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ABSTRACT 22 

Background: The combination of CFTR modulators ivacaftor/tezacaftor/elexacaftor (ETI) 23 

achieves unprecedented improvements in clinical symptoms and respiratory function of people 24 

with cystic fibrosis. Yet, evaluation is difficult in people with high baseline lung function and the 25 

sweat test may vary depending on the type of CFTR mutation. Exhaled breath is a non-invasive 26 

sample, rich in personalised metabolic information and breathomics has emerged as a promising 27 

tool to monitor and assess therapeutic response. We hypothesised that ETI induces alterations in 28 

the breath composition and that these changes may correlate with clinical readouts. Methods: 29 

Ten adults initiating ETI were enrolled in a prospective open-label study. Exhaled breath was 30 

analysed before, after one week and one month of treatment by real-time, proton transfer 31 

reaction-mass spectrometry. Clinical symptoms, lung function and sweat test results were 32 

recorded. Results: A total of 29 breath samples were analysed; 108 volatile organic compounds 33 

(VOCs) were consistently detected. In responders (8/10), 21 VOCs were significantly modified, 34 

mostly hydrocarbons or small carbonyl compounds. At baseline, these VOCs exhibited 35 

significantly different concentrations compared to healthy young adults; throughout the first 36 

month of treatment, their level in CF breath evolved towards that of healthy volunteers. Eight of 37 

these also correlated with variations in lung function. Conclusion: Real-time breath analysis 38 

identified alterations in the breath at the early stages of treatment that tended to normalise after 39 

one month. These changes exhibited correlations with clinical indicators, suggesting that breath 40 

VOCs may serve as early biomarkers useful for treatment monitoring.  41 

Trial registration: NCT05295524 42 

 43 
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volatile organic compounds 45 

 46 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 31, 2024. ; https://doi.org/10.1101/2024.05.29.24308131doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.29.24308131
http://creativecommons.org/licenses/by-nd/4.0/


3 
 

Key messages:  47 

What is already known on this topic 48 

As efficient new generations of treatments are emerging for patients with CF, we are lacking 49 

early, non-invasive, personalised biomarkers associated with response to therapies. The previous 50 

generation of CFTR modulators modified the composition of breath within 3 months, yet nothing 51 

was known about the early impact of the newer combinations.  52 

What this study adds 53 

The triple combination of CFTR modulators modifies the composition of breath in people with 54 

CF as soon as within one week of treatment and tends to normalise basal alterations in CF 55 

breath. These changes in breath composition may be captured with real-time mass spectrometry 56 

and correlate with clinical outcomes.  57 

How this study might affect research, practice or policy 58 

Real-time breath analysis may become useful in monitoring companion biomarkers associated 59 

with therapeutic response in patients with CF. Identification of related biological pathways could 60 

also help to elucidate the mode of action of these drugs. 61 

  62 
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BACKGROUND 63 

The development of cystic fibrosis transmembrane conductance regulator (CFTR) modulators is 64 

transforming the therapeutic landscape for patients with cystic fibrosis (CF). The combination of 65 

the potentiator ivacaftor with the two correctors tezacaftor and elexacaftor (ETI) achieves 66 

unprecedented improvements in lung function and quality of life in eligible patients within a few 67 

weeks [1]. Correctors support the intra-cellular processing of misfolded CFTR protein resulting 68 

from class II mutations such as p.Phe508Del (F508del thereafter) whilst the potentiator improves 69 

the functioning of CFTR channels positioned at the apical side of epithelial cells. In pulmonary 70 

cells, the restoration of CFTR activity reinstates the ionic osmotic balance which translates into 71 

rehydration of lung-lining fluids and restoration of mucociliary clearance [2]. In Europe, ETI is 72 

currently approved for patients with at least one F508del mutation but should soon be extended 73 

to 177 rare variants already approved in the US by the Food and Drug Administration (FDA) 74 

based on an in vitro improvement of 10% recovery of CFTR function in Fisher rat thyroid (FRT) 75 

cells [3]. In the meantime, regulatory agencies in other countries such as France have allowed 76 

temporary compassionate access to ETI to all CF patients not carrying F508del, aged 12 years 77 

and older and with advanced CF lung disease, in order to assess possible benefits of the 78 

treatment. 79 

Since respiratory status still mostly determines prognosis, clinical evaluation of people with CF 80 

mainly focuses on respiratory function through the monitoring the forced expiratory volume in 81 

one second (FEV1) and forced vital capacity (FVC). However, these endpoints may fail to detect 82 

clinical benefit or biological changes in certain cases, for example in people with high baseline 83 

lung function and in young children unable to perform lung function tests or, conversely, in 84 

people with advanced lung damage [4,5]. Whilst improvement in FEV1 may be limited in some 85 

patients, they are yet likely to experience less exacerbations and to decrease their bacterial load 86 

[6] – although long-term studies are still missing on the newest combinations of CFTR 87 
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modulators –, to normalise their inflammatory status [7] or to improve their nutritional status [8]. 88 

Furthermore, there is a growing proportion of patients who have difficulties to expectorate 89 

sputum which jeopardizes the detection of pulmonary infections. The measurement of sweat 90 

chloride concentration (SCC) often serves as a secondary endpoint in clinical trials as a marker 91 

of CFTR activity, yet it does not always correlate with clinical improvement, e.g. in respiratory 92 

function and symptoms [9,10]. Therefore, there is a rationale to develop alternative tools to 93 

evaluate the effects of novel therapies such as CFTR modulators in patients with a wide range of 94 

mutation severity. 95 

Over the last 50 years, breathomics extended to various areas of respiratory medicine and 96 

emerged as a promising innovative technique. Exhaled breath is a unique biological signature of 97 

the individual, rich in personalised information, reflecting subtle changes in the metabolism, and 98 

can be obtained non-invasively [11]. Exhaled metabolites, known as volatile organic compounds 99 

(VOCs), are thought to result from inflammatory processes, oxidation, or enzymatic reactions, 100 

which may be triggered by drugs. They have been linked to pathologies, infection, ageing, 101 

environmental exposure or therapeutic interventions [12]. A previous study following up 20 102 

F508del-homozygous patients initiating the CFTR modulator dual therapy lumacaftor/ivacaftor 103 

reported significant metabolic changes in exhaled breath profiles after three months which 104 

persisted at 12 months [13]. Online proton-transfer reaction – mass spectrometry (PTR-MS) is a 105 

high-sensitivity, point-of-care technology allowing real-time monitoring of VOCs which has 106 

already demonstrated potential for the diagnosis of infectious or cancerous diseases [14–18]. 107 

We hypothesised that ETI-induced in-depth lung metabolic modifications could be observed in 108 

exhaled breath using real-time PTR-MS and that changes in the volatilomic profiles may be 109 

associated with clinical and biological readouts.  110 

 111 
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METHODS 112 

Study design 113 

We conducted a prospective open-label study at the Foch university hospital (Suresnes, France), 114 

enrolling any adult patients with CF (18 years and over) initiating ETI. Patients were 115 

participating to the PHEAL-KAFTRIO study, which was approved by an ethics committee 116 

(Comité de protection des personnes Sud-Est I, 2021-A03119-32, NCT05295524). All patients 117 

provided written informed consent. The study included three visits following up on ETI 118 

initiation: before (V1), during the first week (V2) and after one month (V3) of treatment. At each 119 

visit, clinical readouts including respiratory functional symptoms (cough, sputum production, 120 

dyspnea) and any episodes of exacerbation were recorded. Spirometry outcomes (FEV1 and FVC 121 

in absolute and percentage of predictive values (pp)) were measured according to American 122 

Thoracic Society /European Respiratory Society guidelines [19]. Sweat collection was performed 123 

using a Macroduct® Sweat Collection System according to the recommendations of the European 124 

Cystic Fibrosis Society Clinical Trial Network [20]. Response to ETI was defined by functional 125 

criteria, namely an increase of 10% ppFEV1 and/or a drop of more than 20 mmol/L in SCC at 126 

V3; patients accessing ETI through the compassionate programme were evaluated after two 127 

months by an adjudication committee, who decided whether or not to continue the treatment [9]. 128 

 129 

Breath analysis 130 

At each visit, volatile metabolites in exhaled breath were analysed with real-time mass 131 

spectrometry, using a proton-transfer reaction – quadrupole – time-of-flight mass spectrometer 132 

(PTR-Qi-TOF MS; Ionicon, Innsbruck, Austria). Patients blew directly into the instrument via a 133 

single-use mouthpiece connected to a thermostatically controlled BET-med device, conveying 134 

exhaled VOCs into the instrument. The entire procedure is quick (<5min) with minimal 135 

requirement of patient cooperation. This method allows the untargeted detection of VOCs 136 
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according to their mass/charge ratio (m/z) in the range 15-500 m/z. Instrument settings and data 137 

processing methodology were the same as previously reported [15,21]. 138 

 139 

Statistical analysis 140 

Longitudinal univariate analyses were performed using a Fischer test and a linear mixed-effect 141 

model adjusted for multiple testing thanks to the false discovery rate correction (5% risk). VOC 142 

concentrations were compared to those measured with the same method in a separate cohort of 143 

healthy young adults (VOC-COMPARE study, NCT06020521). Correlations were assessed 144 

through a Pearson correlation test to compare the evolution of VOCs and clinical readouts 145 

between timepoints. Multivariate, supervised partial least square – discriminant analysis (PLS-146 

DA) was carried out on the Metaboanalyst platform (v6.0) [22] on filtered data (the 5% of 147 

variables with the lowest interquartile range were excluded), after log transformation and 148 

autoscaling. 149 

 150 

RESULTS 151 

Study population and clinical response 152 

Ten participants (two females) initiating ETI, median age 34 years (interquartile range (IQR) 153 

17), were enrolled in the study from March to December 2022; three patients had compassionate 154 

access and two switched from monotherapy ivacaftor (Table 1). One patient had known chronic 155 

hepatopathy complicated with portal hypertension and was prescribed a reduced ETI daily dose. 156 

At baseline, lung disease stage was variable; all patients were infected with at least one 157 

respiratory pathogen (Pseudomonas aeruginosa (5/10), Staphylococcus aureus (5/10)). Seven 158 

had daily anti infectious prophylaxis (both inhaled and oral route) throughout the study (Table 159 

S1). Over the course of the study, three patients experienced a mild bronchial exacerbation; two 160 
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of them were related to a coronavirus disease (COVID-19) infection and required additional 161 

antibiotics (Table S1). 162 

At V3, six patients carrying F508del experienced clinical improvement and met clinical response 163 

criteria (Table 1). One patient, who was switching from ivacaftor, chose to stop ETI after one 164 

month because of insomnia and the absence of significant respiratory improvement despite a 165 

+8% gain in ppFEV1; his response was deemed inconclusive. Three patients were granted off-166 

label access to ETI. Based on clinical outcomes at two months’ treatment, the adjudication 167 

committee agreed on a lack of response in one patient who discontinued the treatment, one 168 

patient showed an early response, and a third patient showed a delayed response with a +10% 169 

increase in ppFEV1 after two months. Even though response criteria were not met yet at V3 for 170 

this patient, we chose to classify him in the responder group, resulting in a total number of 8/10 171 

responders. Side effects were limited to rash (3/10) and insomnia (1/10). Microbiological 172 

cultures in patients able to cough up sputum (8/10) were comparable to that collected at baseline. 173 

 174 

Breath analysis 175 

Detection of volatile organic compounds 176 

A total of 29 breath samples were available from the 10 participants and 108 VOCs were 177 

consistently detected. Unsupervised multivariate analysis revealed a homogeneous dataset with 178 

no obvious confounding factor, the prevailing source of variability being donors (see principal 179 

component analysis plot in Figure S1). Of note, the patient with hepatopathy showed a 180 

distinctive profile at every visit compared to the other patients (Figure S1), with some 181 

particularly intense VOC signals (see heatmap in Figure S2). Overall, PLS-DA showed a 182 

progressive shift of the overall breath profile in responder patients according to visit (Figure 1).  183 

 184 

Changes in breath profiles after ETI initiation 185 
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Longitudinal analysis identified 21 VOCs significantly modified (p-value F-test mixed model 186 

<0.05) in all responder patients upon ETI initiation (Table 2, Figure 2). Amongst the 21 modified 187 

features, 20 were detected in an independent cohort of young adults and 16 VOCs exhibited 188 

different levels in CF patients at baseline compared to healthy volunteers (p <0.05) (Figure 2 and 189 

Figure S3). Changes in the breath of CF patients were observed within the first days of treatment 190 

and progressed gradually throughout the first month towards the level measured in healthy 191 

volunteers. After one month, 13 VOCs were still differently expressed in CF patients, yet the gap 192 

and significance had decreased (Figures 2 and S3).  193 

 194 

Annotation of VOC biomarkers 195 

The identification of most features of interest was supported by matching PTR-MS data with 196 

data obtained from comprehensive thermal desorption – two-dimensional gas chromatography 197 

coupled to time-of-flight mass spectrometry (TD-GCxGC-TOF-MS) analysis on breath samples 198 

collected from healthy volunteers (VOC-COMPARE, NCT06020521) and from children with 199 

CF (BIO-CFTR, NCT02965326). Propyne (m/z 41.039) and dimethylformamide (m/z 74.063) 200 

were amongst the most significant VOCs (p <0.01) (Figure 2); most of other VOCs were 201 

identified as unsaturated hydrocarbons or small carbonyl compounds (Table 2). 202 

 203 

Correlations with clinical outcomes 204 

Correlations between the evolution of VOC concentrations on one the hand, and the evolution of 205 

ppFEV1, ppFVC or SCC on the other hand, were determined. A total of 32 VOCs were 206 

significantly associated with the evolution of one or more clinical readouts between V1 and V2 207 

(Table 2). Variations of four and 13 VOCs robustly correlated at both timepoints (V2-V1 and 208 

V3-V1) with ppFEV1 and ppFVC, respectively (statistically significant correlation range 209 

|r²|=0.66-0.89). Eight of these were significantly modified upon treatment in responders 210 
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including VOCs tentatively identified as acetic acid, methylbutene, dimethylformamide, 211 

methylpentene, methylsulfanylpropene and methylpropanoic acid (see examples in Figure 2). 212 

The number of SCC measurements at V3 was insufficient to reach statistical significance but 213 

there were four VOCs significantly associated with SCC variations between V1 and V2, two of 214 

these also correlated with variations in ppFEV1.  215 

 216 

DISCUSSION 217 

This is the first study showing that ETI quickly impacts the breath composition and may 218 

contribute to normalise the level of abnormal VOCs in adults with CF. Disease-specific and lung 219 

pathogen-related breath signatures were previously reported in CF patients [23–29] but the 220 

effects of disease-modifying CFTR modulators have been little explored. Neerincx et al. 221 

previously reported changes in the concentration of 51 breath VOCs after three months’ 222 

lumacaftor/ivacaftor therapy using breath sampling and off-site gas chromatography – mass 223 

spectrometry (GC-MS) analysis [13]. Here, we integrate early temporal information to explore 224 

the response to ETI therapy, which has replaced previous combinations in most patients, using 225 

direct, real-time mass spectrometry. The breath metabolome was quickly and significantly 226 

modified throughout the first month, possibly indicating progressive drug-induced biological 227 

changes. In addition, VOCs modified by ETI tended to return to levels measured in the healthy 228 

population, supporting their relevance as biomarkers of the treatment’s action. A few VOCs 229 

normalised after one month mirroring a short-term impact of the treatment, whilst others 230 

progressed more slowly possibly indicating a delayed effect. 231 

Furthermore, the evolution of several breath VOCs correlated with clinical outcomes which 232 

builds upon recent findings by Woollam et al. Using GC-MS, they identified a set of VOCs 233 

correlating with ppFEV1 in CF patients experiencing pulmonary exacerbations [30]. In our 234 

study, eight VOCs significantly modified upon treatment were also consistently (at both V2 and 235 
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V3) associated with variations in lung function (ppFEV1 or ppFVC). Modifications within the 236 

lung environment such as mucus clearance, shifts in the microbiome, regulation of inflammation 237 

and oxidative stress, or restructuring of cell membranes can directly both influence lung 238 

mechanical function and alter breath composition. As reported in previous clinical studies [9,31], 239 

some patients experience a delayed response or a limited effect on lung function or SCC making 240 

it delicate to assess the drug efficacy and emphasising the need for complementary early 241 

biomarkers. 242 

Additionally, dysfunctions in other organs are also likely to modulate the breath profile. Aligning 243 

with prior research on liver diseases [32], the patient with hepatopathy in the present study 244 

manifested a characteristic breath signature.  245 

In our responder cohort, 21 VOCs were systematically modified following ETI initiation. ETI’s 246 

impact on cellular metabolism is not fully elucidated yet, and identification of such metabolites 247 

may contribute to a better understanding of its mode of action. Propenal (p=0.03) – also known 248 

as acrolein – , acetic acid (p=0.021) and methylpropanoic acid (p=0.048) were decreased. These 249 

belong to the large range of carbonyl compounds that can be generated through lipid 250 

peroxidation, and which have been repeatedly associated with oxidative stress [33]. Woollam et 251 

al. also observed a downregulation of longer aldehydes (octanal and nonanal) in patients treated 252 

with CFTR modulators [30]. Another significant VOC, dimethylformamide has been recently 253 

associated with dysfunctions in mitochondria [34] and glucose metabolism [35]. Given ETI is 254 

suspected to affect mitochondrial function [36], a decrease in dimethylformamide (p=0.005) 255 

towards the healthy level may parallel a shift, or even a normalisation, in energy metabolism 256 

upon ETI treatment. Finally, saturated hydrocarbons, commonly reported in breath [12], are 257 

poorly detected by PTR-MS due to their weak affinity for protons [37]. Nevertheless, several 258 

short chain alkens were detected: butene and methylpentene were increased whilst propadiene, 259 
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pentadiene and methylbutene were decreased. Decarboxylation of lipids may generate such 260 

byproducts [38] which also points toward a shift in energy metabolism. 261 

Our study has strengths and limitations. First, the PTR-MS technology enables a rapid, point-of-262 

care, non-invasive analysis of breath. It requires minimal patient cooperation and time, in 263 

contrast to other explorations (spirometry, sweat test…) including breath sampling on desorption 264 

tubes for offline analysis. Compared to GC-MS, the traditional gold standard for breath analysis, 265 

PTR-MS offers complementary advantages in terms of time efficiency and clinical applicability. 266 

By enabling real-time, accurate VOC quantification, PTR-MS eliminates the need for sample 267 

collection, transportation, storage and preparation thereby reducing the likelihood of bias, 268 

degradation and contamination. It has rapid turn-around time, requirement for consumables is 269 

low and does not require qualified personnel. On the other hand, chromatographic separation and 270 

electronic impact ionisation make GC-MS a powerful method for sensitive detection and 271 

identification of VOCs based on their fragmentation patterns. The main limitations of this proof-272 

of-concept study are related to the limited sample size and to some heterogeneity amongst 273 

participants. This is due to the fact that the other adult patients from our CF centre were already 274 

on ETI at the start of the study thereby preventing comparisons before and after treatment 275 

initiation, and because our high-end, point-of-care real time PTR-MS instrument enables direct 276 

analysis in a single centre only. Furthermore, data collected after a longer treatment period were 277 

not generated. These would help to determine whether the modifications reported here are 278 

enduring (as observed in the lumacaftor/ivacaftor study by Neerincx et al. [13]) and the extent to 279 

which ETI may normalise breath profiles. Nevertheless, the objectives of the present study were 280 

to characterise short-term changes in breath composition after treatment initiation and this cohort 281 

illustrates the variety of possible response profiles, including patients with off-label mutations or 282 

switching from other CFTR modulator therapies.  283 
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Since the majority of patients with CF are already on ETI in Western countries, future validation 284 

studies should target other drugs and/or populations. In this perspective, real-time breath analysis 285 

could become a quick and non-invasive means for monitoring the exposure to CFTR modulators 286 

and bring novel insights into the pathobiology of CF. This approach may also be extended to the 287 

clinical evaluation of new drug candidates for CF or of CFTR modulators in non-CF respiratory 288 

disorders, such as chronic obstructive pulmonary disease (COPD), asthma and non-CF 289 

bronchiectasis [39–41]. 290 

 291 

CONCLUSIONS 292 

The recent advent of CFTR modulators on the market has brought unprecedented clinical 293 

improvements and hopes, but also poorly anticipated challenges, including both short- and long-294 

term monitoring, especially as current tools have limitations for patients with less advanced 295 

disease. Real-time breath analysis may provide a quick and non-invasive alternative to monitor 296 

exposure to CFTR modulators and respiratory improvements, and could bring novel insight into 297 

physiological impact.  298 

 299 

LIST OF ABBREVIATIONS 300 

CF: cystic fibrosis 301 

CFTR: cystic fibrosis transmembrane conductance regulator 302 

COPD: chronic obstructive pulmonary disease 303 

COVID-19: coronavirus disease 304 

ETI: elexacaftor, tezacaftor, ivacaftor combination 305 

FDA: food and drug administration 306 

FEV1: forced expiratory volume in one second 307 

FRT: fisher rat thyroid 308 
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FVC: forced vital capacity 309 

GC-MS: gas chromatography – mass spectrometry 310 

IQR: interquartile range 311 

m/z: mass/charge ratio 312 

PLS-DA: partial least square – discriminant analysis 313 

pp: percentage of predictive values 314 

PTR-MS: proton-transfer reaction – mass spectrometry 315 

PTR-Qi-TOF MS: proton-transfer reaction – quadrupole – time-of-flight mass spectrometer 316 

SCC: sweat chloride concentration 317 

TD-GCxGC-TOF-MS: thermal desorption –  two-dimensional gas chromatography –  time-of-318 

flight mass spectrometry  319 

VOC(s): volatile organic compound(s) 320 
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Table 1. Cohort characteristics and clinical readouts during the study. 

Patient 01 02 03 04 05 06 07 08 09 10 
Sex F M M M M M M M F M 
Age range (y) 26-30 41-45 36-40 31-35 51-55 31-35 21-25 46-50 21-25 66-70 
Genotype F508del/ 

S1255P 
F508del/ 
F508del 

F508del/ 
F508del 

F508del/ 
S945L 

S945L(exon15)
/ I601F 

3120G>A/ 
3120G>A 

N1303K/
N1303K 

F508del/ 
E92K 

F508del/ 
I148T 

F508del/ 
3849+10kbC>T 

CFTR 
modulator 
treatment at V1 

Ivacaftor - - - Ivacaftor - - - - - 

Therapy access Eligible Eligible Eligible Eligible Off-label Off-label Off-label Eligible Eligible Eligible 

Sweat  
chloride 
(mmol/L) 

V1 15 Failed 92 100 24.5 106 96 92.5 100 64 
V2 <10 ND 17 60 28.5 124 93 38 51.5 32.5 

V3 ND ND ND 58.5 <10 100.5 108 21.5 52 44 

ppFEV1 
(%) 

V1 35 54 120 80 24 30 18 67 87 76 
V2 38 66 129 91 25 28 20 74 96 78 

V3 43 80 137 94 25 28 21 77 96 87 

ppFVC 
(%) 

V1 64 61 125 89 63 48 55 88 99 80 
V2 68 94 128 99 51 46 61 91 103 81 

V3 71 103 124 100 52 46 72 94 105 91 

Clinical 
improvement 
at V3 

 Cough 
Dyspnea 

+3kg 

Cough 
Sputum 

Cough 
Sputum 

+5kg 

Fatigue 
Sputum 

+1kg 

 Dyspnea 
Sputum 

+1kg 

Cough 
Dyspnea 
Sputum 

Cough 
Dyspnea 
Sputum 

Cough 
Dyspnea 

+2kg 
Response to ETI Inconclusive Yes Yes Yes Yes No Yes Yes Yes Yes 
ETI 
interruption 

at one 
month 

No No No No at two 
months 

No No No No 

V1: baseline; V2: week 1; V3: month 1 of ETI treatment. ppFEV1: percent predicted in forced expiratory volume in 1 second; ppFVC: percent 

predicted in forced vital capacity; ND = Not done.  
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Table 2. VOCs significantly modified upon ETI treatment and/or correlated with variations in clinical readouts. 

m/z 

Longitudinal 
p-value 

Longitudinal 
slope% Correlation coefficients   

All responders (n=8) 
ppFEV1 ppFVC Sweat chloride   

(V2-V1) (V3-V1) (V2-V1) (V3-V1) (V2-V1) (V3-V1) Ion formula Tentative annotations# 
41.04 0.002** -0.13       [C3H4+H]+ Propadiene, propyne 
41.05 0.017* -0.23        Unknown 1 
43.02 0.014* -0.21 -0.75* -0.39 -0.79* -0.78** 0.67 -0.21  Unknown 2 
45.00 0.021* +0.06       [CO2+H]+ Carbon dioxide 
55.04 0.002** -0.1        Unknown 3 
56.06   -0.54 -0.46 -0.83** -0.59 -0.13 -0.53  Unknown 4 
57.03 0.030* -0.18       [C3H4O+H]+ Propenal 
57.07 0.045* +0.11       [C4H8+H]+ Butene 
58.07   0.72* 0.58 0.46 0.42 -0.72* 0.07  Unknown 5 
61.03 0.021* -0.21 -0.74* -0.27 -0.78* -0.71* 0.66 -0.30 [C2H4O2+H]+ Acetic acid 
61.05 0.008** -0.18 -0.68* -0.17 -0.69* -0.56 0.59 -0.03  Unknown 6 
63.04 0.004** -0.14        Unknown 7 
67.07   0.53 0.53 0.74* 0.67* -0.18 0.76  Unknown 8 
69.07 0.019* -0.12       [C5H8+H]+ Pentadiene 
71.05   -0.56 -0.58 -0.89** -0.89*** 0.70 -0.42 [C4H6O+H]+ Butenal 
71.09 0.037* -0.17 -0.47 -0.60 -0.84** -0.86** 0.22 -0.01 [C5H10+H]+ Methylbutene 
71.11   0.81** 0.66* 0.66 0.40 -0.79* -0.70  Unknown 9 
73.02   0.39 0.43 0.72* 0.03 -0.02 -0.82 [C3H4O2+H]+ Oxopropanal, propanedial 
73.06   -0.51 -0.70 -0.87** -0.84** 0.57 0.52 [C4H8O+H]+ Butanone 
73.09   -0.52 -0.73 -0.86** -0.78** 0.4 0.82  Unknown 10 

74.06 0.005** -0.17 -0.43 -0.56 -0.68* -0.80** 0.45 -0.37 [C3H7NO+H]+ Dimethylformamide 
75.07 0.048* -0.17        Unknown 11 

79.04 0.025* -0.21 -0.74* -0.29 -0.83** -0.69* 0.69 -0.27  Unknown 12 

79.05   -0.61 0.33 -0.69* -0.02 0.20 -0.17 [C6H6+H]+ Benzene 
79.08 0.019* -0.22        Unknown 13 
80.05   -0.53 -0.50 -0.86** -0.31 0.36 0.29 [C5H5N+H]+ Pyridine 
81.07   0.62 -0.50 0.33 -0.20 -0.73* 0.29 [C6H8+H]+ Methylpentenyne, methylcyclopentadiene, 
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cyclohexadiene 

85.10 0.041* +0.06 0.72* 0.76* 0.40 0.53 -0.59 -0.49 [C6H12+H]+ Methylpentene, hexene 
85.13   0.71* 0.64* 0.59 0.73 -0.43 0.20  Unknown 14 
88.08   0.66 0.77 0.99*** 0.3 -0.45 -0.41 [C4H9NO+H]+ 2-methylpropanamide 
89.04 0.047* -0.25 -0.58 -0.34 -0.78* -0.76* 0.42 -0.04 [C4H8S+H]+ Methylsulfanylpropene 
89.06 0.048* -0.28 -0.55 -0.59 -0.89** -0.89*** 0.62 -0.32 [C4H8O2+H]+ Methylpropanoic acid, ethyl acetate 

89.09   -0.55 -0.63 -0.88** -0.88*** 0.50 -0.04 [C5H12O+H]+ Pentanol 
99.12   0.68* 0.67* 0.43 0.59 -0.51 0.17 [C7H14+H]+ Dimethylpentene, heptene 
107.08   -0.56 -0.49 -0.85** -0.80** 0.44 0.13 [C8H10+H]+ Ethylbenzene 
113.06   -0.74* -0.17 -0.41 -0.30 0.70 -0.28  Unknown 15 

113.13   0.84** 0.41 0.62 0.40 -0.47 0.06 [C8H16+H]+ 
Dimethylhexene, methylheptene, octene, 
methylmethylidenehexane, methylideneheptane 

119.09 0.012* -0.14       [C9H10+H]+ Propenylbenzene, ethenylmethylbenzene 
127.15   0.74* 0.36 0.41 0.23 -0.42 -0.14 [C9H18+H]+ Nonene 
135.11   0.66 0.82 0.85** 0.57 -0.45 -0.28 [C6H14O3+H]+ Ethoxyethoxyethanol 
137.13   0.60 -0.68 0.28 -0.46 -0.72* 0.24 [C10H16+H]+ Dimethyloctatriene 
139.08 0.047* -0.14       [C8H10O2+H]+ 2-phenoxyethanol 
139.15   0.60 0.54 0.85** 0.49 -0.68 -0.61 [C10H18+H]+ Dimethyloctadiene,  
177.16   -0.49 -0.03 -0.69* 0.06 0.30 0.38 [C13H20+H]+ Heptylbenzene 

p-value obtained with a mixed model built with patients responding to ETI; longitudinal slope indicates the direction of the evolution; 

correlations are calculated between variations in VOC concentrations (between V1 and V2 or between V1 and V3) and variations in clinical 

readouts; #tentative chemical identification is based on exact mass match with the human breathomics database [42], likelihood of compound 

ionisation by proton transfer reaction [37], and detection by TD-GCxGC-MS in the breath of healthy adults and/or of children with CF (VOCs in 

bold); *p-value<0.05; **p-value<0.01; ***p-value<0.001.
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FIGURE LEGENDS 

 

Figure 1. PLS-DA showing the distribution of breath samples collected from responder patients 

at baseline in red (V1), after one week in green (V2), and one month of ETI treatment in blue 

(V3); dashed lines link samples taken from the same patient; * indicates the patient with chronic 

hepatopathy; shaded areas represent confidence intervals (95%); R2=0.997; Q2=0.187. 

 

Figure 2. Longitudinal evolution from baseline (V1), one week (V2), and one month of 

treatment (V3), of four VOCs significantly modified in the breath of responder patients upon ETI 

initiation, compared to the level measured in healthy volunteers (normalised intensities) (A). 

Corresponding graphs illustrating correlations (Pearson) between variations in VOCs and 

variations in ppFVC or ppFEV1 between V1 and V2, and between V1 and V3, are shown (B). 

*p-value<0.05; **p-value<0.01; ***p-value<0.001; ****p-value<0.0001; ns = not significant. 
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SUPPLEMENTARY INFORMATION 

Table S1. List of concomitant treatments and bronchial exacerbations during the study. 

Patients Chronic anti-infectious treatments Acute respiratory infections and 
other antibiotics received during the 
study 

01 Azithomycin, oral  
Tobramycine and aztreonam, inhaled 

COVID-19, treatment with amoxicillin 
and ciprofloxacin 

02 Azithromycin, oral  
03 None None 
04 None None 
05 Azithromycin, oral 

Pristinamycin and amoxicillin-
calvulanic acid, oral 

 

06 Azithromycin, oral  
07 Azithromycin, oral 

Tobramycin and colimycin, inhaled 
COVID-19, treatment with ceftazidim 
and docycyline 

08 Azithromycin, oral  
09 None None 
10 Azithromycin, oral Viral syndrom 
 

Figure S1. Principal component analysis (PCA) representing the breath samples collected from 

each patient at baseline (V1), after one week (V2) and one month of ETI treatment (V3). 

 

Figure S2. Heatmap of the log-transformed concentrations (ppb) of the 108 VOCs detected in 

the breath of the 10 patients at V1/V2/V3. 

 

Figure S3. Longitudinal evolution from baseline (V1), one week (V2), and one month of 

treatment (V3), of additional VOCs, significantly modified in the breath of responder patients 

upon ETI initiation, compared to the level measured in healthy volunteers (normalised 

intensities). *p-value<0.05; **p-value<0.01; ***p-value<0.001; ****p-value<0.0001; ns = not 

significant. 
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