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Abstract 

Background and Objectives: Isolated Rapid Eye Movement (REM) sleep behavior disorder (iRBD) is 

a sleep disorder associated with neurodegenerative diseases such as Parkinson's disease and 

dementia with Lewy bodies. Predicting which iRBD patients will phenoconvert to 

neurodegenerative diseases is crucial for prognosis and management. The objective of this study 

is to develop a machine learning model using clinical markers to predict phenoconversion in 

patients with RBD. 

Methods: Analyzing a cohort of 178 iRBD patients over a median follow-up period of 3.6 years, 

during which 30 patients converted to neurodegenerative conditions, we leveraged an 

comprehensive dataset encompassing demographics, medication history, cognitive assessments, 

sleep quality, autonomic symptoms, and parkinsonian signs. We explored a variety of feature 

selection methods and survival models. Additionally, separate models to predict the subtype of 

photoconversion—whether motor-first or cognition-first—were developed. 

Results: The extreme gradient boosting survival embeddings-Kaplan neighbors (XGBSE-KN) model 

demonstrated the best performance, achieving a concordance index of 0.823 and integrated Brier 

score of 0.123 on 10-fold cross-validation. Explainable AI methods provided insights into 

prediction rationales and key risk factors including age, RBDQ-KR factor 2 (behavioral factors), 

weight, antidepressant, coffee use, and UPDRS III excluding tremor score. For subtype 

classification, the RandomForestClassifier utilizing three features (PSQI-TST, MoCA, and age), 

emerged as the most effective, achieving a Matthews Correlation Coefficient of 0.697 in 100 

repeated 5-fold cross-validations. These models have been deployed on a server for physician 

access.  

Discussion: These models can aid prognosis and enable personalized management in RBD 

patients, potentially improving patient care and outcomes. While these findings are promising, 

further external validation of the models is necessary to confirm their efficacy and reliability in 

clinical settings. Future research should focus on incorporating additional biomarkers and 

exploring the models' performance in larger, diverse cohorts. 
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Introduction 

Isolated rapid eye movement (REM) behavior disorder (iRBD) is one of the early sign of alpha-

synuclein-mediated neurodegenerative diseases.1–4 The progression from iRBD to neurodegenerative 

diseases such as Parkinson’s disease and dementia with Lewy bodies varies from months to decades, 

with an annual conversion rate of about 6% and around 75% within 12 years of diagnosis.5,6 

Identifying those at higher risk of such neurodegenerative diseases is essential not only for 

advancing neuroprotective trials but also for patient life planning and management, offering 

opportunities for early intervention and personalized patient management. 

Prior research has highlighted several risk factors associated with the phenoconversion of patients 

with iRBD to neurodegenerative diseases. Longitudinal studies have identified factors that increase 

the risk, including advanced age, the presence of hyposmia, abnormalities in color vision, mild signs 

of parkinsonism, slight cognitive decline, disturbances in autonomic functions, impairment in 

nigrostriatal dopaminergic pathways, and the extent of REM sleep without atonia (RSWA) loss. These 

insights have been crucial for identifying individuals with iRBD who are at an elevated risk of 

developing neurodegenerative conditions. 5,6 However, these findings are often limited in their 

application in clinical settings due to resource constraints or the rarity of certain features. 

Additionally, while previous studies have identified risk factors associated with phenoconversion, 

they have not successfully translated these findings into personalized, actionable prediction models 

for clinical use.  

Prognostic counseling in iRBD patients is crucial for managing future health risks, and enabling early 

interventions, while also providing necessary psychological support. A previous study showed that 

most of the patients expressed a strong preference for detailed prognostic information.7 However, 

it is often challenging to discuss prognostication, given the uncertainty in accurate personalized 

prediction, and the lack of a standardized approach.8 This underscores the urgent need for tools 

that can support prognostication. 

To address these issues, our study leverages machine learning for predicting phenoconversion time 

and subtype in iRBD using clinical markers, thereby providing personalized, actionable prediction 

models. These models, developed to overcome the limitations of traditional survival analysis 

methods like the Cox Proportional Hazards model (CoxPH), offer an advanced approach to clinical 

decision-making. CoxPH, while theoretically solid, is limited by its reliance on linear feature 

interactions and its inadequacy in handling multicollinearity or large-scale, high-dimensional 

datasets. The resultant models not only aid in prognosis but also enhance clinical decision-making, 

providing insights into disease progression tailored to individual patient profiles. 

This study aims to develop and implement machine learning-based models for predicting both the 

timing and subtype of phenoconversion in patients with iRBD. By utilizing clinical variables, we aim 

to bridge the gap between research and practice, offering a web-based tool for clinicians to facilitate 
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early identification of high-risk patients and enable timely, personalized medical care. 

 

Methods 

Study Population and Data Collection 

Patients were recruited from the rapid eye movement (REM) sleep behavior disorder (RBD) registry 

at the Seoul National University Hospital between April 2016 and May 2022. Participants underwent 

diagnostic overnight video-polysomnography (vPSG) and were enrolled upon meeting International 

Classification of Sleep Disorders, 3rd edition (ICSD-3) criteria for isolated RBD. At recruitment, two 

neurologists specializing in sleep medicine (JK) and movement disorders (KH) performed 

comprehensive evaluations to exclude secondary causes of RBD or comorbid neurodegenerative 

diseases, or major medical illnesses. 

Individuals with any preexisting neurodegenerative diseases like Parkinson's disease, dementia with 

Lewy bodies, or multiple system atrophy were excluded from the study. In addition, the study's 

exclusion criteria also included those with a history of neurological disorders like epilepsy or stroke, 

past psychiatric illnesses, head trauma, and recent use of medications that could affect sleep or 

motor functions. Severe obstructive sleep apnea, defined as having an apnea-hypopnea index of 30 

or higher on baseline video-polysomnography (vPSG), was another key exclusion factor. Moreover, 

individuals with serious medical comorbidities were not considered for enrollment. Participants who 

met all the eligibility criteria provided written informed consent before being included in the study, 

which was approved by the Institutional Review Board of Seoul National University Hospital (IRB 

No.: 1708-169-883). 

 

Clinical evaluation 

Various demographic, medical history, and clinical evaluation data were collected from participants. 

Demographic variables included age, sex, height, weight, and body mass index (BMI). Past medical 

history encompassed medical conditions, psychiatric illness, antidepressant use, alcohol use, 

smoking, pesticide exposure, solvent exposure, and first-degree relatives with Parkinson’s disease. 

Clinical assessments evaluated olfactory loss, prior injury, daily caffeine and coffee consumption, 

and years of education. We evaluated olfactory loss using the Korean Version of the Sniffin’ Sticks 

test (KVSS). 9 RBD symptom frequency and severity were measured with the REM Sleep Behavior 

Disorder Questionnaire (RBDQ-KR).10 Cognitive functions were evaluated using the Mini-Mental 

State Exam (MMSE), Montreal Cognitive Assessment (MoCA).11,12 Sleep quality and daytime 

sleepiness assessments included Epworth Sleepiness Scale (ESS), Insomnia Severity Index (ISI), and 

Pittsburgh Sleep Quality Index (PSQI).13–15 We evaluated the mental health of the participants 

through the Geriatric Depression Scale (GDS).16 Autonomic dysfunction was quantified by the 
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SCOPA-AUT scale including GI, urinary, cardiovascular, and sexual domains.17 Motor performance 

was graded with the Movement Disorders Society-Unified Parkinson's Disease Rating Scale (MDS-

UPDRS) Part III.18 Phenoconversion in iRBD patients was assessed every 6 to 12 months by the same 

two neurologists (JK and KH).19–21 

 

Data Preparation and Imputation for Model Predictors 

Variables with greater than 30 percent missing values were excluded from the analysis. For the 

remaining variables, we employed the Multiple Imputation by Chained Equations (MICE) 

methodology to impute missing values, using logistic regression for binary variables, polynomial 

logistic regression for categorical variables, and Predictive Mean Matching (PMM) for continuous 

variables. Nominal variables were encoded using one-hot encoding or binary encoding. Ordinal 

variables were converted to numeric values using label encoding. Only baseline measurements were 

utilized as model predictors. 

 

Model Development – Prediction of Phenoconversion Time 

Four feature selection techniques were applied: univariate filtering, L1 regularization, recursive 

feature elimination (RFE), and SelectKBest (SKB). RFE and SKB utilized permutation importance based 

on random survival forest 22, and gradient boosting Cox models, with performance measured by 

concordance index and integrated Brier score (IBS). When the feature set maximizing concordance 

index differed from the set maximizing IBS, each subset was evaluated separately. The concordance 

index, or C-index, measures the predictive accuracy of the model, reflecting the proportion of patient 

pairs whose predicted survival outcomes are correctly ordered by the model. It ranges from 0.5 (no 

better than chance) to 1.0 (perfect prediction). The integrated Brier score (IBS) quantifies the 

accuracy of survival probabilities, where a lower score indicates more accurate predictions. The C-

index reflects how well the model ranks the survival times, while the IBS measures the calibration 

and refinement of the survival probabilities. Only the feature sets that maximized these metrics were 

reported and used.  

Survival analysis machine learning models were developed and rigorously evaluated using 10-fold 

cross-validation to ensure robustness and generalizability. These models included elastic net, 

accelerated failure time models, random survival forests, survival tree, gradient boosting machines 

(GBM), and Extreme Gradient Boosting Survival Embeddings (XGBSE). Hyperparameter optimization 

for each model was conducted using Bayesian optimization. To compare the performance of the 

developed machine learning models in survival analysis, we adopted the corrected resampled paired 

t-test method as proposed by Nadeau and Bengio. This method is specifically designed to address 

the dependencies that may exist in datasets due to repeated measures or resampling techniques. 

By applying this correction, we ensured that our statistical inferences about the model performances 
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were more robust and reliable.23 For multiple testing correction , we incorporated the Benjamini-

Hochberg (BH) procedure.  

All analyses were conducted using Python 3.10.9, with key libraries including scikit-learn (v.1.1.3), 

scikit-survival (v.0.19.0), lifelines (v.0.27.4), optuna (v.3.2.0), pandas (v1.5.3), numpy (v1.22.3), and 

xgboost-survival-embeddings or XGBSE (v0.2.3). Additionally, matplotlib (v3.7.1), and seaborn 

(v0.11.2) were used for data visualization. 

 

Model Development – Prediction of Phenoconversion Subtype 

Our investigation expanded to include the development of predictive models for the subtype of 

phenoconversion in iRBD, differentiating between 'motor-first' subtypes, such as Parkinson's Disease 

(PD) and Multiple System Atrophy (MSA), and the 'cognition-first' subtype, exclusively Dementia 

with Lewy Bodies (DLB), noted for its initial cognitive decline. We applied univariable analysis for 

initial feature selection to identify predictors differentiating between 'motor-first' and 'cognition-

first' subtypes. To capture non-linear relationships, we utilized the Minimum-redundancy-maximum-

relevance (mRMR) feature selection method with Maximal Information Coefficient (MIC) for 

relevance assessment.24,25 The optimal number of features was determined by assessing the Random 

Forest model's performance, refining our model to effectively predict RBD subtypes. We developed 

eleven classifiers using various machine learning algorithms including Random Forest, Support 

Vector Machines, and Multi-layer Perceptron. To tackle the challenges of the small and imbalanced 

dataset in our RBD subtype prediction model, we integrated the Synthetic Minority Over-sampling 

Technique (SMOTE) and the Self-Training method, a semi-supervised learning approach.26,27 SMOTE 

was used to balance the class distribution, while Self-Training leveraged unlabeled data to augment 

the training dataset, enhancing the overall effectiveness of our predictive models. Censored data 

were used as unlabeled data in the Self Training. For our subtype prediction model in REM Sleep 

Behavior Disorder (RBD) with only 30 patients, we used a 100 repeated 5-fold Stratified Cross-

Validation due to the small and imbalanced nature of the dataset. This approach was chosen over 

a 10-fold CV to obtain more stable and reliable estimates by increasing the number of repetitions 

and ensuring that each data point was adequately represented in both the training and validation 

sets. For statistical analysis, we applied the correction method by Bouckaert and Frank (2004) and 

used the R library CorrectR. For multiple testing correction, we incorporated the Benjamini-Hochberg 

(BH) procedure. 

The Matthews Correlation Coefficient (MCC) was chosen as the primary evaluation metric because 

of its robustness for binary classification, especially with imbalanced class distributions. MCC scores 

range from -1 to 1, with 1 indicating perfect prediction, 0 representing random guessing, and -1 

meaning total disagreement. Along with MCC, several secondary performance metrics were also 

calculated, including F1 score, precision, recall, and accuracy. Separately, the Receiver Operating 

Characteristic Area Under the Curve (ROC-AUC) was calculated using a leave-pair-out cross-
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validation approach. This method was specifically chosen for its ability to minimize bias in the 

evaluation of the AUC, particularly important in studies with smaller sample sizes.28 All analyses 

were conducted using Python 3.10.9, with key libraries including scikit-learn (v.1.1.3), xgboost (v1.7.5), 

optuna (v.3.2.0), pandas (v1.5.3), and numpy (v1.22.3). Additionally, matplotlib (v3.7.1), and seaborn 

(v0.11.2) were used for data visualization. 

 

Model Explanation and Deployment 

Kernel SHAP and time varying SHAP methods provided model explanations by scoring feature 

impact. For the phenoconversion time prediction model, Kernel SHAP (SHapley Additive 

exPlanations) was employed to interpret the contributions of individual features. 29 Additionally, we 

incorporated SurvSHAP, a novel method for time-varying feature importance in survival models, 

which allowed for a more dynamic understanding of how different variables influence the risk of 

phenoconversion over time.30  

The generated model was deployed as a web application for facilitating clinician use. An overview 

of the study design and patient selection are presented in Supplementary Figure 1. 

 

Results 

Study Population 

A total of 417 patients from the sleep center's RBD registry were approached for the study. Following 

exclusions, 178 patients were eligible and included for subsequent analysis (Figure 1). Of these 178 

participants, 30 developed a neurodegenerative disease during the median follow-up period of 3.6 

years. The risk for developing neurodegenerative diseases was 4.81% at two years follow-up, 18.34% 

at four years and 23.31% at 6 years (Figure 2). Among the patients who phenoconverted, Parkinson's 

Disease (PD) was the most prevalent diagnosis, accounting for 50% of cases (15 patients). This was 

followed by Dementia with Lewy Bodies (DLB), representing 30% of conversions (9 patients), and 

Multiple System Atrophy-Cerebellar type (MSA-C), comprising 20% (6 patients). The remaining 148 

patients did not develop any neurodegenerative disease within the study period and were 

categorized as still disease-free. 

 

Clinical and Demographic Characteristics 

Each prodromal marker was analyzed as a continuous variable or a categorical variable, as 

appropriate. To assess the risk associated with each factor, hazard ratios (HRs) were calculated using 

Cox Proportional Hazards (CoxPH) modeling. This approach was employed for both unadjusted and 

age- and sex-adjusted analyses where applicable. Several factors emerged as significant predictors 
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of phenoconversion. These included age, with an HR of 1.09 (95% CI [1.03-1.15]); use of 

antidepressants, HR 3.69 (95% CI [1.62-8.44]); solvent exposure, HR 2.73 (95% CI [1.24-5.99]); and 

caffeine use, HR 0.42 (95% CI [0.20-0.90]). Furthermore, components of the Pittsburgh Sleep Quality 

Index, specifically PSQI-C3 (sleep duration) and PSQI-C4 (sleep efficiency), yielded HRs of 0.61 (95% 

CI [0.41-0.92]) and 0.64 (95% CI [0.44-0.92]), respectively. Motor Examination (Part III) of the 

Movement Disorders Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS), excluding 

tremor scores, also proved significant with an HR of 1.32 (95% CI [1.07-1.63]). The most taken 

antidepressant was escitalopram (n=11), followed by nortriptyline (n=4), paroxetine (n=2), and 

agomelatine (n=1). 

We analyzed the characteristics of RBD patients based on the subtype of phenoconversion: 

cognition-first (n=9) and motor-first (n=21). Significant differences were noted between the groups. 

Age was a distinguishing factor; the cognition-first group was significantly older (cognition-first: 

75.0 years versus. motor-first: 67.0 years; p=0.02). Differential performance on cognitive assessments 

was also evident; those in the cognition-first group scored lower on both MMSE (cognition-first: 

26.0 versus motor-first: 28.0; p=0.01), and MoCA (cognition-first: 23.0 versus motor-first: 26.0; 

p=0.03). Furthermore, an intriguing difference was observed in the Total Sleep Time (TST) 

component of the Pittsburgh Sleep Quality Index (PSQI), with the cognition-first group experiencing 

significantly longer sleep durations (cognition-first: 8.4 hours versus motor-first: 7.0 hours; p=0.03). 

The PSQI-C3 also addresses total sleep time, but there were no significant differences. The lack of 

a difference is likely due to the fact that the median PSSI-TST for the cog-first group was 8.4 hours 

and 7.0 for motor-first, with the majority being over 7 hours, and the PSQI-C3 is scored in such a 

way that total sleep time below 7 hours is associated with higher scores. 

 

Phenoconversion Time Prediction 

The evaluation of phenoconversion prediction models was conducted using four feature selection 

methods, and 10 models with 10-fold cross validation (Table 3, 4, Supplementary Table 1). In our 

analysis of phenoconversion time prediction models, the XGBSE-KN model, featuring predictors 

selected by Recursive Feature Elimination with Random Survival Forest (RFE-RSF), emerged as the 

most effective, achieving a C-index of 0.823, indicating a high degree of accuracy in predicting the 

correct sequence of patient phenoconversion events, and an Integrated Brier Score (IBS) of 0.123. 

(Supplementary Figure 2A, 3A) 

The features selected by RFE-RSF included weight, UPDRS III excluding tremor (the Unified 

Parkinson’s Disease Rating Scale score excluding tremor components), antidepressant use, RBDQ-

KR factor 2 (capturing behavioral aspects from the REM Sleep Behavior Disorder Questionnaire), 

coffee use, and age.  

SHAP analysis provided valuable insights into the relationships between features and 
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phenoconversion risk. Features such as Age, Antidepressant use, UPDRS III excluding tremor, and 

Coffee use, which were significant in univariable analysis, showed linear relationships with 

phenoconversion risk (Supplementary Figure 7). An increase in values for Age, Antidepressant use, 

and UPDRS III excluding tremor corresponded to a higher risk of phenoconversion. Conversely, 

higher Coffee use, a protective factor, was associated with lower SHAP values, indicating a reduction 

in risk. Body weight and RBDQ-KR factor 2 were not identified as significant factors in the univariable 

analysis. When analyzing SHAP values, they appeared to have a non-linear pattern with 

phenoconversion risk. The risk associated with Weight was elevated in the 55-65kg range. RBDQ-

KR Factor 2 displayed a complex pattern, with increased risk at scores below 20 and between 35-

45. When evaluating the mean absolute SHAP values, which indicate the overall impact of each 

feature on the model's output, Age was found to be the most influential factor. This was followed, 

in order of importance, by RBDQ-KR factor 2, Weight, Antidepressant use, Coffee use, and UPDRS 

III excluding tremor. (Figure 3) These results highlight the significant role of age as a predictor in 

the model and the varying degrees of influence of other factors. 

 

Phenoconversion Subtype Prediction 

In addition to developing a model for predicting the time to phenoconversion, we also focused on 

distinguishing the subtype of phenoconversion—specifically, whether patients would exhibit a 

motor-first or cognition-first progression. We identified several clinical indicators that were 

significantly different between motor-first and cognition-first in a univariable analysis, including age, 

Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), and the Pittsburgh 

Sleep Quality Index-Total Sleep Time (PSQI-TST). In assessing MIC values, PSQI-TST and MMSE 

showed significantly high contributions (Supplementary Table 2). We then utilized the mRMR 

method for optimal feature selection resulting in PSQI-TST, MoCA, and age. Additionally, the Boruta 

algorithm was implemented, affirming the same set of features as identified by mRMR. 

We developed ten classifiers to predict phenoconversion subtypes, utilizing univariable feature set 

and mRMR feature set, and tried enhancing their performance with SMOTE and Self-Training. Among 

these, the RandomForestClassifier (RF) showed the best performance across both feature sets, 

particularly with mRMR, achieving the highest MCC value of 0.697 through 100 repeated 5-fold 

stratified cross-validation (Supplementary Figure 4, and 5). RF also excelled in metrics like Macro F1, 

Accuracy, Precision, Recall, Balanced Accuracy, Cohen's Kappa, and LPOCV AUC, demonstrating its 

robustness. 

When using RF and mRFR feature sets to get SHAP values, PSQI-TST was the most important, 

followed by MoCA and Age (Supplementary Figure 6). PSQI-TST of less than 8 hours contributed 

to prediction to motor-first, MoCA of 25 or more and Age of 70 or less contributed to prediction 

to motor-first (Supplementary Figure 8). 
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Web Deployment 

A user-friendly web application was developed for physician access, which included both models: 

the XGBSE-KN model for phenoconversion time and the RF model for subtype prediction. The 

application offers individualized predictions and rationales based on input characteristics, aiding 

physicians in making informed decisions about patient management and prognosis. (Supplementary 

Figure 9). To demonstrate the use case of the model, we generated a report using actual patient 

cases, which is shown in Figure 4. 

 

Discussion 

In this study, we developed machine learning models to predict phenoconversion time and subtype 

in patients with iRBD. Leveraging a relatively large patient cohort with comprehensive clinical 

markers, our findings provided important insights into phenoconversion predictors, and increased 

confidence in the generated model. 

The XGBSE-KN model, using features selected through the RFE-RSF method, was the most effective 

model for phenoconversion time prediction, achieving an excellent concordance index of 0.823 and 

a good Integrated Brier Score (IBS) of 0.123. For subtype classification, the RF demonstrated the 

highest performance, with a good to very good Matthews Correlation Coefficient (MCC) of 0.697. 

These results underscore the potential of advanced machine learning techniques in accurately 

predicting the prognosis in patients with RBD. 

Our research encompassed a cohort of 178 patients with iRBD, utilizing an extensive array of clinical 

variables to enhance the study's reliability and value. Over a median follow-up duration of 3.6 years, 

30 individuals progressed to a neurodegenerative condition. Our study identified several critical 

predictors of phenoconversion, including age, antidepressant use, solvent exposure, and caffeine 

consumption. Additionally, components of the PSQI — PSQI-C3 (sleep duration) and PSQI-C4 (sleep 

efficiency), and MDS-UPDRS part III, excluding tremor scores, were found to be significant.  

Old age was identified as a significant predictor, which aligns with existing research suggesting a 

higher vulnerability to neurodegenerative diseases as one ages. Solvent exposure is a known risk 

factor for Parkinson's disease. The coffee is also known for protective effect against Parkinson’s 

disease. In our cohort, solvent exposure increased the risk of phenoconversion, and coffee 

consumption had a protective relationship with phenoconversion. This was parallel to that observed 

in Parkinson's disease. In our study, we also found that antidepressant use at the baseline evaluation 

was a significant risk factor for phenoconversion in patients with Rapid Eye Movement (REM) Sleep 

Behavior Disorder (RBD). Antidepressant use has been associated with symptoms of RBD. Patients 

with iRBD who take antidepressants show significant abnormalities in neurodegenerative markers, 
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such as olfaction, color vision, and motor function. A previous study using 18F-DOPA showed that 

18F-DOPA uptake was significantly lower in patients with co-morbid RBD and MDD compared to 

patients taking medication for MDD. It suggests that the development of RBD symptoms in MDD 

patients is not simply an antidepressant-induced condition, but an early stage of synucleinopathic 

neurodegeneration. 31 

Selected features for the final model were slightly different from the features identified with 

statistical methods. Age, Antidepressant use, UPDRS III excluding tremor, and Coffee use were 

identified in univariable analysis and the SHAP analysis revealed the linear relationship with the 

phenoconversion risk. On the other hand, RBDQ-KR Factor 2, Weight were not identified with the 

statistical methods and SHAP analysis revealed non-linear relationships with the phenoconversion 

risk. This illustrates the capability of machine learning models to uncover intricate relationships that 

traditional statistical methods might overlook, especially in large variable sets. It might be possible 

to identify these non-linear relationship by using strategies like stratifying the variables, but it would 

not be easy to find these relationships among many variables without missing them. 

Our approach also addresses the limitations of traditional survival analysis methods like CoxPH. 

Many studies with survival analyses use the CoxPH model for its solid theoretical basis.32 However, 

its effectiveness is constrained by its reliance on linear feature interactions and its incompatibility 

with data exhibiting multicollinearity or possessing large-scale, high-dimensional feature sets.  

In examining the subtypes of phenoconversion, Cognition-first patients had lower baseline MMSE 

and MoCA scores, which was confirmed by previous studies.5 The fact that the Total Sleep Time 

(TST) component of the Pittsburgh Sleep Quality Index (PSQI-TST) was longer in the cognition-first 

group is an intriguing finding. Typically, cognitive decline is often associated with sleep disturbances 

or reduced total sleep time. A study comparing PSG findings in PD and DLB found that DLB had 

lower sleep efficiency, total sleep time, and REM sleep duration, and higher sleep latency and 

WASO.33 This longer PSQI-TST in the cognition-first group might indicate a compensatory 

mechanism where the body requires more rest due to cognitive stresses, or it could be reflective of 

a less efficient sleep, where despite longer durations, the quality or the restorative aspects of sleep 

are compromised. In Addition, although PSQI-TST is typically used to measure the actual time spent 

sleeping, it is possible that patients might not exclude periods of WASO, thereby reporting longer 

sleep durations in the PSQI-TST, even though their effective sleep time might be reduced due to 

frequent awakenings or disturbances. This is supported by a previous large study comparing 

polysomnography, actigraphy, and sleep diaries, which found that sleep diaries tend to understate 

sleep latency and WASO, and exaggerate TIB, TST, and SE.34 

We found that the cognition-first group was older than the motor-first group at the baseline. Aging 

is a significant risk factor for cognitive decline. The older population is naturally more susceptible 

to cognitive impairments due to various factors, including comorbidities, reduced cognitive reserve, 

and age-related changes in brain structure and function. Therefore, older patients with iRBD may 
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be more likely to manifest cognitive symptoms first due to their greater baseline vulnerability to 

cognitive decline. 

To capture non-linear relationships between subtypes and variables, we utilized MIC. However, in 

subtype classification, it was hard to find such non-linear features. Small sample sizes may have 

hindered the ability to find these factors, or perhaps none of the clinical metrics we collected have 

a non-linear relationship. 

Another critical aspect of this study was the development of a user-friendly web application for 

physicians, facilitating the application of these complex machine learning models in a clinical setting. 

This approach underscores the potential of machine learning in providing more accurate and 

personalized insights in medical practice.  

Limitations 

Our study has some limitations. One of the limitations of this study is that it was conducted at a 

single center without an external validation data. While this approach enables consistent protocols 

and data collection, it reduces the generalizability of the findings. Additionally, the sample size, 

while relatively large for a single-center study, is relatively small, which may also reduce 

generalizability. This limitation is particularly evident in our subtype prediction model, where only 

30 eligible patients were included, and merely 3 features were selected, challenging the achievement 

of higher accuracy. In the field of machine learning, larger datasets may provide more robust and 

generalizable findings. A limited sample size can restrict the model’s ability to capture more complex 

or subtle relationships within the data. Given a small sample size and a large number of predictors, 

there is an inherent potential of overfitting the models. As a consequence, the representativeness 

of the model and findings may be confined to similar environments or populations. While 

techniques such as cross-validation are used to mitigate this risk, it remains a concern in studies 

with smaller datasets. 

Another limitation is the relatively short follow-up period. Since neurodegenerative diseases often 

progress slowly, a longer follow-up duration would provide more comprehensive data on the 

phenoconversion process and the progression of symptoms over an extended period. 

Although we collected comprehensive data, the scope of data collected may not encompass all 

potential factors influencing phenoconversion in iRBD. There are numerous variables, both known 

and unknown, that could play a role in the progression of neurodegenerative diseases in patients 

with iRBD. Excluding certain environmental, genetic, or lifestyle factors not captured in the study 

might have led to an incomplete picture of the phenoconversion process. 

These limitations highlight the need for further research in more diverse and larger populations, 

possibly through multicenter studies. Expanding data collection and using larger datasets could 

improve understanding of iRBD phenoconversion. Additionally, it would be necessary to validate 
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the predictive models in external cohorts to assess their generalizability and robustness in different 

settings. 

 

Conclusions 

This study has developed a practical and accurate predictive model for iRBD patients, providing 

valuable insights for clinical treatment planning and prognosis. It highlights the significant role of 

machine learning in enhancing the precision and personalization of medical care, particularly in the 

context of predicting phenoconversion in iRBD patients. 
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Figure legends 

Figure 1. Flow-Chart of Patient Selection 

Figure 2. Kaplan-Meier Estimate of the Cohort 

Figure 3. Two Plots for a Time Prediction Model: (A) Beeswarm Plot of SHAP Values for Each Feature 

(B) Bar Plot of Mean Absolute SHAP Values, Sorting Features by Importance 

Figure 4. Illustrative Examples of Reports Utilizing Patient Data  

(A) This report illustrates the case of a patient in their 70s with a seven-year history of dream 

enactment behaviors. Initially presenting with an MDS-UPDRS-III score of 0 and a MoCA-K score in 

the normal range, the patient also showed signs of mild depression (HADS-depression score of 9, 

GDS-K of 14). Over a period of 3.9 years, the patient developed Parkinson's disease. The model's 

predicted survival function suggests a progressive decline in survival probability free of 

phenoconversion, dropping significantly by the fourth year. SHAP analysis identifies the patient's 

age, lack of antidepressant use, and other factors as influential in the patient's rapid 

phenoconversion to a motor-first subtype, which is supported by the actual clinical outcome. The 

SHAP analysis, factoring in age, MoCA score, and PSQI-TST score, reinforces the motor-first subtype 

prediction. 

(B) This report concerns a patient in their 70s who developed dream enactment behavior three 

years before the RBD diagnosis. The patient presented with an initial MDS-UPDRS III score of 0 and 

a MoCA-K score in the mild cognitive impairment range, alongside a decreased sense of smell as 

indicated by a KVSS2 score of 16. After 6.2 years, the patient remains free from neurodegenerative 

disease. The model's survival prediction suggests a high likelihood of remaining phenoconversion-

free (90% at 6 years). SurvSHAP analysis denotes the patient's age as a risk factor and RBDQ-KR 

Factor 2 as protective against phenoconversion. The model's subtype prediction leans towards a 

cognition-first manifestation. SHAP analysis identifies the patient's age and PSQI-TST score as 

significant factors in this subtype prediction.  
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Table 1. Baseline predictors of neurodegenerative phenoconversion in iRBD 

Variable  Developed disease  

(n = 30) 

Still disease free 

(n = 148) 

Unadjusted HR  

(95%CI) 

HR, adjusted 

(95% CI) 

Age  69.5 (65.0-74.0) 64.0 (60.0-70.25) 1.09 (1.03-1.15) 1.09 (1.03-1.15) * 

Sex, % male 56.7% 63.5% 0.70 (0.34-1.45) 0.78 (0.38-1.61) * 

Height, cm 163.1 (156.8-166.8) 165.0 (158.0-170.0) 0.97 (0.94-1.01) 1.00 (0.94-1.07) 

Weight, kg 62.0 (56.2-67.7) 64.0 (59.0-71.0) 0.97 (0.94-1.01) 0.99 (0.94-1.03) 

BMI, kg/m2 23.5 (22.4-24.7) 24.4 (22.5-25.7) 0.95 (0.83-1.08) 0.95 (0.83-1.08) 

RLS  6.7% 6.1% 0.97 (0.23-4.09) 1.05 (0.25-4.43) 

Diabetes  16.7% 16.2% 1.09 (0.42-2.85) 0.94 (0.36-2.48) 

Melatonin 56.7% 64.9% 0.59 (0.28-1.23) 0.47 (0.22-1.00) 

Antidepressants 26.7% 7.4% 3.60 (1.60-8.11) 3.69 (1.62-8.44) 

Alcohol use   0.74 (0.50-1.10) 0.75 (0.49-1.15) 

 Non-drinker 66.7% 50.7%   

 1-2 times/month 10.0% 23.0%   

 1-2 times/week 20.0% 17.6%   

 3-4 times/week 3.3% 6.8%   

 Daily 0.0% 2.0%   
Smoking     

 Never 66.7% 51.4% 1 1 

 Current 6.7% 10.1% 0.47 (0.11-2.03) 0.68 (0.14-3.25) 

 Former 26.7% 38.5% 0.54 (0.24-1.24) 0.49 (0.18-1.32) 

Pesticide exposure 20.0% 14.2% 1.67 (0.68-4.10) 1.41 (0.56-3.55) 

Solvent exposure 30.0% 14.2% 2.66 (1.22-5.82) 2.73 (1.24-5.99) 

Olfactory loss † 53.3% 60.8% 0.90 (0.44-1.85) 0.64 (0.29-1.42) 

Injury 0.86 (0.47-1.58) 0.83 (0.45-1.52) 

 None 63.3% 57.4%   

 Minor 30.0% 35.8%   

 Major 6.7% 6.8%   
Caffeine use ‡ 63.3% 83.1% 0.43 (0.21-0.91) 0.42 (0.20-0.90) 

Daily coffee consumption ‡ 1.0 (0.0-2.0) 1.0 (1.0-2.0) 0.83 (0.60-1.15) 0.91 (0.63-1.32) 

DEB frequency 3.0 (2.0-6.5) 3.0 (1.0-7.0) 0.99 (0.86-1.14) 1.00 (0.87-1.16) 

Low education § 26.7% 15.5% 1.92 (0.85-4.31) 1.57 (0.58-4.21) 

Education  0.73 (0.56-0.96) 0.80 (0.59-1.09) 

 No education 3.3% 1.4%   

 Elementary school (6 years) 23.3% 14.2%   

 Middle school (9 years) 20.0% 9.5%   

 High school (12 years) 26.7% 26.4%   

 Bachelor's degree (16 years)20.0% 39.9%   

 

Above Bachelor's degree 

(18 years) 6.7% 8.8%   
First-degree relative with PD 6.7% 10.1% 0.71 (0.17-2.98) 0.75 (0.17-3.22) 
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RBDQ-KR 50.0 (38.2-55.8) 48.0 (36.0-61.0) 0.99 (0.97-1.01) 0.99 (0.97-1.01) 

 RBDQ-KR Factor 1 10.5 (8.0-19.0) 13.0 (9.0-16.0) 0.99 (0.93-1.05) 0.99 (0.93-1.05) 

 RBDQ-KR Factor 2 35.5 (28.5-42.2) 35.0 (26.0-45.0) 0.98 (0.96-1.01) 0.98 (0.96-1.01) 

MMSE 27.0 (26.0-28.0) 28.0 (27.0-29.0) 0.85 (0.76-0.96) 0.90 (0.79-1.03) 

MoCA 24.0 (22.2-26.8) 26.0 (24.0-29.0) 0.93 (0.87-0.99) 0.95 (0.88-1.03) 

Epworth Sleepiness Scale 5.0 (3.2-7.0) 5.0 (3.0-8.0) 1.01 (0.92-1.11) 1.01 (0.92-1.11) 

K-GDS 11.0 (4.5-16.0) 8.0 (4.0-14.0) 1.02 (0.97-1.07) 1.01 (0.96-1.06) 

Insomnia Severity Index 7.0 (4.5-11.5) 6.0 (3.0-12.0) 1.01 (0.96-1.07) 1.00 (0.94-1.05) 

PSQI 5.0 (3.0-7.8) 6.0 (4.0-9.0) 0.96 (0.87-1.05) 0.94 (0.86-1.03) 

 TST 7.3 (6.5-8.0) 7.0 (6.3-7.7) 1.53 (1.12-2.08) 1.34 (0.98-1.83) 

 C1 2.0 (1.0-2.0) 1.0 (1.0-2.0) 1.28 (0.86-1.92) 1.19 (0.78-1.79) 

 C2 0.5 (0.0-1.0) 1.0 (0.0-2.0) 0.76 (0.50-1.14) 0.67 (0.44-1.01) 

 C3 0.0 (0.0-1.0) 1.0 (0.0-2.0) 0.59 (0.38-0.92) 0.61 (0.40-0.92) 

 C4 0.0 (0.0-0.8) 0.0 (0.0-2.0) 0.76 (0.52-1.09) 0.64 (0.44-0.92) 

 C5 1.0 (1.0-1.0) 1.0 (1.0-1.2) 1.10 (0.55-2.21) 0.91 (0.45-1.82) 

 C6 0.0 (0.0-0.0) 0.0 (0.0-0.0) 1.09 (0.80-1.48) 1.13 (0.82-1.54) 

 C7 1.0 (0.0-1.0) 0.5 (0.0-1.0) 1.09 (0.73-1.63) 1.21 (0.82-1.77) 

SCOPA-AUT total 12.5 (6.5-19.8) 10.0 (5.0-16.0) 1.03 (0.99-1.08) 1.02 (0.98-1.07) 

SCOPA-AUT Orthostatic hypotension ¶   

 No 56.7% 66.2% 1 1 

 Borderline 36.7% 27.0% 1.34 (0.64-2.82) 1.32 (0.63-2.78) 

 Yes 6.7% 6.8% 0.71 (0.17-3.00) 0.68 (0.16-2.90) 

SCOPA-AUT Constipation ¶    

 No 26.7% 33.8% 1 1 

 Borderline 46.7% 39.2% 1.57 (0.66-3.75) 1.45 (0.58-3.62) 

 Yes 26.7% 27.0% 1.29 (0.48-3.43) 1.13 (0.42-3.07) 

SCOPA-AUT Urinary ¶     

 No 3.3% 14.2% 1 1 

 Borderline 50.0% 52.0% 4.46 (0.59-33.77) 4.41 (0.58-33.37) 

 Yes 46.7% 33.8% 5.69 (0.75-43.32) 4.96 (0.65-37.93) 

SCOPA-AUT Erectile Dysfunction ¶   

 No 10.0% 18.9% 1 1  

 Borderline 23.3% 22.3% 2.02 (0.52-7.80) 1.77 (0.46-6.85) ‖ 

 Yes 23.3% 22.3% 1.94 (0.50-7.50) 1.08 (0.27-4.33) ‖ 

 Female 43.3% 36.5% 2.40 (0.68-8.44) 1.62 (0.45-5.81) ‖ 

MDS-UPDRS Part III 0.0 (0.0-2.8) 0.0 (0.0-1.0) 1.21 (1.05-1.40) 1.14 (0.98-1.33) 

 

MDS-UPDRS Action 

Tremor 0.0 (0.0-0.0) 0.0 (0.0-0.0) 0.98 (0.68-1.39) 0.89 (0.62-1.29) 

 

MDS-UPDRS Postural 

Tremor 0.0 (0.0-0.0) 0.0 (0.0-0.0) 1.26 (0.98-1.63) 1.17 (0.90-1.52) 

 

MDS-UPDRS Part III 

minus Tremor 0.0 (0.0-2.0) 0.0 (0.0-0.0) 1.32 (1.10-1.59) 1.32 (1.07-1.63) 
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BMI, Body Mass Index; DEB, Dream enactment behavior; MMSE, Mini Mental State Examination; 

MoCA, Montreal Cognitive Assessment; PSQI, Pittsburgh Sleep Quality Index; RLS, Restless legs 

syndrome; SCOPA-AUT, Scale for Outcomes in Parkinson's disease for Autonomic symptoms; K-GDS, 

Korean version of the Geriatric Depression Scale 

* Age and sex are only corrected for sex and age, respectively. 

† Olfactory loss is defined as 1.5 standard deviation or less on a KVSS 1 or 2 test. 

‡ Coffee use represents the average daily intake (cups per day), with Caffeine use defined as "yes" 

if Coffee use>0. 

§ Elementary school graduate or lacking formal education. 

¶ For each SCOPA-AUT subcategory, the subcategory is categorized as Yes if there is a score of 2 

or more in that corresponding items; No if all are 0; otherwise, Borderline. 

‖ Sex is not adjusted for SCOPA-AUT Erectile Dysfunction 
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Table 2. Participant characteristics of cognition- and motor-first subtypes 

Variable  Cognition-First n = 9 Motor-First n = 21 p-value 

Age  75.0 (72.0-77.0) 67.0 (64.0-71.0) 0.02 

Sex, % male  55.6% 57.1% 1.00 

Height, cm  160.0 (157.0-165.0) 165.0 (156.7-167.0) 0.62 

Weight, kg  60.0 (58.4-67.0) 65.4 (56.0-67.7) 0.87 

BMI, kg/m2  23.6 (22.8-24.6) 23.2 (22.2-24.7) 0.80 

RLS  0.0% 9.5% 0.87 

Diabetes  11.1% 19.0% 1.00 

Melatonin  77.8% 47.6% 0.26 

Antidepressants 22.2% 28.6% 1.00 

Alcohol use   0.74 
 Non-drinker 66.7% 66.7%  

 1-2 times/month 0.0% 14.3%  

 1-2 times/week 22.2% 19.0%  

 3-4 times/week 11.1% 0.0%  

 Daily 0.0% 0.0%  

Smoking     

 Never 77.8% 61.9% 0.67 
 Current 11.1% 4.8% 1.00 
 Former 11.1% 33.3% 0.42 

Pesticide exposure 33.3% 14.3% 0.49 

Solvent exposure 44.4% 23.8% 0.49 

Olfactory loss * 55.6% 52.4% 1.00 

Injury    0.71 
 None 66.7% 61.9%  

 Minor 33.3% 28.6%  

 Major 0.0% 9.5%  

Caffeine use † 77.8% 57.1% 0.51 

Daily coffee consumption (cups) † 2.0 (1.0-2.0) 1.0 (0.0-2.0) 0.26 

DEB frequency 3.0 (3.0-4.0) 3.0 (0.5-7.0) 0.66 

Low education ‡ 33.3% 23.8% 0.93 

Education    0.35 
 No education 11.1% 0.0%  

 Elementary school (6 years) 22.2% 23.8%  

 Middle school (9 years) 22.2% 19.0%  

 High school (12 years) 33.3% 23.8%  

 Bachelor's degree (16 years) 0.0% 28.6%  

 Above Bachelor's degree (18 years) 11.1% 4.8%  

First-degree relative with PD 11.1% 4.8% 1.00 

RBDQ-KR 51.0 (30.0-62.0) 49.0 (40.0-54.0) 1.00 
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 RBDQ-KR Factor 1 8.0 (4.0-19.0) 12.0 (9.0-19.0) 0.43 
 RBDQ-KR Factor 2 34.0 (22.0-43.0) 36.0 (30.0-37.0) 0.80 

MMSE  26.0 (23.0-26.0) 28.0 (26.0-29.0) 0.01 

MoCA  23.0 (19.0-24.0) 26.0 (24.0-28.0) 0.03 

Epworth Sleepiness Scale  5.0 (3.0-7.0) 5.0 (4.0-7.0) 0.96 

K-GDS  11.0 (4.0-15.0) 11.0 (7.0-17.0) 0.48 

Insomnia Severity Index  7.0 (2.0-8.0) 7.0 (6.0-13.0) 0.52 

PSQI  4.0 (3.0-4.0) 6.0 (4.0-9.0) 0.09 
 TST  8.4 (7.9-8.8) 7.0 (6.5-7.5) 0.03 
 C1  2.0 (1.0-3.0) 2.0 (1.0-2.0) 0.45 
 C2  0.0 (0.0-0.0) 1.0 (0.0-1.0) 0.10 
 C3  0.0 (0.0-1.0) 1.0 (0.0-1.0) 0.27 
 C4  0.0 (0.0-0.0) 0.0 (0.0-1.0) 0.24 
 C5  1.0 (1.0-1.0) 1.0 (1.0-2.0) 0.06 
 C6  0.0 (0.0-0.0) 0.0 (0.0-1.0) 0.36 
 C7  0.0 (0.0-1.0) 1.0 (0.0-1.0) 0.22 

SCOPA-AUT total  13.0 (9.0-20.0) 12.0 (6.0-19.0) 0.95 

SCOPA-AUT Orthostatic hypotension §   

 No  66.7% 52.4% 0.75 
 Borderline  22.2% 42.9% 0.51 
 Yes  11.1% 4.8% 1.00 

SCOPA-AUT Constipation §     

 No  44.4% 19.0% 0.32 
 Borderline  22.2% 57.1% 0.17 
 Yes  33.3% 23.8% 0.93 

SCOPA-AUT Urinary §     

 No  66.7% 52.4% 1.00 
 Borderline  22.2% 42.9%  

 Yes  11.1% 4.8%  

SCOPA-AUT Erectile Dysfunction  §    

 No  11.1% 9.5% 1.00 
 Borderline  22.2% 23.8% 1.00 
 Yes  22.2% 23.8% 1.00 
 Female  44.4% 42.9% 1.00 

MDS-UPDRS Part III  0.0 (0.0-1.0) 1.0 (0.0-3.0) 0.20 
 Action Tremor  0.0 (0.0-0.0) 0.0 (0.0-0.0) 0.37 
 Postural Tremor  0.0 (0.0-0.0) 0.0 (0.0-0.0) 0.37 
 Part III minus Tremor  0.0 (0.0-1.0) 0.0 (0.0-2.0) 0.45 

Conversion time  3.0 (2.0-4.0) 3.0 (2.0-3.0) 0.41 

BMI, Body Mass Index; DEB, Dream enactment behavior; MMSE, Mini Mental State Examination; 

MoCA, Montreal Cognitive Assessment; PSQI, Pittsburgh Sleep Quality Index; RLS, Restless legs 
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syndrome; SCOPA-AUT, Scale for Outcomes in Parkinson's disease for Autonomic symptoms; K-GDS, 

Korean version of the Geriatric Depression Scale 

* Coffee use represents the average daily intake (cups per day), with Caffeine use defined as "yes" 

if Coffee use>0. 

* Olfactory loss is defined as 1.5 standard deviation or less on a KVSS 1 or 2 test. KVSS (Korean 

Version of Sniffin' Sticks) is a standardized olfactory function test used to assess odor threshold, 

discrimination and identification. 

† Coffee use represents the average daily intake (cups per day), with Caffeine use defined as "yes" 

if Coffee use>0. 

‡ Elementary school graduate or lacking formal education. 

§ For each SCOPA-AUT subcategory, the subcategory is categorized as Yes if there is a score of 2 

or more in that corresponding items; No if all are 0; otherwise, Borderline.  
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Table 3. Performance of Classifiers developed with the mRMR feature set. 

Classifier MCC Macro F1 Accuracy 
Macro 

Precision 

Macro 

Recall 

Balanced 

Accuracy 
Log Loss 

Cohen’s 

Kappa 

ROC 

AUC 
PR AUC 

LPOCV 

AUC 

RandomForestClassifier 0.697 0.825 0.853 0.850 0.851 0.851 0.500 0.665 0.876 0.799 0.881 

SVC 0.521 0.733 0.775 0.760 0.762 0.762 0.615 0.489 0.727 0.724 0.804 

AdaBoostClassifier 0.521 0.737 0.791 0.753 0.763 0.763 1.575 0.500 0.766 0.626 0.820 

XGBClassifier 0.506 0.727 0.795 0.744 0.751 0.751 0.468 0.483 0.860 0.824 0.865 

LogisticRegression 0.467 0.697 0.738 0.724 0.742 0.742 0.581 0.428 0.829 0.772 0.825 

GradientBoostingClassifier 0.432 0.679 0.785 0.704 0.703 0.703 0.489 0.407 0.856 0.830 0.862 

KNeighborsClassifier 0.297 0.613 0.737 0.625 0.639 0.639 2.708 0.280 0.742 0.697 0.733 

MLPClassifier 0.244 0.576 0.713 0.580 0.618 0.618 0.546 0.226 0.820 0.759 0.820 

GaussianNB 0.228 0.562 0.735 0.560 0.604 0.604 0.662 0.214 0.779 0.755 0.778 

ExtraTreesClassifier 0.170 0.543 0.689 0.535 0.586 0.586 0.552 0.160 0.769 0.716 0.767 

MCC, Matthews Correlation Coefficient; Macro F1, macro-averaged F1 score; Macro Precision, 

macro-averaged precision; Macro Recall, macro-averaged recall; ROC AUC, Area Under the Receiver 

Operating Characteristic Curve; PR AUC, Area Under the Precision-Recall Curve; LPOCV AUC, Leave-

Pair-Out Cross-Validation Area Under the Curve. The classifiers are ordered by descending MCC 

score. All metrics are reported on the test set. 
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