenital; discordant va connections (tga); superior caval vein (svc)
abnormality
Operations : mitral valvar replacement; mitral valvar annuloplasty ||
Diagnoses : mitral regurgitation
Operations : mitral valvar procedure || Diagnoses : mitral regurgita-
tion; mitral valvar abnormality; mitral valvar prolapse
...
...

=======

Group 2:

Operations : vsd closure; patent arterial duct (pda) closure: surgical
|| Diagnoses : perimembranous central ventricular septal defect (vsd);
patent arterial duct (pda)
...
...
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Appendix C. Cluster Mapping Algorithm

def map_clusters(cluster1_labels, cluster2_labels, N):

# Calculate the size of each cluster in cluster1

cluster1_sizes = [(i, np.sum(cluster1_labels == i)) for i in range(N)]

# Sort clusters by size in descending order

cluster1_sizes.sort(key=lambda x: x[1], reverse=True)

sorted_cluster1_indices = [i for i, size in cluster1_sizes]

mapping = [-1] * N # Initialize the mapping array with -1

remaining_clusters2 = set(range(N))

total_overlap = 0

for i in sorted_cluster1_indices:

max_overlap = -1

best_pair = -1

for j in remaining_clusters2:

# Count common elements between cluster1[i] and cluster2[j]

overlap = np.sum((cluster1_labels == i) & (cluster2_labels == j))

if overlap > max_overlap:

max_overlap = overlap

best_pair = j

# Map cluster i in cluster1 to best_pair in cluster2

mapping[i] = best_pair

remaining_clusters2.remove(best_pair)

total_overlap += max_overlap

return np.array(mapping), total_overlap

Figure C.1: Python implementation of an algorithm - created by the authors - for mapping
two data partitions to maximise total member overlap. The algorithm is ‘greedy’ since
it proceeds down a sorted list of clusters in one partition to achieve an O(N2) scaling
behaviour, instead of O(N !), where N is the number of clusters in each partition.

Figure C.1 lists the Python implementation of our algorithm for mapping
clusters between two different clustering results. It uses a greedy, O(N2),
approach for maximising the overlap between corresponding clusters in the
two sets. An exhaustive search of all possible mappings between two clusters
would be an O(N !) solution. Instead, our algorithm sorts one cluster set in
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descending size, and begins matching the second cluster set to the first one
by one, in each step searching among the remaining clusters of the second
set to find one that has maximum overlap with the cluster of focus in the
first set.

This algorithm is particularly useful in evaluating the stability of cluster-
ing algorithms or comparing the results of different clustering methods. By
mapping clusters based on their overlap, it provides a quantitative way to
assess how similar two clustering results are, which is essential in fields like
data mining, bioinformatics, and pattern recognition.

Appendix D. Cluster Mapping Full Results

The table containing the full set of results for mapping of cluster labels
across ten clustering runs has been provided as cluster mapping full results.csv.
It is similar to the table in Table 4, but it has 10 columns of cluster labels,
five produced by OpenAI’s gpt-4o model (columns ending in even digits)
and five produced by Google’s gemini-1.5-pro model (columns ending in
odd digits).
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