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Abstract 

 

The present investigation assessed how the heavily right-skewed data seen in recently reported 

results in Alzheimer’s Disease (AD) clinical trials influenced treatment contrasts when data were 

analyzed via the typical mixed-effects model for repeated measures (MMRM) versus robust 

regression (RR) and the non-parametric Hodges-Lehman estimator (HL). 

  

Results in simulated data patterned after AD trials showed that imbalance across treatment arms 

in the number of patients in the extreme right tail (those with rapid disease progression) 

frequently occurred by chance alone. Each analysis method controlled Type I error at or below 

the nominal level. The RR analysis yielded smaller standard errors, and more power than 

MMRM and HL. In datasets with appreciable imbalance in the number of rapid progressing 

patients, MMRM results favored the treatment arm with fewer rapid progressors. Results from 

HL showed the same trend, but to a lesser degree. Robust regression yielded similar results 

regardless of the ratio of rapid progressors. Although more research is needed over a wider range 

of scenarios, it should not be assumed that MMRM is the optimal approach for trials in early 

Alzheimer’s Disease. 

 

 

Key words: Clinical trials, Alzheimer’s disease, skewed distributions 

 

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 24, 2024. ; https://doi.org/10.1101/2024.05.23.24307810doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2024.05.23.24307810


1. Introduction 

Alzheimer’s Disease (AD) is a complex and heterogeneous neurodegenerative disease. 

Developing novel treatments for AD requires accurate diagnosis of the disease, accurate 

measurement of disease progression, and reliable analysis of the data. An important analytic 

challenge has emerged in recent AD clinical trials. Heavily skewed data with small imbalances 

in the number of rapidly progressing patients has had a relatively large impact on differences 

between treatments in mean change to endpoint in two recently completed, identically designed 

trials in AD 1, 3 p72, 4.  Results from the primary and multiplicity adjusted secondary outcomes of 

these studies are provided in the appendix (Table A1)1.  

 

The primary analysis in these studies was MMRM, and the primary estimand was based on the 

treatment policy strategy for dealing with the intercurrent event of early study drug 

discontinuation1. Both the sponsor and FDA conducted post-hoc sensitivity analyses utilizing 

transformations, non-parametric methods, and robust regression to deal with the unexpectedly 

large departure from normality, a key assumption in ANCOVA, MMRM, and similar analyses 1, 

2 p 340, 3.  

 

Rapid progressing patients do not differ from other patients in demographic or baseline disease 

characteristics, comorbidities, concomitant medications, or the incidence of adverse events 3,4. 

There is no single clinical feature that differentiates rapidly progressing patients from other 

patients 5. Therefore, rapid progressing patients (and the resultant skewed data) are part of the 

reality of Alzheimer’s Disease and after the fact it is too late to address them in a completed 

randomized trial 2 p340 . However, current practice does not often include assessments of and 

sensitivity analyses for rapid progressors / outliers. Therefore, the analytic challenge is how to 

plan for rapid progressing patients in the analyses of Alzheimer’s clinical trial data.   

 

The primary purpose of the present investigation is to compare MMRM with a non-parametric 

and a robust regression approach in data with and without rapid progressing patients to provide 

insight on ways to proactively deal with rapid progressing patients and the highly skewed data 

that has been encountered in AD clinical trials.  The remainder of this paper is organized as 

follows: Section 2 provides an overview of the consequences of and analytic approaches for 
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dealing with  skewed data; Section 3 outlines the design and analysis of a simulation study to 

address the objective of comparing MMRM with a non-parametric and robust regression analytic 

approaches; Section 4 details results of the simulation study; and, Section 5 discusses those 

results in the context of the strengths and limitations of the simulation study.    

 

2. Consequences of and analytic approaches for dealing with skewed data.   

The statistical consequence of rapidly progressing patients is outliers / non-normality of the 

data1, 2,  pp 69-72, 3. Figure 1 shows the distribution of changes from baseline to week 78 in the 

primary outcome (CDR-sb) of the two identically designed clinical trials noted in Section 14. The 

data were heavily right skewed, with ~1% of patients having > 8-point change from baseline.  

The distribution of other outcomes was similarly skewed 1, 2. 

 

 

Figure 1, Distribution of the primary outcome, CDR-sb in the aducanumab clinical trials4 
 

Statistical theory suggests methods other than MMRM may be useful to consider when data are 

heavily skewed 6. Via the central limit theorem, in large trials the concern regarding non-normal 

data is not bias, the concern is stability of results 7, 8, 9, 10. However, in smaller trials bias may also 

be a concern.  
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The potential influence of heavily skewed data (or outliers) can be put into perspective by noting 

that an outlier with 3-fold the error magnitude of a typical observation contributes 9-fold (32) 

times as much to the squared error loss, and an outlier with 5-fold the error magnitude 

contributes 25-fold. Therefore, even a few outliers can increase variance substantially. Maximum 

likelihood methods such as MMRM are robust to departures from normality in the sense that the 

Type I error rate does not increase under violations of normality so long as sample sizes are not 

small (~40 patients per arm or larger). However, estimates of individual parameters and Type II 

error may not be so robust.  

 

General categories of methodology for dealing with skewed distributions include robust methods 

and non-parametric methods. Non-parametric analyses, for example those based on ranks or 

medians, are resistant to the influences of even extreme outliers because error magnitude of 

ranks and medians is not inflated.   

 

Robust regression detects outliers and provides resistant (stable) results in the presence of 

outliers by limiting their influence. Three classes of problems have been addressed with robust 

regression: 1) outliers in the y-direction (response direction); 2) outliers in the x-direction 

(covariate space); and, outliers in both directions 11 pp 8658-8747. 

Common methods for robust regression include M estimation, high breakdown value estimation, 

and combinations of these two methods 11 pp 8658-8747. Huber (1973) introduced M estimation7. 

The method is computationally and theoretically simple. The loss function reduces outliers’ 

contributions to the squared error loss, thereby limiting their impact on parameter estimates8. 

 

Although M estimation is not robust to x-direction outliers, it is robust to y-direction outliers, and 

is therefore well-suited to scenarios in which focus is on y-direction outliers7, 8, 12. Rapid 

progressors can be considered y-direction outliers. Hence, it is not surprising that both the 

sponsor and FDA implemented robust regression with M estimation as a post-hoc sensitivity 

analyses of the clinical trials mentioned in Section 1. 
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3. Methods 

The objectives of this study are: 1) to characterize the probability of having meaningful 

imbalance across treatment arms in the number of rapidly progressing patients due to chance 

alone; 2) assess the influence of imbalances in the number of rapidly progressing patients on 

estimates of treatment group differences from MMRM; and, 3) to compare results from MMRM 

with the non-parametric and robust regression methods used in previous AD clinical trials. 

 

Simulated data 

 

The objectives of this study were pursued via simulation. Two main data scenarios were 

simulated. First, complete data were simulated and analyzed to assess results without the 

potentially confounding influence of non-random dropout. A second set of simulations was 

conducted in data with non-random subject dropout.   

 

The complete data were simulated as a 2 x 3 x 3 factorial arrangement of scenarios, with 2 x 3 = 

6 data scenarios, and 3 methods of analysis applied to each data scenario. The simulations 

included: 

• Two levels of magnitude of treatment effect: zero difference between drug and placebo in 

mean change from baseline and a 0.5pt difference, approximately a 25% slowing of 

disease progression for drug compared with placebo, which is what was assumed in 

planning of the aducanumab studies noted in the introduction1.  

 

• Three levels (types) of data distribution: a normal distribution and two skewed 

distributions that were created via a mixture of “normal” and “rapidly progressing” 

patients; in one skewed distribution the treatment effect was the same in rapid 

progressors as in the main subgroup, while in the second skewed distribution the 

treatment effect in rapid progressors was zero. 
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• Three methods of analysis were used, an MMRM analysis similar to what is commonly 

used in AD, the Hodges-Lehmann estimator (a non-parametric approach), and robust 

regression with M estimation.  

In each of the data scenarios, 10,000 data sets were simulated with 450 patients per data set, 

randomized in a 2:1 ratio to the simulated drug and placebo arms, respectively. In each of these 

data sets no data were missing.   

 

Input parameters for the various simulated data sets are summarized in Tables 1 and 2. Figure 2 

is a plot of the Mixed_1 distribution that was a mixture of a main group comprising 95% of the 

patients with 5% rapid progressors. The distribution in Figure 2 is similar to the distribution of  

data from the AD clinical trials depicted in Figure 1, indicating that the simulated data provided 

a reasonable approximation of the clinical trial data.    

 

Table 1. Input parameters for simulations of change from baseline in CDR-sb –  

       normally distributed data1. 

______________________________________________________________________________ 

 

Data Treatment Treatment         Endpoint  

Type  Difference  Group  Mean  Std 

 

Normal Δ=-0.00  Drug  2.00  2.00 

   Placebo 2.00  2.00 

 

Normal Δ=-0.50 Drug  1.50  2.00 

   Placebo 2.00  2.00  

 

1. Data simulated at three post-baseline visits, with a linear progression over time. The 

correlation between repeated measures was induced via a patient-specific random effect 

so that the correlation between any two repeated measures from the same patient was 

fixed at 0.5.  

______________________________________________________________________________ 
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Table 2. Input parameters for simulations of change from baseline in CDR-sb –  

       Mixed distribution of normal and rapid progressor data1. 

______________________________________________________________________________ 

Data Treatment    Trtmnt All Patients        Main subgroup  Rapid Progressors 

Type Difference   Group Mean Med  Std       Mean Med   Std   Mean Med   Std  

 

Mixed_12 Δ=-0.00   Drug 2.30   2.12   2.26     2.00   2.00   1.84  8.00   8.00   1.84 

             Placebo 2.30   2.12   2.26     2.00   2.00   1.84  8.00   8.00   1.84 

 

Mixed_12 Δ=-0.50   Drug 1.80   1.62   2.26     1.50   1.50   1.84       7.50   7.50   1.84 

          Placebo 2.30   2.12   2.26     2.00   2.00   1.84      8.00   8.00   1.84 

 

Mixed_23 Δ=-0.00   Drug 2.30   2.12   2.26     2.00   2.00   1.84  8.00   8.00   1.84 

             Placebo   2.30   2.12   2.26     2.00   2.00   1.84  8.00   8.00   1.84 

 

Mixed_23 Δ=-0.50   Drug 1.83   1.62   2.26    1.50   1.50   1.84       8.00   8.00   1.84 

          Placebo 2.30   2.12   2.26    2.00   2.00   1.84      8.00   8.00   1.84 

 

1. Data simulated at three post-baseline visits, with a linear progression over time. The 

correlation between repeated measures was induced via a patient-specific random effect 

so that the correlation between any two repeated measures from the same patient was 

fixed at 0.5.  

2. Mixed_1: Same treatment effect in main subgroup and rapid progressors 

3. Mixed_2: Treatment effect in rapid progressors = 0 

______________________________________________________________________________ 

 

 

 

 

Figure 2. Distribution of simulated outcomes from the Mixed_1 simulations. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 24, 2024. ; https://doi.org/10.1101/2024.05.23.24307810doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.23.24307810


An additional set of simulations was conducted to extend results to the more realistic setting of 

incomplete data. For this simulation the same inputs were used as for the mixed_1 data, except: 

sample size was 570 and 20% monotone missing data was generated. The mechanism for data 

deletion was as follows: patients that showed any degree of improvement did not dropout 

whereas patients that had some degree of worsening had probability of dropout at Visit 2 (and 

therefore were missing both Visit 2 and Visit 3 observations) of 13%, with an additional 7% drop 

out at Visit 3 (and therefore were missing only the Visit 3 observation). Because the observations 

that triggered dropout were deleted, and therefore the observed data did not fully explain the 

dropout, the missing data mechanism was missing not at random, suggesting some potential for 

bias in each of the three analytic methods because each assumes a missing at random 

mechanism.  For the missing data scenario, 5000 data sets were simulated rather than 10,000 data 

sets as in complete data due to the increased computation burden for dealing with missing data in 

the analyses.  

 

 

Analyses 

 

The MMRM analyses were based on SAS PROC MIXED and restricted maximum likelihood 

estimation11 pp 6536-6721. Changes from baseline were modeled using treatment and visit as 

categorical fixed effects, and baseline score and the baseline score by visit interaction as 

continuous covariates. Within subject errors were modeled using an unstructured covariance 

matrix.  

   

The Hodges-Lehmann (HL) approach estimated the median of all pairwise comparisons between 

all patients in the treated and control groups. As such, it is a non-parametric approach that does 

not rely on distributional assumptions. The Hodges-Lehmann approach was implemented to test 

treatment group differences via SAS PROC NPAR1WAY applied to the data at Visit 3 11 pp 7122-

7194. Statistical significance was based on whether the 95% confidence interval for the median 

difference contained 0.  

 

Robust regression (RR) was implemented for the Visit 3 data via PROC ROBUSTREG in SAS 

using M estimation and the bisquare weighting function 11 pp 8658-8747. The model included 
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treatment as a categorical fixed effect and baseline score as a continuous covariate. Estimates 

were computed using iteratively reweighted least squares (IRLS) with a weighted least squares 

fit implemented inside an iteration loop. For each iteration, a set of weights for the observations 

is used in the least squares fit. The weights are constructed by applying the chosen weight 

function to the current residuals. Initial weights are based on residuals from an initial fit via 

unweighted least squares. The iteration terminates when a convergence criterion is satisfied 12.  

 

In the simulation scenario with missing data, the previously described MMRM analysis was fit to 

the incomplete data. For RR and HL, an analytic approach similar to that advocated by Mehrotra 

et al 6 was used. Multiple imputation (MI) was implemented via PROC MI 11 pp 6344-6474 using 25 

rounds of imputation for each of the 5000 simulated data sets, with separate models for each 

treatment group that included baseline and post-baseline observations. The completed data sets 

were analyzed using HL and RR as previously described and results were combined using 

Rubin’s rules as implemented in proc MI analyze11 pp 6480-6533. 

 

 

Outcomes 

 

Outcomes used to assess results included the mean difference between treatments, the mean 

standard error of the treatment differences, the standard deviation of the treatment differences, 

and the percentage of data sets in which the treatment difference was statistically significant 

(α=0.05). The standard deviation in treatment differences is the empirical standard error of the 

treatment differences and can be compared with the mean standard error to assess whether the 

model standard errors accurately reflect the uncertainty in the estimates.     

 

4. Results 

Results from the normally distributed simulated data are summarized in Table 3. Each method 

yielded unbiased estimates of treatment group differences when the treatment effect (Δ) was 0.00 

and -0.50. The mean standard errors and the standard deviations of the treatment differences 

were nearly identical within each method, but were greater in HL than in MMRM and RR. The 

percent of data sets with statistically significant differences was approximately equal to the 

nominal Type I error rate when Δ = 0.00 for MMRM and RR, and lower than the nominal rate 
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for HL. When Δ = -0.50, the percent of data sets with significant differences (power) was ~2% 

greater for MMRM than RR, and 14% greater than HL. 

 

Table 3. Results from normally distributed simulated data with no dropout. 

______________________________________________________________________________ 

Δ = 0.00 

Analysis Mean Δ1 Mean SE2    SD Δ3       % Significant4         

MMRM -0.0034 0.1737     0.1732  4.95     

HL  -0.0032 0.2058     0.2057     2.38             

RR  -0.0034 0.1783     0.1784        4.93             

  

Δ = -0.50 

Analysis  Mean Δ1  Mean SE2    SD Δ3        % Significant4 

MMRM -0.5034  0.1737 0.1732         82.48   

HL  -0.5032  0.2058 0.2057        68.74  

RR  -0.5034  0.1783 0.1784        80.45 

 

1. Mean estimated treatment difference from the 10,000 datasets 

2. Mean standard error of the treatment difference from the 10,000 data sets 

3. Standard deviation of the estimated treatment differences from the 10,000 data sets 

4. Percent of data sets with a statistically significant treatment difference (α=0.05)    

______________________________________________________________________________ 

 

Results from the mixed_1 set of simulations are summarized in Table 4.  Each method yielded 

unbiased estimates of treatment group differences when Δ was 0.00 and -0.50. The mean 

standard errors and the standard deviation of the treatment differences were nearly identical 

within each method, but were lower for RR than for HL and MMRM; that is, in MMRM 

standard errors were greater than in normally distributed data, but for RR standard errors were 

similar in the normal and skewed, mixed_1 simulated data sets. With Δ = 0.00, trends for Type I 

error were similar to those in normally distributed data. When Δ = -0.50, unlike in normally 

distributed data where power was similar for MMRM and RR, power was ~12% greater for RR 

than for MMRM, with MMRM being similar to HL. Although the average Δ was similar across 

methods, in 20% of the data sets the estimate from MMRM differed from the corresponding 

estimate in RR and HL by at least 0.15. In other words, although average estimates were similar, 

it was not unusual for the various analyses to have meaningful differences within datasets. 

 

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 24, 2024. ; https://doi.org/10.1101/2024.05.23.24307810doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.23.24307810


Table 4. Results from the mixed_1 simulated data with no dropout.  

______________________________________________________________________________ 

 

Δ = 0.00 

Analysis Mean Δ1 Mean SE2    SD Δ3         % Significant4 80% Interval5        

MMRM -0.0004 0.2067     0.2088        5.28     

HL  -0.0004 0.2083     0.2082        2.39        ±0.15 

RR  -0.0004 0.1787     0.1805        5.32  ±0.15         

  

Δ = -0.50 

Analysis  Mean Δ1  Mean SE2  SD Δ3         % Significant4 80% Interval5   

MMRM -0.5004 0.2067        0.2088        67.75   

HL  -0.5034 0.2083        0.2082        67.34   ±0.15 

RR  -0.5004 0.1787        0.1805        79.47   ±0.15 

 

1. Mean estimated treatment difference from the 10,000 datasets 

2. Mean standard error of the treatment difference from the 10,000 data sets 

3. Standard deviation of the estimated treatment differences from the 10,000 data sets 

4. Percent of data sets with a statistically significant treatment difference (α=0.05)    

5. For each data set, the estimated treatment contrast was compared between MMRM and 

the other methods. The 80% interval defines the range that included 80% of the pairwise 

comparisons within data sets.   

______________________________________________________________________________ 

 

Results from the mixed_1 set of simulations are further summarized by sub-setting the datasets 

according to the ratio of rapid progressing patients in the two treatment arms. Table 5 

summarizes results when Δ = 0.00 and Table 6 summarizes results when Δ = -0.50.  

 

The mean Δs from MMRM varied consistent with the ratio or rapid progressing patients. In the 

subset of datasets in which the RP ratio was ≥ 1.5x on drug (more rapid progressors in the drug 

arm) the mean Δ from MMRM was less than the corresponding simulation input values of Δ = 

0.00 (Table 6) and Δ = -0.50 (Table 7). The opposite trend existed when the RP ratio was ≥ 1.5x 

on placebo (more rapid progressors in the placebo arm), with the mean Δ from MMRM being 

greater than the corresponding simulation input values. In contrast, mean Δ’s from RR did not 

appreciably vary across the categories of data subsets defined by RP ratio. Results for HL were 

intermediate to those of MMRM and RR. When the ratio of RPs did not appreciably differ mean 

Δ’s from each method of analysis was close to the simulation input values. 
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Given the way data were subset based on RP ratio, mean Δs differing from simulation input 

values is not a valid measure of bias, but rather a means of assessing stability (consistency) of 

results. 

 

Table 5. Results from the mixed_1 simulated data with no dropout and Δ = 0.00, by data 

subgroups defined by the ratio of rapidly progressing patients in the drug and placebo arms.   

______________________________________________________________________________ 

 

Δ = 0.00, High RP Ratio on Drug (≥1.5x more RP on drug, ~27% of datasets)  

Analysis Mean Δ1 Mean SE2    SD Δ3         % Significant4     

MMRM -0.1226 0.2064     0.1878        6.68 (placebo > drug)    

HL  -0.0623 0.2070     0.2010        0.67         

RR  -0.0104 0.1787     0.1793        5.04         

  

Δ = 0.00, High RP Ratio on Placebo (≥1.5x more RP on placebo, ~27% of datasets)  

Analysis  Mean Δ1  Mean SE2    SD Δ3         % Significant4 

MMRM 0.1104    0.2050        0.2082        8.19   

HL  0.0565    0.2090        0.2105        4.10   

RR  0.0097    0.1784        0.1823        5.40 

 

Δ = 0.00, Balanced RP Ratio (< 1.5x more RP on drug and placebo, ~46% of datasets)  

Analysis  Mean Δ1  Mean SE2    SD Δ3         % Significant4 

MMRM 0.0078    0.2079        0.1809        2.78   

HL  0.0042    0.2086        0.2011        2.40   

RR  0.0048    0.1788        0.1795        5.44 

 

1. Mean estimated treatment difference from the 10,000 datasets 

2. Mean standard error of the treatment difference from the 10,000 data sets 

3. Standard deviation of the estimated treatment differences from the 10,000 data sets 

4. Percent of data sets with a statistically significant treatment difference (α=0.05)  

______________________________________________________________________________ 
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Table 6. Results from the mixed_1 simulated data with no dropout and Δ = -0.50, by data 

subgroups defined by the ratio of rapidly progressing patients in the drug and placebo arms.   

______________________________________________________________________________ 

 

Δ = -0.50, High RP Ratio on Drug (>= 1.5x more RP on drug, ~27% of datasets)  

Analysis Mean Δ1 Mean SE2    SD Δ3          % Significant4      

MMRM -0.3579 0.2064     0.1913       39.66     

HL  -0.4291 0.2069     0.2014        54.62       

RR  -0.4794 0.1786     0.1788        77.11       

  

Δ = -0.50, High RP Ratio on Placebo (≥1.5x more RP on placebo, ~27% of datasets  

Analysis  Mean Δ1  Mean SE2    SD Δ3         % Significant4 

MMRM -0.5870 0.2057        0.2001        82.63   

HL  -0.5448 0.2089        0.2065        74.99   

RR  -0.5094 0.1787        0.1821        80.53 

 

Δ = -0.50, Balanced RP Ratio (< 1.5x more RP on drug and placebo, ~46% of datasets)  

Analysis  Mean Δ1  Mean SE2    SD Δ3          % Significant4 

MMRM -0.4717 0.2079        0.1810        64.43   

HL  -0.4849 0.2082        0.2020        64.88   

RR  .-05001 0.1787        0.1788        79.40 

 

1. Mean estimated treatment difference from the 10,000 datasets 

2. Mean standard error of the treatment difference from the 10,000 data sets 

3. Standard deviation of the estimated treatment differences from the 10,000 data sets 

4. Percent of data sets with a statistically significant treatment difference (α=0.05)  

______________________________________________________________________________ 
 

Results from the mixed_2 set of simulations (no treatment effect in the rapidly progressing 

patients) are summarized in Table S2 by grouping the datasets according to the ratio of rapid 

progressing patients in the two treatment arms. Results followed the same pattern as in the 

mixed_1 set of simulations with mean Δs from MMRM varying consistent with the ratio of rapid 

progressing patients whereas results from RR were consistent across data set groupings. See the 

supplemental material for more details. 

 

Results from the mixed_1 set of simulations in data with 20% dropout are summarized in Table 

7. Results followed the same pattern as in the mixed_1 and mixed_2 sets of simulations that had 

no dropout. The advantage of RR over MMRM and HL in power was ~7% and ~10%, 

respectively. Each method provided control of Type I error at the nominal rate (or slightly less) 
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The average estimated treatment contrast was slightly greater than the input value when the 

treatment effect was -0.50 because the analyses assumed a missing at random mechanism when 

the actual mechanism was missing not at random.   

 

Table 7. Results from the mixed_1 simulated data with 20% dropout.   

______________________________________________________________________________ 

  

Δ = 0.00  

Analysis  Mean Δ1  Mean SE2    SD Δ3         % Significant4 

MMRM -0.0032 0.2003  0.2006  5.00    

HL  -0.0033 0.2092  0.2042  4.38 

RR  -0.0034 0.1858  0.1807  4.30 

 

Δ = -0.50  

Analysis  Mean Δ1  Mean SE2    SD Δ3         % Significant4 

MMRM -0.5166 0.1996  0.2004  73.56   

HL  -0.5199 0.2087  0.2042  70.74   

RR  -0.5178 0.1848  0.1508  80.42 

 

1. Mean estimated treatment difference from the 5,000 datasets 

2. Mean standard error of the treatment difference from the 5,000 data sets 

3. Standard deviation of the estimated treatment differences from the 5,000 data sets 

4. Percent of data sets with a statistically significant treatment difference (α=0.05)  

______________________________________________________________________________ 

 

5. Discussion 

Statistical theory suggests methods other than MMRM may be useful to consider when data are 

heavily skewed 6. as they were in the AD clinical trials that motivated this investigation  Via the 

central limit theorem, the concern in large trials regarding non-normal data is not bias, the 

concern is stability of results 7, 8, 9, 10, although bias could be a concern in small trials.  

 

This investigation showed that 1) chance alone can often result in substantial imbalance across 

treatment arms in the number of rapid progressing patients; and, 2) these imbalances can 

influence estimates of treatment group differences. In over half the simulated data sets with 

complete data (and hence no confounding from non-random dropout) the ratio of rapid 

progressing patients was at least 1.5-fold greater on one arm than the other; and, treatment group 
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differences estimated via MMRM varied in accordance with the ratio of rapid progressors on 

drug versus placebo. Therefore, the imbalance and its consequences seen in the recent AD 

clinical trials should be anticipated in planning AD studies.  

 

This study also provided evidence, consistent with statistical theory, supporting the usefulness of  

robust methods. In normally distributed data, MMRM had  ~2% more power than RR and ~14% 

more power than HL. As expected, MMRM and RR each controlled Type I error at the nominal 

level, with HL having ~1/2 the nominal rate.  

 

In the skewed data, mimicking the AD clinical trials, each of the methods yielded unbiased 

estimates of the treatment contrast, but standard errors were smaller and power was greater for 

RR than for MMRM and HL. When the data sets were subset by the ratio of rapid progressing 

patients across treatment arms, the average results from MMRM varied in accordance with this 

ratio. The average treatment effect in MMRM was greater when the ratio of rapid progressors 

was higher on placebo, and the average treatment effect was lower with more rapid progressors 

on drug. Results from HL showed the same trend, but to a lesser degree than MMRM. Robust 

regression yielded the most stable results, with smaller average standard errors and similar 

average treatment contrasts regardless of the ratio of rapid progressors. Similar results were seen 

in the scenario with 20% missing data.  

 

These results should be interpreted considering several limitations. Although the simulated data 

were similar to the clinical trial data that motivated this investigation, information on the 

distribution of outcomes from other AD clinical trials is lacking. It may be that a log-normal or 

Cauchy distribution better describes AD data than the mixture distribution used here to simulate 

data. Moreover, other analytic approaches should be considered for assessing mean changes. For 

example, mixture models might perform better than RR if a mixture distribution best describes 

AD data. Or, if the data are best described by a log-normal distribution, a log-transformation 

prior to an MMRM analysis may be better. Or, perhaps quantile regression is a useful alternative.  

 

Therefore, further investigation is needed to compare the strengths and limitations of analytic 

options over a wider set of conditions. However, results of this investigation suggest that 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 24, 2024. ; https://doi.org/10.1101/2024.05.23.24307810doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.23.24307810


imbalances across treatment arms in the number of rapid progressors is likely in AD clinical 

trials. These imbalances influence results from MMRM, and it should not be assumed that 

MMRM is the optimum or only analysis needed in AD clinical trials.  
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Appendix - Supplementary Material 

 

Table S1. Results from the primary and secondary endpoints in the aducanumab phase 3 clinical 

trials. 
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Table S2, Results from the mixed_2 simulated data with Δ = -0.50 by groups defined by the ratio 

of rapidly progressing patients in the drug and placebo arms.   

______________________________________________________________________________ 

 

Δ = -0.50, High RP Ratio on Drug (>= 1.5x more RP on drug, 27% of datasets)  

Analysis Mean Δ1 Mean SE2    SD Δ3         % Significant      

MMRM -0.3515 0.2121     0.1868        36.944     

HL  -0.4347 0.2075     0.2001        55.06       

RR  -0.5009 0.1775     0.1772        80.27       

  

Δ = -0.50, High RP Ratio on Placebo (≥1.5x more RP on placebo, 27% of datasets)  

Analysis  Mean Δ1  Mean SE2    SD Δ3           % Significant4 

MMRM -0.5901 0.2091        0.2059        81.64   

HL  -0.5565 0.2090        0.2061        75.64   

RR  -0.5293 0.1774        0.1814        84.13 

 

Δ = -0.50, Balanced RP Ratio (< 1.5x more RP on drug and placebo, 46% of datasets)  

Analysis  Mean Δ1  Mean SE2    SD Δ3         % Significant4 

MMRM -0.4785 0.2127        0.1834        62.51   

HL  -0.5017 0.2089        0.2020        67.41   

RR  -0.5204 0.1780        0.1786        83.02 

1. Mean estimated treatment difference from the 10,000 datasets 

2. Mean standard error of the treatment difference from the 10,000 data sets 

3. Standard deviation of the estimated treatment differences from the 10,000 data sets 

4. Percent of data sets with a statistically significant treatment difference (α=0.05)  

______________________________________________________________________________ 
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