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Abstract

Deciding when to enforce or relax non-pharmaceutical interventions (NPIs) based on real-
time outbreak surveillance data is a central challenge in infectious disease epidemiology. Re-
porting delays and infection under-ascertainment, which characterise practical surveillance
data, can misinform decision-making, prompting mistimed NPIs that fail to control spread or
permitting deleterious epidemic peaks that overload healthcare capacities. To mitigate these
risks, recent studies propose more data-insensitive strategies that trigger NPIs at predeter-
mined times or infection thresholds. However, these strategies often increase NPI durations,
amplifying their substantial costs to livelihood and life-quality. We develop a novel model-
predictive control algorithm that optimises NPI decisions by jointly minimising their cumula-
tive, future risks and costs over stochastic epidemic projections. Our algorithm is among the
earliest to realistically incorporate uncertainties underlying both the generation and surveil-
lance of infections. We find, except under extremely delayed reporting, that our projective
approach outperforms data-insensitive strategies and show that earlier decisions strikingly im-
prove real-time control with reduced NPI costs. Moreover, we expose how surveillance quality,
disease growth and NPI frequency intrinsically limit our ability to flatten epidemic peaks or
dampen endemic oscillations and why this potentially makes Ebola virus more controllable
than SARS-CoV-2. Our algorithm provides a general framework for guiding optimal NPI
decisions ahead-of-time and identifying the key factors limiting practical epidemic control.

Introduction

When and how should we intervene in order to most effectively manage an emerging infectious dis-
ease? This is a question that is at the core of public health policy-making and has been the subject
of ongoing debate [1, 2]. This decision problem is especially crucial during the early stages of an
outbreak when there is no or limited immunity in the population and vaccines or other pharmaceuti-
cal remedies are unavailable. In this situation, the main control measures are non-pharmaceutical
interventions (NPIs), such as mandatory social distancing, mask-wearing, lockdowns and travel
restrictions [3, 4, 5].

Outbreak management policies need to balance the risks from mistimed and ineffective inter-
vention decisions with the likely costs of those decisions. An NPI that is applied too slowly or
removed too quickly risks large epidemic peaks or rebounds that overburden healthcare systems
[6]. However, more conservative approaches may prompt long periods of restrictions that incur
costs due to closed economic sectors and borders as well as limited mobility [7].

Optimising the counteracting costs and risks of NPIs is a challenging and enduring problem.
This problem is further exacerbated by the practical constraints of real-time surveillance. The
data available for an unfolding epidemic are subject to multiple sources of noise and uncertainty
that fundamentally limit our ability to infer the state of the epidemic [1, 8]. Solutions therefore
require evidence-based research into the benefits, risks and societal costs of different NPIs and
public health policies [9, 10, 11] as well as rigorous algorithms that can integrate outcomes of that
research with uncertain knowledge of the epidemic state to guide decision-making.

Here, we focus on the latter issue and investigate how optimal, data-driven policies can be
derived from real-time surveillance data. We leverage ideas from control theory and reinforcement
learning and expose exactly how uncertainties in practical surveillance intrinsically limit the opti-
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ing back data on the incidence of new infections that should reflect the most recent epidemic state.
However, the reporting of the incidence of infections is subject to delay and under-ascertainment
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that is often inherent to real surveillance systems. Under-ascertainment of infections can result
from asymptomatic and mild infections, which are rarely observed, or from testing capacities [12].
Consequently, we only receive reports on a random fraction of all new infections. Delays can emerge
from the lag between infection and symptom onset or confirmation as well as latencies in testing
and processing test results. The consequence of this is that the reported time series of cases (or a
related proxy for infections) are stochastically behind the actual incidence [1, 13, 14].

These sources of noise and uncertainty sparked an ongoing debate on what is the best approach
for controlling epidemics in real time. At least three challenges have influenced this debate. First,
although feedback control is widely used to solve real-time problems in electrical and mechanical
engineering [15, 16, 17], these strategies can become destabilised by noise and delays [1, 18, 19,
20, 21]. Second, the timing of public health interventions is critical to their efficacy and hence
their associated risks and costs [22]. Last, integrating costs, risks and noise within a framework is
difficult and often intractable for deriving insights.

In view of these challenges, some studies have proposed feedback-independent methods that
are insensitive to noise and uncertainty in real-time epidemic surveillance. One such approach
is to implement a pre-set sequence of cyclic switching between lockdowns and periods with no
restrictions [23]. This was proposed as a strategy to exit full-lockdown more reliably [24].

Other works have focussed on optimising the timing of specific interventions considering a
‘one-shot’ control with the start and ending time to be optimised [25, 26], highlighting the im-
portance of timing for efficiency and the detrimental effect of delays in intervention. This makes
a case for using evidence-based policies that dynamically optimise interventions to available-data.
Some recent studies support this optimal timing approach informed by real-time data to feedback-
independent methods, even for uncertainty in data. However, those works do not consider the
intrinsic stochasticity of the epidemic and the related costs of interventions [27].

The last challenge, which stems from the complexity of the decision-making process given the
uncertainties in data, transmission details and the likely effect of actions, has meant that the
majority of approaches in the field on cost-optimal control only consider deterministic models or
limited modelling of noise. As a result, there is scope for fully stochastic but rigorous decision-
making and modelling frameworks that can guide interventions by providing insight into how
cost-optimal choices and various uncertainties interact.

We consider the real-time control problem in a probabilistic setting, where the epidemic is mod-
elled by a renewal branching process [28]. This is more realistic than the deterministic approach,
generalisable to multiple diseases and reflects on the intrinsic variability of infections between indi-
viduals. We parameterise our renewal models to describe the dynamics of epidemics of COVID-19
and Ebola virus disease. We propose a model predictive optimal control strategy that balances
the costs of NPIs against those generated from the infections projected to occur under the renewal
process given our NPI choices. Our control approach is based on real-time incidence data which
is delayed and under-ascertained, and incorporates the stochasticity of the epidemic generation
process. We also incorporate other limiting factors of real-time control, such as constraints on how
frequently NPI policies can be changed.

We assess what limitations data quality imposes on the viability of real-time feedback control
for epidemic management and how this is influenced by disease growth dynamics. We compare
the performance of our proposed optimal control algorithm with two benchmark control strategies
that apply decisions based on chosen thresholds or times. We demonstrate that our algorithm not
only outperforms these approaches but can adapt to unexpected changes such as the emergence of
new variants or reduced effectiveness of NPIs due to behavioural changes.

Results

Optimal epidemic control

Our study focuses on epidemic control at the early stages of an epidemic with no or limited
immunity in the population and without any available pharmaceutical remedies. Consequently,
the main control measures are NPIs, such as social distancing, mask-wearing, stay-at-home orders,
business closures and travel restrictions. These measures limit disease transmission with the aim
of reducing the likely numbers of severe infections below healthcare capacities and minimising
expected morbidity and mortality. However, these benefits must be balanced against the costs
induced by those NPIs, which may include economic downturns and loss of livelihood.

An ideal control policy would keep the incidence of new infections at a manageable (target)
level, optimally balancing the costs of treating infections and implementing interventions. However,
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this is non-trivial both because disease dynamics can change in real time and our ability to track
those changes is strongly limited by the quality of available surveillance data. To achieve this,
we propose a model predictive control (MPC) framework for optimising epidemic interventions
based on real-time incidence data. MPC utilises a mathematical model to project the dynamical
behaviour of the controlled system [29].

We outline our MPC approach in panel (a) of Fig. 1. Broadly, this algorithm compares histor-
ical incidence data to desired target levels and decides appropriate control actions that minimise
both expected future costs and drive us closer to our target. This target is essentially the level of
infections policy-makers may believe sustainable. For example, this may be set so that the propor-
tion of severe infections leading to hospitalisation never exceeds healthcare capacities or to ensure
a manageable endemic level of infections. This joint target-cost optimisation process is iteratively
done in real-time via the feedback loop in Fig. 1 and makes use of short-term projections.

Our algorithm is analogous to a Markov Decision Process [30] and involves an agent (policy-
maker) that decides which NPI to implement from a finite action-space of possible NPIs, based
on the projected discounted reward. This reward is compounded over a fixed time horizon for
each possible action or action-sequence, as explained in the highlighted incidence curve in panel
(a) of Fig. 1. In our simulations, we consider three possible actions which we will refer to as
full lockdown, limited social distancing and no restrictions. These interventions are modelled as
multiplicative reductions in transmission. The reward function is derived from the costs associated
with infections and interventions and is evaluated using projections informed by daily new cases
data (C;) and the expected changes in transmission due to our possible intervention choices.

We use cases as we rarely know the actual number of infections I; due to surveillance imper-
fections such as under-reporting and delays. The overall cost consists of the cost attributed to
the interventions, a penalty term that is proportional to the error between the incidence and our
target and an additional penalty term applied for overshoots larger than 50% of the incidence
target. The intervention cost is accumulated daily, with large, moderate and no cost for each day
under full lockdown, limited social distancing and no restrictions, respectively. At each decision
point, the action with the largest projected discounted reward (i.e., the smallest cost) is chosen.
We only consider scenarios in which these decision points occur at weekly or larger spacings to
model practical review periods.

We focus on three key metrics to evaluate the performance of control algorithms informed
by epidemic data that is subject to different sources of surveillance noise. We look at the peak
(maximum) of the incidence curve, the bounding envelope (difference between the maximum and
minimum) of incidence values in periods when the epidemic is stable (akin to the endemic state) and
the cost spent on interventions. According to these metrics a high-performing control algorithm
prevents large epidemic peaks, and forces infections into a manageable steady state with small
fluctuations without overly applying NPIs. The last is achieved by optimising timing, switching
and duration within our available NPI set. The mathematical formulation of our MPC approach
is presented in the Methods.

Alternative control strategies

We compare the performance of the above proposed optimal control algorithm with two simpler
control strategies: an event-triggered feedback control and a cyclic time-triggered control strategy.
These strategies represent two fundamental approaches for controlling epidemics in real time, which
have either been applied or proposed earlier. Note that for all strategies that we consider, we allow
tuning so that the strategies can stabilise the observed incidence.

The event-triggered control applies or relaxes lockdowns whenever reported incidence crosses
a predefined threshold, which is often heuristically set in practice. This crossing constitutes an
event. We illustrate this approach in panel (b) of Fig. 1 for an example incidence time series. Event-
triggered control approaches have previously been used to enact interventions, e.g. for influenza
[31] and were considered for triggering NPIs to suppress COVID-19 in the UK [3]. Although this
strategy applies limited feedback based on the most recent incidence, it is unable to leverage the
information in the full past time series or assess the likely future outcomes of its decisions.

In contrast, the cyclic time-triggered control strategy (see panel (c) of Fig. 1) implements a pre-
defined sequence of actions, which is not based on any direct feedback from the epidemic dynamics.
The periods with full lockdown or no restrictions can be arbitrarily long, e.g. a 20/10 cyclic control
strategy repeats 20 days of full lockdown followed by 10 days of no restrictions. This strategy was
proposed as an effective means of COVID-19 control when surveillance data are poor quality and
hence unreliable for informing decisions [24].
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Figure 1: Panel (a): Schematic diagram of model predictive control for optimising epidemic in-
terventions. The top chart introduces the elements of the feedback loop where the actions of the
agent are chosen according to the incidence of new infections (or a proxy such as new cases) which
is the monitored output state. The highlighted panel explains the model predictive method for
selecting the optimal NPI from the action space which is based on using short-horizon projections
and the expected reward, E(p), under those projections for various strategies. The strategy with
the highest reward (minimum cost) is implemented. The reward or cost here usually depends
on how far the epidemic state is from our desired objectives, which may aim at jointly reducing
both severe epidemic outcomes and intervention intensity. Panels (b) and (c) show event-triggered
and time-triggered alternative strategies, with NPIs implemented or relaxed based on incidence
thresholds (the event trigger) or according to a pre-defined schedule (the time trigger). Panel
(d) illustrates how realistic surveillance imperfections such as reporting delay and under-reporting
distort the true incidence of infections into the incidence of cases, which we practically must use to
inform decision-making. Blue curves represent the reported cases, while red curves indicate true
infection incidence. Reporting delay manifests (approximately) as a time-lag with respect to the
true incidence curve, whereas under-reporting results in a stochastic downscale of the incidence
curve along the vertical axis.
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Observation noise and uncertainty

Infection data are rarely observed directly. As a result, a proxy such as the incidence of reported
cases is commonly used for informing decisions in real time. Cases can be modelled as noisy versions
of infections [32, 33] that are subject to under-reporting and delays in reporting. We examine how
the performance of the above control strategies varies with the levels of these noise sources.

Reporting delay describes the time between an infection and when it is reported as a case. This
subsumes lags between infection and symptom onset, onset and presentation at a health facility
and processing time to confirmation (e.g., via testing). As explained in panel (d) of Fig. 1, the
reporting delay is perceived as a probabilistic shift in time of the reported cases when compared
to the actual infection data.

Under-reporting or under-ascertainment occurs when not all infected individuals are tested
and reported as cases. This may result, for example, when infections are asymptomatic or only
cause mild symptoms so that infected individuals do not seek medical care or testing. Under-
reporting can be modelled as a (stochastic) downscale of the infections i.e., a random fraction of
new infections appear as new cases.

In the following sections we explore optimal MPC, event and time triggered control strategies
and their performance as under-reporting and delays increase. Full details (including mathematical
descriptions) of the algorithms we employ are available in the Methods.

Optimal MPC performance

We demonstrate the performance of our MPC algorithm first on perfectly observed incidence
data and then explore the influence of practical surveillance limitations. Figure 2 presents four
scenarios using MPC to mitigate an infectious disease with generation time (mean: 6.5 days [34, 35])
and basic reproduction number (Ry = 3.5 [36]) chosen to match those previously estimated for
COVID-19. Row (a) shows the ideal case where the agent has access to the true incidence of
infections. Here, the MPC strategy is able to keep incidence near the target incidence level (5000
new infections/day). Note that we cannot precisely track the target even in this ideal data setting
due to intrinsic stochasticity in the epidemic, a finite action space of possible interventions and
a policy review period that is at least a week. The resulting fluctuations about the target are a
measure of the fundamental control performance under these settings.

In rows (b) and (c) we demonstrate how reporting delay and under-reporting separately affects
MPC (cf. panel (d) in Fig. 1). As indicated by the panels in the right column, surveillance
imperfections of infection incidence also show up in the estimated reproduction number leading
to discrepancies between the observation and the true state of the epidemics. Row (b) shows the
effect of reporting delay with a mean of 7 days. In this case, the MPC strategy is still able to keep
incidence at a manageable level, however, the delay in observing cases results in late intervention
that spurs a higher peak in incidence and larger fluctuations once the epidemic is under control.
The thick highlighted curve shows the cases that inform the agent or decision-maker while the thin
highlighted curve are the true (unknown) infections.

Row (c) shows the effect of under-reporting with a mean reporting rate of 0.3, i.e., only 30% of
infections are reported as cases. Our MPC algorithm is able to achieve the target level but the true
incidence fluctuates at a higher level due to the under-reporting noise process which, on average
scales down infections to reported cases according to the mean reporting rate. The stochasticity
of the under-reporting also occasionally misleads the MPC strategy to believe that the epidemic
is under control and the incidence is below the target level or the effective reproduction number is
smaller than its true value, causing higher epidemic peaks than in the ideal surveillance scenario.
Interestingly, the average proportion of NPIs across the simulation time horizon is similar across
scenarios (a-c), indicating that the deviations in the performance of the optimal MPC strategy
are due to mistimed interventions resulting from the noise in surveillance, causing either overly
conservative or relaxed policies.

Row (d) in Fig. 2 shows the effect of increasing the policy review period from 7 to 14 days with
no observation noise. In this case, the MPC strategy is still able to keep incidence at a manageable
level, however, the fluctuations in daily incidence, and consequently the peak and the bounding
envelope of the later stabilised epidemic are larger as the agent has a reduced ability to intervene
and update control actions. The overall effect of increasing the policy review period is similar to
having a reporting delay as ultimately, both lead to delayed responses.
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Figure 2: Simulation results with optimal epidemic control. The left panels show reported cases
from ensembles of 100 simulations using generation times and reproduction numbers estimated
for COVID-19. The faded curves show different individual realisations of the epidemic with the
three black curves marking the 5% and 95% percentiles of the ensemble and the mean reported
cases. The horizontal dashed line shows the incidence target. The highlighted thick curve of
reported cases is coloured based on the NPI implemented on a given day. The coloured thin curve
indicates the true incidence corresponding to that highlighted simulation. The right column shows
similar diagrams for the effective reproduction number. In that column the faded grey curves
and the highlighted curve represents the estimated effective reproduction number from the true
infection incidence whereas the thin curve indicates the estimated value from the reported cases
in the highlighted realisation of the epidemic. The inset pie charts in the right column indicate
the ratio of days spent under a given NPI across the full simulation ensemble. Row (a) represents
the baseline case without delay or under-reporting with a policy review period of ¢, = 7 days.
Compared to the baseline case, panel (b) shows simulations with reporting delay (mean 7 days,
shape parameter oz = 5.0), panel (c) simulations with under-reporting (with mean reporting rate
0.3, dispersion a = 8.0). Panel (d) has no observation noise but provides simulations under an
increased policy review period of t,., = 14 days.
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Figure 3: The impact of increasing reporting delay on optimal control. The left panels show
results for our MPC algorithm, while the middle and right panels respectively present equivalent
outputs under event-triggered (lockdown and relaxation thresholds of Cpp = 2500 new cases/day,
and Cielax = 1500 new cases/day) and time-triggered (cycle of 45 days lockdown, 9 days of no
restrictions, starting on day 38) strategies. Row (a) shows scatterplots for peak incidence and row
(b) illustrates the steady-state envelope size relative to the target incidence across different time
delay distributions. The horizontal axis represents different mean reporting delays with colours
depicting different dispersion levels. Larger values of the parameter o indicate more deterministic
delays. Row (c) shows the mean intervention costs for each ensemble of 1000 epidemics, simulated
under estimated parameters from COVID-19. An equivalent analysis for simulated Ebola virus
disease epidemics is presented in Fig. 7 of the Supplement.
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The limits of control due to delayed reporting

We assess how the delay in reporting limits the performance of each control strategy. We consider
scenarios with different but stationary reporting delay distributions. The delay for a single infection
follows a Gamma distribution 7 ~ Gamma(ca.,, 3;), with shape and scale factors «, and f;,
respectively. The mean reporting delay is then ., 3, while the variance is o, 32. This is a common
model of reporting delays and has been used to describe surveillance of COVID-19 and Ebola virus
disease among others [34, 37, 38, 39]. To control the mean delay Tiean and dispersion a directly
we re-parametrise the distribution by the choice a; = a and 8; = Tipean/@. This means that for a
given mean reporting delay, the variance is inversely proportional to the dispersion parameter «,
i.e., larger values of a correspond to more deterministic reporting delays.

We consider 6 mean reporting delays ranging from 3.5 to 21 days, each with 4 different vari-
ances. This allows us to characterise how the mean and the dispersion of the reporting delay limit
optimised and heuristic control strategies. For each scenario, we run an ensemble of 1000 simula-
tions, each with a different random seed. Fig. 3 plots key results for simulations under COVID-19
disease parameters. Each column of panels depicts the performance of a different control strategy:
MPC, event-triggered, and time-triggered cyclic control. The first row plots the peak incidence,
the second row shows the size of the steady-state solution envelope (the range of oscillations after
the epidemic is under control) and the third row charts the average costs of NPIs. When calcu-
lating the steady-state envelope, we look at the maximum and minimum of daily cases after the
incidence of cases falls below the target and the effective reproduction number is below 1. It is not
possible to determine a steady-state envelope for every epidemic realisation of every scenario as
under some parameter combinations the control algorithm may fail to stabilise the outbreak. If this
happens we use the peak value as the size of the solution envelope. We find that the distribution
of peaks and steady-state envelopes are multi-modal for certain parameter combinations. This
results from applying a controller that has a discrete action space and policy review time longer
than the algorithm time step (which is daily).

For the comparison in Fig. 3, we tuned the parameters of the different control algorithms such
that they involve similar intervention costs. Additionally, we selected a rolling policy of 45 days of
full lockdown followed by 9 days of no intervention (i.e. a 45/9 cyclic policy), which is enacted 39
days after the simulated epidemic started. This is to ensure that the long term average effective
reproduction number is approximately 1, so we observe the epidemic reaching a near steady-state.
Arbitrary choices of policy lengths may fail to stabilise the epidemic, resulting in continued (but
slower) growth or rapid suppression that is costly.

Figure 3 indicates that reporting delays have a detrimental effect to feedback-control strategies
i.e., the MPC and event-triggered control approaches, as mistimed action leads to drastically
higher incidence peaks and wider steady-state envelopes. In some realisations, the desired target is
exceeded by a factor as large as 100. Interestingly and perhaps counter to intuition, the detrimental
effect of reporting delay is less if the variance of the reporting delay is high. Low variance means
that the reporting delay is almost deterministic (see results with higher values of the dispersion
parameter «), while high variance implies that we have a larger portion of cases where the delay
is small (and also more cases subject to very large delays, for the same overall mean lag). As a
result, high variance delay distributions allow some access to more recent infection information,
which can aid decision making. Row (c) of Fig. 3 shows the average costs spent on interventions
for each strategy under different delay settings. As expected, we find the optimal control strategy
is notably more economical than either the event-triggered or the time-triggered method.

Time-triggered cyclic control is insensitive to the reporting delay as it follows a pre-defined
sequence of actions irrespective of the observed incidence trajectory. As a result, while the costs
of the interventions are higher than those of MPC, it is possible to devise predefined intervention
strategies that outperform optimal feedback-control under large case reporting delays with means of
10.5-14.0 days or more, depending on the delay dispersion. This exposes the limits that surveillance
quality can impose on our ability to reactively control an epidemic. Importantly, as long as the
dispersion of our reporting delays is sufficiently large (« & 1) then optimal MPC strategies offer a
cost-effective intervention approach for any mean delay.

In the Supplement, we also present the results of the same analysis for Ebola virus (See Fig. 7).
We find that the performance deterioration caused by reporting delays follows similar trends to
what we observed for COVID-19 in Fig. 3. However, a key difference is that Ebola virus has a
longer generation time, which results in slower dynamics, that reduce some of the negative impact
of reporting delays. For comparison, with the MPC approach and a near deterministic (a = 200)
delay distribution with a mean of 21 days, we obtain peak infection incidence 100-1000 times larger
than target for COVID-19. In contrast, the same delay only leads to peaks of about 4-5 times the
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target for Ebola virus disease.

The limits of control due to under-reporting

Having isolated the influence of reporting delays, we now examine the impact of under-reporting.
This is another common and important surveillance imperfection in which not all newly infected in-
dividuals are reported as cases leading to under-ascertainment of the true numbers of infections and
hence the size of the epidemic. We model the number of daily reported cases with a Beta-binomial
distribution C; ~ BetaBin(I;, o, §,), with shape parameters of a,, and 5,. The expected number
of reported cases is then I;a, /(v + 3,) while the variance is Iy, B, (o, + By, + 1) / ((a, + B,)? (o, +
By + 1)). We refer to the ratio of the expected reported cases and the true infection incidence as
the mean reporting ratio v := E[C}/I;] which is constant in time. To directly control the mean
reporting ratio Vmean and the dispersion, we choose apu = a and S,u = a(1 — Vmean)/Vmean. This
means that larger values of the dispersion parameter a result in a smaller dispersion in reporting
rate.

We consider 6 different mean reporting ratios from 0.1 to 0.85 each with 4 different variances.
A smaller reporting fraction means larger under-reporting. Fig. 4 plots the performance of the
MPC, event-triggered and cyclic strategies in successive columns. For these diagrams, the target
incidence is scaled up according to the mean reporting ratio to have comparable results.

We find that as the variance in under-reporting increases the performance of optimal feedback
strategies deteriorates. This follows because the under-reported case curve is effectively a stochastic
downscaling of the true infection incidence curve. As a result, larger stochasticity in fluctuations
for a given mean reporting rate more substantially distorts the observed incidence and misleads
control. Low variance means that the under-reporting is more deterministic, so that reported case
incidence better resembles the shape of the true infection incidence curve.

Both our MPC and the event-triggered strategy show similar patterns in how the peak and
envelope of the controlled epidemics vary with the under-reporting statistics. However, the MPC
algorithm achieves better performance with smaller intervention costs. This improvement derives
from the the MPC approach leveraging all the available historical information in the incidence
curves.

Time-triggered cyclic control is not affected by under-reporting because it is agnostic to the
incidence data and how it is reported. The apparent variation in the performance of the cyclic
control strategy is due to the scaling of the target according to the under-reporting rate. While
under moderate noise and uncertainty, our MPC approach is more effective and cost efficient than
either of the heuristic methods, cyclic control can outperform MPC if the reporting rate is very
low and the variance is high.

Comparing the effect of under-reporting on control of COVID-19 and Ebola virus (see Fig. 8 in
the Supplement) we find similar trends for both pathogens. Even though the drop in performance
that we observe is less pronounced than that due to reporting delay, the slower dynamics of Ebola
virus still makes it more controllable than COVID-19 when uncertainty in case under-reporting is
present. This is evidenced by the solution peaks and steady-state envelopes being distributed in a
smaller interval across the simulation ensembles for Ebola virus disease than for COVID-19.

Integrating noise and intervention frequency

Having explored the performance limits induced by reporting delays and under-reporting in isola-
tion, we now consider their combined impact. We analyse ensembles of simulations under realistic
noise distributions for COVID-19 and Ebola virus disease. The uncertainty in case reporting data
can vary markedly depending on the context and national or regional differences in how surveillance
is conducted. In [1], reporting delays of 9-12 days were estimated for COVID-19 in Italy, whereas
[40] inferred case-reporting rates between 7-38 % across France. Based, on these, we consider a
mean reporting delay of 10.5 days with a dispersion of (« = 5.0) and a mean reporting rate of 0.3
with a dispersion of a = 8.0.

Rows (a) and (b) in Fig. 5 show results for simulated COVID-19 epidemics under realistic
noise distributions and subject to policy review periods of 7 and 14 days, respectively. We find
that the MPC strategy stabilises the epidemic around the target, but fluctuations are considerably
larger than in the baseline case (see Fig. 2a) due to the delay and under-reporting. This results
in an overshoot of about 5-times the target incidence under a 7-day policy review period and
around 10-times for a 14-day policy review period. Comparing these results with the simulations
in panels (¢) and (d) of Fig. 5 for epidemics simulated under Ebola virus parameters, we observe
that, the MPC strategy is more effective in controlling these epidemics and the effect of noise is
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Figure 4: The impact of increasing under-reporting on optimal control. The left panels show re-
sults for our MPC algorithm, while the middle and right panels respectively present equivalent
outputs under event-triggered (lockdown and relaxation thresholds of Cpp = 2500 new cases/day,
and Cielax = 1500 new cases/day) and time-triggered (cycle of 45 days lockdown, 9 days of no
restrictions, starting on day 38) strategies. Row (a) shows scatterplots for peak incidence, row (b)
illustrates the steady-state envelope size relative to the target incidence for different reporting rate
distributions. The horizontal axis represents different mean reporting ratios with colours depicting
different dispersion levels. Larger values of the parameter a belong to more deterministic case re-
porting distributions (i.e., constant reporting). Row (c) shows the mean intervention costs for each
ensemble of 1000 epidemics, simulated under estimated parameters from COVID-19. An equivalent
analysis for simulated Ebola virus disease epidemics is presented in Fig. 8 of the Supplement.
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Figure 5: Optimal control and policy review for realistic simulated epidemics. Rows (a) and (b)
represent epidemics simulated under a COVID-like generation time and basic reproduction number
with 7 and 14 days policy review periods, respectively. Rows (c¢) and (d) represent epidemics
simulated under Ebola-like parameters with 7 and 14 days policy review periods, respectively.
Because Ebola virus disease has a longer generation time, we discard a burn in period of 14 weeks
to allow the epidemic to grow towards the initial target. The left column show reported cases
from ensembles of 100 simulations with mean delay 10.5 days, delay dispersion a = 5.0, mean
reporting rate 0.25, a = 8.0. These settings reflect estimates of realistic surveillance noise from the
literature. The faded curves show different individual realisations of the epidemic with the 3 black
curves marking the 5% and 95% percentiles of the ensemble and the mean reported cases. The
horizontal dashed line shows the incidence target. The highlighted thick curve of reported cases is
coloured based on the NPI implemented on a given day. The coloured thin curve indicates the true
incidence corresponding to that highlighted simulation. The right column shows similar diagrams
for the effective reproduction number. The faded grey curves and the highlighted curve represents
the effective reproduction number estimated from true incidence whereas the thin curve indicates
the estimated value from the reported cases for the highlighted realisation of the epidemic. The
inset pie charts in the right column indicate the ratio of days spent under a given NPI across the
full simulation ensemble.
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less detrimental to controllability. For the Ebola virus epidemics (panel (c¢)) we find that running
the MPC algorithm with a 7-day policy review period causes a 3-times overshoot of the target
incidence of cases, which remarkably, only slightly deteriorates to about 4-times when a 14 policy
review period is used (see panel (d)). This occurs because the longer generation time of Ebola
virus results in a slower epidemic that allows the MPC algorithm more time to effectively adapt
to changes in the epidemic dynamics. Consequently, we must act more swiftly when responding to
diseases with shorter generation times as their faster growth can quickly destabilise data-informed
policies. Note that in scenarios where the same epidemic parameters were used ((a) and (b) —
COVID-19, (c) and (d) — Ebola virus disease) we observe that our MPC algorithm enacted and
sustained NPIs in similar time ratios (with COVID requiring more restrictions than Ebola). This
confirms that differences in performance are due to timing instead of overly conservative or relaxed
strategies.

Discussion

Here we proposed a model predictive control strategy for optimising epidemic interventions that
uses incidence data in real time. Our approach is one of the first to design feedback and cost-
minimal strategies that integrate both the intrinsic stochasticity of the transmission process and
the practical noise that is ubiquitous to real surveillance. Our results indicate that, within the lim-
itations of the data quality, model predictive optimal control is a viable strategy for cost-effectively
guiding intervention decisions in real time. Comparing it to earlier reference approaches, the MPC
strategy appreciably outperforms both event-triggered feedback control and time-triggered control.

While noise in surveillance data has a detrimental effect on both the MPC and the event-
triggered approaches, as both utilise real-time data, within a direct feedback loop, because our
MPC approach considers the full epidemic state and projected epidemic dynamics in decision-
making, it is able to better leverage the signals within that data. This allows it to simultaneously
achieve better or equivalent noise robustness while utilising a smaller intervention budget than
the event triggered approach, which only uses feedback relative to fixed thresholds in infection
incidence to impose and relax NPIs.

If noise levels are extreme then time-triggered strategies, which schedule NPIs without di-
rectly considering real time data, can be more effective in limiting peak incidence in scenarios
with large, near-deterministic delays. This marks the limits of data quality for feedback-control
strategies. However, the time-triggered strategy also has notable drawbacks because its design
requires precise knowledge of both the epidemic parameters and the efficacy of each NPI. Conse-
quently, this strategy is still implicitly linked to infection incidence data in practice. We therefore
find strong evidence that the additional complexity, relative to reference strategies, such as event
and time-triggered approaches, involved in performing MPC brings substantial advantages. More-
over, because this optimisation is sequential it adapts well to unexpected changes or uncertainties,
offering important robustness to the many unknowns during an unfolding epidemic.

For example, if immunity is acquired by infection, then this reduces the susceptible population
and decreases the effective reproduction number. In our modelling framework, this can be easily
included by setting R; = Ro:S/N, where S and N are the susceptible and the total population,
respectively. Note that we excluded this from our simulations in order to isolate the impact of the
NPIs and to allow fair comparison among epidemics that have dynamics on differing timescales.

The basic reproduction number Ry could also change due to the emergence of a new strain
of the pathogen (e.g., new variants appeared several times during the COVID-19 pandemic [41]).
The MPC algorithm has the flexibility to handle these changes in disease dynamics as it infers the
reproduction number from data and actively keeps infection incidence around the target level. We
present simulations in the Supplement (Fig. 9, panel (a)) in which the basic reproduction number
for COVID-19 increased from 3.5 to 4.5 to model the appearance of a new, more transmissible
variant. In this case, the MPC algorithm retains control over the outbreak as long as there are ac-
tions (i.e., possible interventions) in the action space capable of reducing the effective reproduction
number to below 1.

Our MPC algorithm is also capable of accommodating uncertainty in the efficacy of NPIs to
reduce the effective reproduction number of the pathogen. As we demonstrate in Fig. 9, panel (b)
of the Supplement, whilst uncertainty in the expected effectiveness of NPIs may lead to occasional
misjudgements of the optimal action that cause larger peaks in infection incidence, overall the MPC
algorithm still effectively controlled the epidemic by actively reacting to the discrepancies between
the actual new cases and the target. This result corroborates findings in [27] and highlights why
having an adaptive strategy that considers data and action in feedback is beneficial.
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Our results also emphasise that while noise can degrade even optimal MPC strategies, these
rigorously optimised control approaches are valuable in almost all scenarios. Note that we did not
correct for these sources of noise when assessing their detrimental effects on epidemic controllabil-
ity. While several studies have focussed on estimating and compensating for under-reporting [12]
and reporting delays [42, 43, 44], these approaches often require additional knowledge about the
reporting process or orthogonal data sources [45]. It is often the case that these are not available
or only become available later in epidemics so we preferred to characterise performance under
the more practical scenario that little else is known about the epidemic than its time series of
cases. Moreover, there are also inherent practical delays involved with the public announcement
and implementation of NPIs from the point of decision [46], which would result in delayed action
even with perfect knowledge of the epidemic states. For example, having a policy review period
that is several weeks for a pathogen with dynamics that vary on daily timescales can mean that
interventions are inevitably late or suboptimal. This effectively causes an additional lag in the
feedback loop and may itself prevent controllability.

We also found that the speed of disease spread is an important factor that sets the limiting
timescales for surveillance and action in order for a set of NPIs to achieve control. It is easier to
control a slower spreading pathogen like Ebola virus disease (mean generation time ~ 15 days),
as compared to COVID-19 (mean generation time ~ 6 days). Generally, for a slower spreading
disease there is more tolerance for having longer reporting times or less frequent policy reviews.
Accordingly, there is also less sensitivity to the timing of interventions.

The negative effect of having a lower policy review frequency (or longer time between policy
updates) implies that it is ideal to review intervention decisions as often as possible (hence allowing
for a more continuous feedback loop). However, as NPIs are intrusive and costly, doing so would
probably result in changes in public behaviour that in turn influence the effectiveness of the NPIs
[47, 48]. For example, the level of adherence to closure or social distancing policies may wane due to
fatigue or perceived risk [49, 50]. Although our MPC approach is adaptive and efficient at control-
ling unfolding epidemics, it does depend on several assumptions. Specifically, we do not consider
how dynamic changes in behaviour, mobility or other individual-level variations in response to
policy and epidemic data alter transmissibility. We also assume that the population is well-mixed
which means we do not account for heterogeneity in transmission (e.g., superspreading) or spatial
and sociodemographic differences that can modulate spread. However, our MPC framework can
accommodate some of these sources of heterogeneity (e.g., we can easily include superspreading
via more dispersed renewal models) and our future work will focus on better understanding how
heterogeneity may affect intervention choices.

While the realism of our study is dependent on having accurate knowledge of costs (both
economic and due to health outcomes), our framework is flexible and easily incorporates these
as well as finer resolution intervention options (e.g., we can directly expand our action space to
include NPIs with intermediate stringency such as mandatory wearing of masks, restrictions to
larger meetings, or limiting in-person attendance to work or education). Our goal was simply to
construct a general framework and qualitatively assess how optimal and suboptimal but known
control strategies depend on realistic surveillance limitations.

Our results unequivocally demonstrate that timing is a crucial factor in intervention efficiency.
The same interventions or interventions under the same overall budget applied differently across
time can yield markedly different disease control outcomes due to this sensitivity to timing. Even
when optimal algorithms such as our MPC approach are applied, mistimed action (due to delays
in data or NPI reviews) can be detrimental and substantially reduce policy effectiveness causing
high infection peaks. Ascertainment of infections is also important but even suboptimal strategies
are more robust to this type of noise than delays. Consequently, improving the speed of epidemic
detection and response systems should be a priority for disease surveillance and policy.

Methods

Epidemic governing equations

We model the spread of the disease in a population as a generalisation of the standard renewal
branching process [28]. This model is used both to make projections that inform optimal control
and to simulate ‘ground truth’ epidemic trajectories. The renewal branching process is a stochastic
model describing how the incidence of new infections on day ¢, I;, depends on past infections at
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times s < ¢ and the characteristics of the disease. This is captured by the Poisson distribution

t
Iy ~ Pois(> _ I.Rew;_s), (1)

s=0

where R; is the effective reproduction number on day ¢, with the set of weights, w;_, for all s,
obtained from the generation time distribution [34] of the disease. We assume that the generation
time distribution is known or estimated from other paired transmission data. The weight w;_g
is the probability that a secondary infection occurs ¢t — s days after its primary infection. As is
standard practice, we model the stochasticity of the generation time with a Gamma distribution

tgen ~ Gamma(agen, Bgen)- (2)

The shape and scale factors agen and Sgen parametrise the probability density function pgen(t).
The weights wy_s used in Eq. (1) are then calculated as w;_s = pgen(t — 3)/22:0 Pgen (k). We
consider two generation time distributions, with respective parameters provided in Table 1, which
are commonly used to describe epidemics of Ebola virus disease [51] and COVID-19 [35].

The above formulation generalises the standard renewal model, which describes incidence I; ~
Pois(R; Z;:O Tswy_ ) with the sum 27;:0 I, w;_g referred to as total infectiousness of all infectious
individuals [52]. However, this classical formula implies that any intervention applied to curb the
spread of the disease results in an immediate change in the reproduction number. We apply the
generalised formula of Eq. (1) to model scenarios where the infectiousness of a population and
the impact of interventions depend on both the history of infections and reproduction numbers.
The latter dependence has a smoothing effect that allows for the finite time effects of realistic
interventions on transmissibility. A similar generalisation was introduced in [33].

The effective reproduction number is derived from the basic reproduction number Ry, which
describes how many people an infected individual is expected to infect in a fully susceptible popu-
lation. When an NPT is introduced the basic reproduction number Ry is multiplicatively changed
by a factor ¢, yielding

ROt = Roct. (3)

We consider an action space with three possible NPIs: no intervention (¢; = 1), limited social
distancing (¢; = 0.5) and full lockdown (¢; = 0.2). While this is a simplified classification of NPI
types, our control framework allows for more possible actions to be easily modelled. Although
in reality the factor ¢; is unknown and needs to be estimated, we assume throughout this study,
that the effect of any NPI on the reproduction number is known and without uncertainty. Our
framework does allow the inclusion of uncertainty on these effects and we present analyses under
stochastically varying c¢; in the Supplement. However, our goal is not to describe precisely how
interventions attenuate transmissibility, but instead to derive insights into how noise influences
the optimal timing of interventions generally. Thus, our choices of ¢; are meant to be sensible
but not exact and we generally do not include the uncertainty on ¢; to isolate the influence of the
surveillance noise. Note that if estimates of ¢; are available or derived from auxiliary data, these
can be seamlessly integrated within our framework for more precise results.

Optimal model predictive control (MPC) of epidemics

The model predictive control algorithm we propose aims to curb disease spread, jointly minimis-
ing the risks and costs arising from infections and applied interventions. We outline our control
framework in panel (a) of Fig. 1, which consists of the following elements: a plant (the controlled
system) with observable states, state-transition probabilities, an agent with an action space defin-
ing possible control actions, and a reward function.

In our model, the plant is the population where the disease is spreading, while the output state
monitored is the incidence (number of daily new infections) I;. The state transition probabilities,
i.e. the probability of transitioning to any I;11 from any given I; are not explicitly defined, but are
implicitly determined by the Poisson distribution of the renewal model (see Eq. (1)). The control
framework we use here largely overlaps with Markov decision processes (MDPs) [53]. However,
the renewal model utilises both the immediate and past incidence. This is not exactly Markov but
may be reconfigured into an MDP if higher dimensional state spaces are used [54, 55].

The agent in the context of an epidemic is the public health policy-maker i.e., the individual or
group responsible for proposing or removing NPIs, while the action-space comprises the possible
NPI choices. We consider 3 levels of interventions that we class as no intervention, social distancing
and full lockdown. This broadly models stepped interventions which were common across the
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COVID-19 pandemic. These include the three tier system that England used to enforce localised
NPIs in 2020, the 4-level alert system applied by New Zealand and related policies taken by Italy,
France, Canada and others [56, 57]. Our framework computes decisions based on the projected
reward over a fixed time-horizon which incorporates the costs of possible actions in our decision
space and their risks in terms of expected infections.

In the reward function, we account for costs arising from the economic impact of NPIs and
the risks associated with high incidence. We consider a target incidence level that defines some
manageable infection level and define the absolute error Io,, = |I; — Itarget|. This target may relate
to healthcare capacities e.g., setting a level of incidence such that the expected hospitalisations
resulting from that incidence do not overwhelm healthcare resources. Although, studies rarely con-
sider a target incidence level, our aim is to understand and characterise the intervention tradeoffs
(e.g., timing choices) that can jointly limit expected infections and the costs of those interventions.

Setting Iliargee = 0 is analogous to an elimination target, which models the broad aims of
pandemic policies employed by New Zealand [58] and China [59], for example. An Iiuger > 0
recognises that elimination is difficult, particularly in the face of infection reintroductions and
so refocuses on stabilising healthcare burdens to sustainable levels that balance the supply and
demand of health resources. Additionally, as we want to minimise the risk of large infection
peaks and overshoots, our reward function also includes a penalty term ¢qyer that activates when
It > 1.51 4,61 but is zero otherwise.

While regulating disease spread within the limits of healthcare capacities is of paramount
importance, interventions that restrict mobility or close businesses and trade generate substantial
economic and other costs. We model this with a term ¢, attached to every element of the action-
space. There is no cost under no restrictions and the cost of full lockdown is assumed to be
15-times larger than that of limited social distancing. While some studies into COVID-19 NPIs
suggest stringent interventions are 5-6 times more costly than more limited measures [7], our factor
was chosen to more markedly distinguish between our two NPI tiers so that general qualitative
insights could be better derived. Including all the above components, the reward function on day
t is calculated as the negative quantity

Tt = _6|It - Itarget| — @1 — Dover- (4)

The agent’s task is to choose the action which maximises the expected reward. However,
there are practical limitations to decision-making. While we use daily incidence data to inform
our epidemic model, we allow policy review to only occur every 7 or 14 days, i.e., the agent can
only change control actions with this frequency. The time between policy updates is t,e, and
reflects practical intervention constraints, e.g., both in terms of logistics and ensuring compliance,
policymakers may not want to switch NPIs any faster than weekly. We also impose a practical
constraint on reward optimisation by considering only finite time horizons for assessing the costs
of any action. We denote this projection horizon ¢,.,j. This models the fact that only short-term
forecasts are known to be reliable for epidemic decision-making [60].

The agent calculates the expected reward for each action by simulating the epidemic with all
possible control states until #,,,; and taking the total temporally discounted reward

proj

p = Z Tt+5787 (5)
s=0

where v < 1 is the temporal discount factor. A higher v means that the agent is more concerned
about long-term rewards, whereas a smaller v means that shorter term benefits are emphasised.
Since the reward function is stochastic, the expected reward p is probabilistic. We therefore
compute the expected total reward E(p) over an ensemble of simulations. This also allows us to
factor in the intrinsic variability of the epidemic generating process (e.g., from the random times
between infections).

If the projection horizon is longer than the policy review period, i.e., tpred > trew, then, we can
also propose sequences of actions over the projection horizon to be taken by the agent. We may
then compute the expected reward for each action sequence then implement the first action of the
sequence with the best projected reward. However, for the scenarios we consider, this approach
increases computational complexity but does not improve performance. Consequently, for these
longer projections, we maintain our original approach of only evaluating single possible actions
and their consequences across the horizon. We collect all the key epidemic and control algorithm
parameters in Table 1.
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Parameter name COVID-19 Ebola virus Unit
Basic reproduction number Ry 3.5 2.5 1
Mean generation time o, Br 6.5 15.0 days
Generation time variance a, 32 13.65 31.5 days?
Infection incidence error gain 1) 0.00026 0.00065 m
Projection window (tey = 7 days) tpred 12 12 days
Projection window (tey = 14 days) tored 14 14 days
Cost of no intervention o 0 0 1
Cost of social distancing o 0.01 0.01 1
Cost of full lockdown o 0.15 0.15 1
Cost of large overshoots Dover 5.0 5.0 1
Cost discount factor 0% 0.95 0.95 1
Threshold for imposing full lockdown  Cpp 2500 3000 cases/day
Threshold for relaxing full lockdown Clrelax 1500 3500 cases/day
Lockdown length in cycle tLD 45 36 days
No intervention length in cycle trelax 9 21 days

Table 1: Parameters of the epidemic model and the control algorithms for COVID-19 and Ebola
virus.

Infection incidence Reporting delay Under-reporting

I, Cy ~ Pois(ZiZO Law]_)) Cy ~ BetaBin(Cy, a,, )

Figure 6: Models of realistic epidemic surveillance. The true infection incidence data I; is first
distorted by a probabilistic delay modelled by a convolution with w]_,, which are probabilities
from a Gamma distribution. Under-ascertainment then occurs by downsampling these delayed
cases C, using a Beta-binomial distribution. This yields the reported daily cases Cy, which is
frequently used as a proxy for the unobservable I;. In some simulations, we turn either reporting
delay or under-reporting off. If there is no reporting delay, C;, = I, and similarly, if there is no
under-reporting C; = C;.

Surveillance noise and uncertainty in incidence data

Ideally, the agent would make decisions about possible NPIs based on the infection incidence in the
population. Unfortunately, infection data are rarely available and a proxy such as the incidence
of confirmed cases or deaths is commonly used. We focus here on the daily incidence of cases
Cy but note that other proxies have analogous descriptions [32, 33]. These proxies are commonly
subject to practical surveillance imperfections, which we define via a stochastic reporting delay 7
and a stochastic reporting rate v. In our model of the surveillance imperfections, the true infection
incidence data I; is first distorted by delay, then we consider under-ascertainment of the delayed
cases (see Fig. 6).

Reporting delay describes the lag between an infection and its proxy. For cases this includes
latencies such as the time taken between infection and presenting symptoms or confirmation via
testing. In our framework, we model the reporting delay for a single case using a Gamma distri-
bution

7 ~ Gamma(a., 8;), (6)

with shape and scale factors o, and (3, respectively. The mean reporting delay is then a3, while
the variance is o 32. To control the mean delay Tiean and dispersion « directly we re-parametrise
the distribution by the choice o, = @ and ; = Timean/. The cases C’t reported with delay on day
t then result from a weighted sum of past incidence at day s and the probability that it takes t — s
time units before those infections are reported or confirmed as cases. This follows as

t
Cy ~p7(s) = Pois(z Lwi_)), (7)
s=0

where the weight factors w;_, are derived from the Gamma distribution of the reporting delay,
t
wi_s =p7(t = 5)/ 2 g0 P" (K).
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The reporting rate models incomplete or under-reporting, which captures the fact that proxies
commonly represent only a fraction of infections. For example, asymptomatic and less severe
infections are unlikely to appear as cases. This means that only a fraction v of the delayed
infection incidence C; is reported B

Ct = VtCt, (8)

with v, € [0,1]. In our model, we assume that the number of reported cases follows a Beta-binomial
distribution ~
Cy ~ BetaBin(Cy, oy, By). (9)

Consequently, the expected number of reported cases is Cyoy, /(a, + B,) while the variance is
Cran B (an + B, + C't)/((a,, + Bu)%* (v, + B, + 1)). We refer to the ratio of the expected reported
cases and the true infection incidence as the mean reporting ratio v := E[C}/ ét] which is constant
in time. To directly control the mean reporting ratio vyean and the dispersion a we choose a,u = a
and Snu = a(l — Vmean)/Vmean-

In some cases, we investigate the isolated effect of reporting delay or under-reporting, which
means that for these simulations the other source of surveillance imperfections is turned off. If there
is no reporting delay, C, = I, and similarly, if there is no under-reporting C; = C,. These stochastic
delay [61] and under-reporting [62] models have been widely used to describe surveillance noise
in the literature, as well as serve as the starting point for deconvolution and nowcasting methods
that attempt to correct for these noise sources [33, 63, 64, 65].

Estimation of the reproduction number

When projecting likely infections (or proxies) over a horizon in our algorithm, we assume knowledge
of the effect of NPIs on the reproduction number. This is captured by the coefficients ¢;. However,
we do not assume knowledge of the true basic reproduction number and so must estimate this
quantity from past data.
We start by inferring the time-varying effective reproduction number by applying the formula
[52]
R, ~ Zie:l It—s
tR S, o
Zs:l At—s

where A is the total infectiousness and is calculated as

(10)

test

Atfs = thfswsa (11)
s=1

with weights ws derived from the generation time distribution. Then we recover the basic repro-
duction number Ry by factoring in the history of applied control measures

test
g Ct—sWs

(12)
ZZZ}) Ws

Cest =

and hence Roest = Rt/ Cest-

The quality of our estimates in Eqgs.(10),(11) and (12) depends on the length of the estimation
window teg. Short windows are more sensitive to stochastic fluctuations in incidence, while long
windows over-smooth estimates and delay projections [52, 66]. We apply test = 5 days, which
appears to be a good compromise between the two extremes.

Code availability

The code generating the results presented here is available at https://github. com/sandorberegi/
Epidemic-control-with-noisy-real-time-data.
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Figure 7: The impact of increasing reporting delay on optimal control. The left panels show
results for our MPC algorithm, while the middle and right panels respectively present equivalent
outputs under event-triggered (lockdown and relaxation thresholds of Cp,p = 3000 new cases/day,
and Crelax = 3500 new cases/day) and time-triggered (cycle of 36 days lockdown, 21 days of no
restrictions, starting on day 143) strategies. Row (a) shows scatterplots for peak incidence and row
(b) illustrates the steady-state envelope size relative to the target incidence across different time
delay distributions. The horizontal axis represents different mean reporting delays with colours
depicting different dispersion levels. Larger values of the parameter o indicate more deterministic
delays. Row (c) shows the mean intervention costs for each ensemble of 1000 epidemics, simulated
under estimated parameters from Ebola virus disease.
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Figure 8: The impact of increasing under-reporting on optimal control.
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The left panels show

results for our MPC algorithm, while the middle and right panels respectively present equivalent
outputs under event-triggered (lockdown and relaxation thresholds of Cp,p = 3000 new cases/day,
and Crelax = 3500 new cases/day) and time-triggered (cycle of 36 days lockdown, 21 days of no
restrictions, starting on day 143) strategies. Row (a) shows scatterplots for peak incidence, row (b)
illustrates the steady-state envelope size relative to the target incidence for different reporting rate
distributions. The horizontal axis represents different mean reporting ratios with colours depicting
different dispersion levels. Larger values of the parameter a belong to more deterministic case
reporting distributions (i.e., constant reporting). Row (c) shows the mean intervention costs for
each ensemble of 1000 epidemics, simulated under estimated parameters from Ebola virus disease.
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Figure 9: Optimal control for realistic simulated epidemics with uncertainty in the estimated re-
production number. Row (a) shows epidemics simulated under COVID-like generation time where
the basic reproduction number is changed from 3.5 to 4.5 on day 130 (black vertical line). Row
(b) represents epidemics simulated under COVID-like generation time and a fixed basic reproduc-
tion number with uncertainty in the effect of NPIs on reduction in disease transmissions. Instead
of fixed reduction factors, the factor ¢; altering the basic reproduction number as Ry = Rgc: is
sampled form a Beta distribution. The left column show reported cases from ensembles of 100
simulations with mean delay of 10.5 days, delay dispersion o = 5.0, mean reporting rate 0.25,
a = 8.0. The faded curves show different individual realisations of the epidemic with the three
black curves marking the 5% and 95% percentiles of the ensemble and the mean reported cases.
The horizontal dashed line shows the incidence target. The highlighted thick curve of reported
cases is coloured based on the NPI implemented on a given day. The coloured thin curve indicates
the true incidence corresponding to that highlighted simulation. The right column shows similar
diagrams for the effective reproduction number. The faded grey curves and the highlighted curve
represents the effective reproduction number estimated from true incidence whereas the thin curve
indicates the estimated value from the reported cases in the highlighted realisation of the epidemic.
The inset pie charts in the right column indicate the ratio of days spent under a given NPI across
the full simulation ensemble.
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