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Abstract 
Most known pathogenic mutations occur in protein-coding regions of DNA and change the way 
proteins are made. Deciphering the protein structure therefore provides great insight into the 
molecular mechanisms underlying biological functions in human disease. While there have recently 
been major advances in the artificial intelligence-based prediction of protein structure, the 
determination of the biological and clinical relevance of specific mutations is not yet up to clinical 
standards. This challenge is of utmost medical importance when decisions, as critical as suggesting 
termination of pregnancy or recommending cancer-directed rational drugs, depend on the accuracy of 
prediction of the effect of the specific mutation. Currently, available tools are aiming to characterize 
the effect of a mutation on the functionality of the protein according to biochemical criteria, 
independent of the biological context. A specific change in protein structure can result either in loss of 
function (LOF) or gain-of-function (GOF) and the ability to identify the directionality of effect needs to 
be taken into consideration when interpreting the biological outcome of the mutation. Here we 

ol incorporating three ysis (TriVIAI), a tolnaAnterpretation and Iariant Vmodalities -pleTridescribe 
complementing modalities for improved prediction of missense mutations pathogenicity: protein 
language model (pLM), graph neural network (GNN) and a tabular model incorporating physical 
properties from the protein structure.  The TriVIAl ensemble's predictions compare favorably with the 
existing tools across various metrics, achieving an AUC-ROC of 0.887, a precision-recall curve (PRC) 
score of 0.68, and a Brier score of 0.16. The TriVIAI ensemble is also endowed with two major 
advantages compared to other available tools. The first is the incorporation of biological insights which 
allow to differentiate between GOF mutations that tend to cluster in specific hotspots and affect 
structure in a specific functional way versus LOF mutations that are usually dispersed and can cripple 
the protein in a variety of different ways. Importantly, the advantage over other available tools is more 
noticeable with GOF mutations as their effect on the protein structure is less disruptive and can be 
misinterpreted by current variant prioritization strategies. Until now available AI-based pathogenicity 
predicting algorithms were a black box for the users. The second significant advantage of TriVIAI is the 
explainability of the ensemble which contrasts the other available AI-based pathogenicity predicting 
algorithms which constitute a black box for the users. This explainability feature is of major importance 
considering the clinical responsibility of the medical decision-makers using AI-based pathogenicity 
predictors. 
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Introduction 
Predicting the pathogenicity of missense mutations is crucial for both understanding underlying genetic 
processes and enabling more precise clinical interventions. Despite its importance, this task remains 
challenging due to the diverse molecular mechanisms and functional consequences that can arise from 
such mutations. The prevalent use of next generation sequencing in recent years made the 
interpretation of Variants of Uncertain Significance (VUS) a major challenge in genetics and molecular 
oncology and further underscored the necessity of precise interpretation within the realm of 
personalized medicine.  

Several computational tools have been developed to address this challenge, with methods ranging 
from simple linear regression models to more complex machine learning algorithms, incorporating 

While effective to some extent, these    3–1energy, functional, conservational and statistical features.
predictors often rely on limited types of data and fail to capture the full complexity of biological 
systems. To address this challenge, we describe a versatile machine learning framework that adopts a 
multi-modal approach. This framework integrates tabular features, sequence-based information, and 
three dimensional (3D) structural data to provide a holistic view of protein alterations. Our results 
demonstrate that the proposed model not only achieves improved predictive accuracy but also 
generalizes effectively, capturing nuanced representations of the biological principles governing 
protein function. This unified approach provides a robust and meaningful framework for the next 
generation of missense mutations pathogenicity prediction, offering new avenues for research and 
clinical applications. 

Understanding the functional consequences of genetic mutations is at the core of both fundamental 
biological research and translational clinical medicine. Among various types of genetic mutations, 
missense variations, where a single nucleotide change results in a different amino acid in the protein 
sequence, stand out as particularly significant. Predicting the pathogenicity of these missense 
variations is crucial for diagnosing genetic diseases and somatic disorders including cancer, informing 
therapeutic interventions, as well as advancing the understanding of functional genomics and 
proteomics. However, these variations can have myriad effects on protein structure, function, and 
interaction, making them challenging to analyze and interpret. 

Recent advancements in deep learning have resulted in improving the accuracy of predictive models. 
breakthroughs in natural language  inspired by— 9–4Specifically, protein language transformer models

processing—have been successfully applied to predict the pathogenicity of missense variations, or 
more generally variant effect prediction (VEP) by analyzing amino acid sequences. Concurrently, 
structure-based graph neural networks have emerged as a powerful tool for understanding protein 

in advancing protein structure  10formations. The critical role played by AlphaFoldinteractions and con
prediction has opened new doors for employing graph neural networks over predicted protein 
structural data in various protein-related tasks, including missense mutation pathogenicity 

.11,12prediction 

Our predictor framework also incorporates traditional tools such as FoldX to capture the energy change 
caused by the mutations to further increase accuracy of the predictions of the effect caused by specific 
mutations. The present study aims to build upon these advances by proposing a multi-modal machine 

nterpretation and Iariant Vmodalities -pleTrilearning framework. Our framework, TriVIAl, stands for 
-of-based data.  Beyond achieving state-based, and structure-tabular, sequence integratingysis, lnaA
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the-art predictive accuracy, it provides a deeper understanding of the biological intricacies underlying 
protein functionality.  

As a consequence of developing a pathogenicity classification model, the next step involves fine-tuning 
of the model weights, making it capable of distinguishing between Gain of Function (GOF) and Loss of 
Function (LOF) variants in proteins. GOF refers to mutations that enhance or introduce new functions, 
while LOF pertains to changes resulting in partial or complete loss of function. This distinction is vital 
for drug discovery, personalized medicine, and understanding disease mechanisms. 

Furthermore, in addition to providing classification labels along with their confidence, we propose an 
explainability framework that enables us to visualize the input residues that contribute the most to the 
output prediction. This enables a deeper understanding of the mechanisms involved in making the 
mutation pathogenic or benign. This understanding is especially important in GOF mutations, where 
the changes in the protein structure and stability are usually subtler and may depend on environment-
related features such as binding sites and interaction with other proteins. 

Methods      

Principles and Rational  

Overview of TriVIAl 
TriVIAl is a hybrid deep learning model that combines three distinct data types. A fully connected 
neural network (FCN) which models the tabular features encapsulating numeric attributes, such as 
difference in free energy, the root mean square deviation (RMSD) of the proteins' atoms, BLOSUM 
substitution values, and additional parameters, as detailed in Supplementary Table 1; A transformer-
based Protein Language Model (PLM) that has been pre-trained on a massive set of sequences; and a 
Graph Neural Network (GNN) that captures and maps the molecular 3D aspects that were introduced 
by the mutation. Together, these modalities complement each other to gain synergistic effect.  

Tabular features, such as energy and molecular properties, as well as population distribution and co-
evolutionary information, are core components of many missense pathogenicity prediction tools. While 
it is clear that tabular features cannot capture the complex context of the proteins, they offer well-
established features that can easily be computed and offer clear prediction interpretability. For 
instance, a significant change in ΔΔG can be directly linked to destabilization of a protein, providing 
reasoning for pathogenicity prediction. We assume that ΔΔG also enables the distinction of the nature 

.  13Function-of-Function or Loss-of-if it Gain of the pathogenic mutation, especially 

Protein language Models (PLMs), successors of general Large Language Models (LLMs), are powerful 
models that learn meaningful representations with biophysical quantitative features of proteins in 
unsupervised process. Protein sequence data is vastly more abundant than structural or energy and co-
evolution data, enabling PLMs to learn through the largest sets of known sequences such as UniProt 
and UniRef datasets, without homology information or labeled properties. However, the current PLMs 
have several limitations: First, most of them are limited to process sequences with maximal length of 
~1K amino acids, raising the question of their utility for proteins with longer sequences, especially 
where the mutation occurs after the length limitation.  Another concern is raised from the training 
procedure – LLMs are trained by masking specific tokens in a sequence (words in natural language, 
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residues in protein sequences) and learning to predict the masked token; in other words, they are 
trained to predict what amino acid may appear in a specific location with what likelihood; hence, their 
ability to fully represent all of the physical and chemical interaction is not fully proven.  

Structure-based models operate on proteins represented as augmented 3D graphs with features 
ierarchical or combined h 16,17, atom level14,15either in residue level –attached to each node 

or  18nearest neighbors keither predefined  –and to each edge between near nodes  –representations 
all neighbors under certain distance thresholds, usually 4.5-10 Angstrom. Structures are richer in 
information than sequences and allow models to derive insights directly from local chemical 
interactions. This enables structure-based models to utilize broader, deeper and richer knowledge 
encapsulated in atomic- or residual level of interactions and by comparing wild-type to mutation 
structures they can learn how the physicochemical state of the mutation is implicitly expressed by the 
backdrop of structure itself, rather than against phylogenetic sequence data that merely implies 

15structure.  

To take advantage of all worlds, TriVIAl is designed as a triple-backbone neural network with a unified 
head. An FCN backbone operates on the tabular features; a pre-trained PLM transformer backbone 
processes the sequence information; and a GNN is deployed on the structural data.  

An overview of the system is depicted in Figure 1. 

Classification Framework Design 

Tabular model 
To properly evaluate the tabular features’ prediction-based utility three independent models were 
evaluated: Random Forest, gradient-boosting (XGBoost), and a fully-connected 7-layers neural 
network. All hyper-parameters such as number of trees and shape and number of layers were 
determined per hyper-parameters grid search of 5-fold cross validation. The full configuration details 
are described in appendix A1.  

Although classic ML models, namely random forest and XGBoost on their own perform better than the 
NN model, for the combined multi-modality model which is trained by back-propagation, the neural 
network was integrated.  

 Sequence model 
, 7ESM1b, 8ESM1v, 6rt, ProteinBe4BFD-We evaluated five flavors of Protein Language Models: ProtBert

ayers, maintaining the original For each model, we froze the learning on all but the top 3 l .19and Ankh
configuration of layers.  

During the sequence model training, each pair of wild-type and mutation sequences were forwarded 
through the layers, producing a final embedded representation vector. Then, inspired by the concept of 

the mutation  , we pooled the representation of the amino acid in21  20feature pyramid networks
position from several layers. This approach enabled it to capture both lower-level, higher-resolution as 
well as higher-level, lower-resolution embedded representations. The global (full-sequence) 
representation was concatenated to the amino acid representation for both the wild-type and the 
mutation and were forwarded to final linear classification layers. For mutations occurring past the 
model limit (1022 amino acids for ProtBert-BFD and ESM), a randomized window of the maximal 
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tokens limit, containing the mutation position, was generated per forward, enabling mild data 
augmentation. 

Structure model 
 22level representation-For balancing between precision and complexity we followed ProNet’s backbone

with additional residue-level features. The backbone is represented by the Alpha Carbon (Cα) atom, 
-) group. We tested both the radiusCOOH-) group and carboxyl (2NH-with the corresponding amino (

based edges (An edge between nodes was defined for all residues with any atom existing in a radius of 
6 Angstrom) and k-nearest neighbors with k=30. The node features were augmented, in addition to 
residue ID as a one-hot encoding of 1x20 vector, with polarity as 1x4 vector (polar, apolar, negatively 
charged and positively charged), and residue charge (floating point single value), similar to Réau et 

d and used relative distance, direction an 23. As edge features, we followed Ingraham et al.15.al
orientation based on the spherical coordinates between neighboring backbone nodes, in addition to 
relative positional embedding, effectively combining structural and positional encoding. 

and  24onvolution Graph NetworkWe investigated two flavors of Graph Neural Networks: Equivariant C
equivariant convolution or the attention -and translation -.The rotation25Graph Attention networks

layers were used as interaction blocks that update the nodes based on the edge features and mean-
based summation function with several fully-connected layers used as the global readout function. The 
global representation is augmented, similarly to the sequence model implementation, with node-
position pooling operation which accumulates the hidden representation of the mutation position over 
sampled subset of the intermediate layers, followed by attention pooling layer for adaptive and 
contextual aggregation. The full architecture details are described in Appendix A2.  

For each implementation, similar to the sequence-based model, different levels of feature embedding 
were obtained for the mutation node and edges, through pooling from different layers. The mutation 
specific embedding was concatenated to the global protein-wide readout feature before the final 
classification layers. The Graph Attention Network model performed slightly better, though being more 
computationally-heavy. 

Multiple Modalities Integration Considerations 
Numerous strategies exist for combining several representations of data. Specifically, for protein-
related tasks, existing approaches vary from simple all-numeric features to sophisticated consolidated 
representation deep learning. Some methods create unified tabular features, leveraging the 
embedding from learned deep learning models such as PLMs either as-is or after pre-processing such 

. Ensemble learning 26principal components Nas principal components analysis (PCA), retaining the top 
offers another straight-forward tactic, with the adjustment of the weights of the predictions retrieved 
from the discrete models by e.g. logistic regression. A more recent approach that is successfully applied 

-acid as residue adopts PLM’s embedding for each amino  29,28and protein function prediction 14,27Ito PP
level node feature. While generalizable and showing competitive results, the inherent limitations of 
PLMs such as sequence length restriction apply to some extent. An additional contemporary technique 
integrates protein sequence with Gene Ontology (GO) annotations, fed as either graph-based features 

. 6,30,31or language model embedding 
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instead uses input approach and -, reverses the multi51A recent promising method, AlphaMissense
sequence, sampled variants and multiple sequence alignment (MSA) data to create a multi-tasking 
model that predicts both the mutated structure and a missense pathogenicity score.  

However, our method, though conceptually straightforward, highlights the advantages of using diverse 
data sources to deeply comprehend the multifaceted origins of pathogenicity, as expressed by each 
modality. When combined with explainability techniques outlined in the explainability section, we can 
delve into the diverse mechanisms and underlying processes responsible for the predicted result. 

To demonstrate the importance of combining various modalities, we calculated the error rate, defined 
as the mean absolute difference between predictions and ground truth values, in relation to both 
mutation position and the mean value of AlphaFold's pLDDT (Predicted Local Distance Difference Test) 
metric. The pLDDT metric estimates the per-residue confidence in the agreement between AlphaFold 

predictions and experimental structures. (𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 =  
ଵ

ே
∑ே

௜ୀଵ |𝑦௜ − 𝑓(𝑥௜)| , where y is the 

ground-truth label, x is the input and f is the prediction function) 

Our findings illustrate that a model relying solely on sequence information performs worse when 
mutations occur outside of the model's context window limitation, e.g., ProtBert has an actual context 
window of 1022 amino acids, making it challenging in dealing with proteins with longer sequences 
(Figure 2). Similarly, the performance of a structure-only model degrades as pLDDT values decrease 
(Figure 3). This trend may be attributed to the increased complexity of the structural context, which 
appears to underlie the decreased performance observed in both AlphaFold and the GNN models. 
Alternatively, it illustrates that the model's quality is directly affected by the input's quality.  

Data Annotation and Preparation 

Pathogenicity Classification Task 
tained in 07/22/2022) and (ob 32The training and validation data samples were collected from ClinVar

Pro 2022.2 hg38. We used only the pathogenic/damaging and benign samples and opted to  33HGMD
exclude the likely benign/likely pathogenic variants to ensure higher quality of data. The wild-type PDB 

Proteome UP000005640 ,  10,34 AlphaFold Protein Structure Database structures were obtained from
) was used to create the mutated structures. https://foldxsuite.crg.eu/( 35,36FoldX softwareand  

calculated AlphaMissense ranks -Pre .73All VEP algorithms rank scores were annotated using dbNSFP4.4
cores were downloaded and annotated separately. Next, the tabular features were computed either 
directly by FoldX or computed using BioPython package, after superimposing the wild-type and 
mutation structure.  

and include deep mutation scan (DMS) ensemble of  38ere obtained from Zhang et. al.t sets wThe tes
. Supp. table 2 42and MSH2 41TP53, 40, PTEN 39four genes from different sources: BRCA1 

Loss of Function (LOF) and Gain of Function (GOF) Classification Task 
-of-, focusing on gain44 43Cancer Mutation Census  -We developed a dataset derived from the COSMIC 

function (GOF) and loss-of-function (LOF) variants in cancer genes. Guided by the understanding that 
, we 45r genesGOF mutations are prevalent in oncogenes and LOF mutations in tumor suppresso

implemented specific selection criteria. Our analysis was limited to missense mutations ('Substitution - 
Missense') not found in the general population ('GNOMAD_GENOMES_AF' == 0.0) and reported at least 
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three times in the COSMIC dataset ('COSMIC_SAMPLE_MUTATED' > 2). We excluded genes with 
overlapping oncogenic and tumor suppressor functions. This approach yielded a dataset of 2970 TSG-
associated LOF and 3323 oncogene-linked GOF variants across 430 distinct genes. 

Training Procedure 
For the combined model, the curated ClinVar + HGMD dataset was divided into a stratified 80%-20% 
train/validation sets, respectively. The split was done at the gene level to make sure that there is no 
data contamination.  

Each model for each data modality is initially trained as a standalone model with larger number of 
epochs and higher initial learning rate. Next, a unified fine-tuning is conducted on all backbones 
together for a smaller number of epochs and with lower learning rate. At the unified training, the final 
classification layer of the original standalone models is removed, and instead the last embedding layer 
outputs a tensor with unified predefined dimensions is then concatenated to the other backbones’ 
outputs and processed through the final classification layers.  

All experiments were done on Nvidia DGX platform with 4 A100 GPUs, each having 80GB of memory. A 
simple parallelization approach of running each modality on a different GPU was applied. 

Results 

Missense Pathogenicity Prediction Metrics 
A summary of Area Under the Curve Receiver Operating Characteristics (AUC ROC) and Precision Recall 
Curve (PRC AUC) of the TriVIAl model, compared to other state-of-the-art models, is presented in 
Figures 4-7. The TriVIAl combined model performs on par with AlphaMissense, and achieves the best 
PRC AUC, making it specifically well-suited for clinical decisions support.  

An important aspect of classification models is calibration: Deep learning model calibration refers to 
the process of aligning the confidence of a model's predictions with the actual likelihood of those 
predictions being correct. In an ideally calibrated model, if it assigns a confidence level of 80% to a 
series of predictions, then approximately 80% of these predictions should be correct. Calibration is 
crucial because deep learning models, especially those in critical applications like healthcare or 
autonomous driving, not only need to be accurate but also trustworthy in their uncertainty estimates. 
Without proper calibration, a model's confidence levels may not accurately reflect the true 
probabilities of outcomes. This means a model could be overconfident, assigning high probabilities to 
predictions that are not as likely as indicated, or underconfident, assigning lower probabilities to 
outcomes that are more likely; both can lead to misguided decisions based on the model's output. 

Calibration techniques involve adjusting the output layer or applying post-processing methods like 
temperature scaling, where the confidence scores are systematically adjusted to better reflect reality. 
This adjustment helps in ensuring that the confidence levels are meaningful and reliable, making the 
model more useful and trustworthy for decision-making processes. 

The Brier Score, also known as the Brier Proper Score, is a scoring or performance metric used in the 
evaluation of probabilistic predictions made by classification models, particularly in the context of 
binary classification tasks. It assesses the accuracy of these predicted probabilities. 
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In binary classification, there are typically two possible outcomes: positive and negative – pathogenic 
and benign, in our case. The Brier Score measures the mean squared difference between the predicted 
probabilities and the actual labels. 

A lower Brier Score indicates better performance, as it means that the predicted probabilities are 
closer to the actual outcomes. Again, TriVIAl achieves the best Brier score amongst the other 
algorithms, showing that it is well-calibrated (Figure 8). 

A pivotal aspect of understanding the implications of a given mutation, is distinguishing between GOF 
and LOF mutations. Distinguishing between these two types is a challenging task that remains a largely 

.46research effortsunsolved issue with active  

To assess our model's ability to differentiate between GOF and LOF mutations, we initially applied t-
Stochastic Neighbor Embedding (t-SNE) to project the embedding from the last classification layer into 
2D space and to color them by their LOF or GOF label (Figure 9).  

The t-SNE plot indicated that, to some extent, our model is capable of distinguishing between LOF and 
GOF mutations. We then proceeded to further fine-tune the classifier specifically for the task of LOF vs. 
GOF separation.  

LOF and GOF Prediction Metrics 
The following four consequent experiments were performed in order to discriminate gain vs loss 
effects of the analyzed mutations. Experiments were designed to: (1) Fine-tune the pathogenicity 
classifier on LOF vs. GOF labels on the subset from ClinVar and HGMD, with annotations taken from 

-ine(2)f20% split for train and validation respectively)-(1150 samples, with 80% 48,47l.Sevim Bayrak et a
tune the pathogenicity classifier on LoF vs. GoF labels on the data derived from COSMIC (4791 samples, 
with 80%-20% split for train and validation respectively) (3) Test the classifier obtained from step 1 on 
the COSMIC derived dataset, without additional training and (4)Test the classifier obtained from step 2 
on the ClinVar and HGMD derived dataset, without additional training 

These results as described in Table 1 demonstrate the capability of our model to discriminate between 
LOF and GOF mutations, and suggest that both germline and somatic mutations exhibit molecular 
properties with fundamental similarity that aids with this distinction. 

Explainability 
To facilitate more comprehensive understanding of our predictions from both a clinical and structural 
biology perspective, we utilized model explainability techniques. These techniques allowed us to 
identify the most impactful residues. Specifically, we implemented a generalized version of GradCAM-
like explainability, which involves conducting a backward pass relative to the predicted class to 
calculate the gradients; Subsequently, we combined these gradients with activations to create a Class 
Activation Map (CAM) for each attention head. We then interpolated the most dominants outputs to 
the dimension of the input sequences to have a residue-level activation map. Those active input 
residues are highlighted by drawing connections between target residues and the mutated residue. For 

, adjusting the connection lines' 49visualization, we rendered the proteins using the NGLView package
width to reflect each residue's relative contribution. Although experimental, this suggested approach 
not only provides an interpretable justification for our predictions but also ensures that the model 
captures meaningful biological characteristics of the proteins and the mutations.  Figures 10-17 present 
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visualizations that illustrate the impact of missense mutations on four proteins associated with cancer. 
Analyses and interpretation of these mutations—namely BRAF p.V600E, JAK2 p.V617F, KRAS p.G12D, 
and VHL p.R161Q—are provided in the supplementary material.  

Discussion 
Since the impressive decrease in sequencing prices in the last years, genomic testing such as whole 
exome or whole genome sequencing is more rapid and affordable than ever. Rare disease diagnosis, 
prenatal genetic tests, and oncogenetics among many other medical fields are utilizing the next 
generation sequencing (NGS) technologies in the daily clinical routine. In this genomic arena, the 
prevalent missense mutations are unique compared to other types of mutations. While nonsense and 
frameshift mutations frequently result in significantly dysfunctional proteins with altered function 
and/or stability, the effect of missense mutations is sometimes more nuanced and its biological and/or 
clinical implications are not self-evident. The wide range of possible effects on protein structure and 
function caused by missense mutations motivated the development of a multitude of variant effect 
prediction methods over the last two decades, aiming to determine the pathogenicity of the mutations 

, 50, DOUGEN21S. Notable tools such as CADDwhose effect is not clear and are therefore termed VU
were built upon various structural and evolutionary data to try and  51and lately AlphaMissense 2REVEL

classify different variants.  
In this article, we have used a novel approach by integrating state-of-the-art deep learning algorithms 
such as the protein language model (PLM) and graph neural network (GNN) with calculation of more 
traditional features such as ΔΔG, Root Mean Square Deviation (RMSD), BLOSUM substitution values 
and molecular weight, amongst others. This ensemble algorithm, called TriVIAl, shows cutting edge 
classification accuracy in the benign versus pathogenic discrimination challenge. 

The TriVIAl algorithm achieved state-of-the-art performance with an AUC-ROC of 0.887, marginally 
better than AlphaMissense score of 0.886 and superior to, metaRNN and ClinPred, whose score was 
0.82. Furthermore, TriVIAl demonstrated superior performance in additional metrics; it achieved a 
precision-recall curve (PRC) score of 0.67, compared to 0.63 by AlphaMissense. Similarly, TriVIAl's Brier 
score was 0.16, better than AlphaMissense's 0.32. 

In the era of affordable and accessible genomic sequencing the interpretation of VUS is a major 
challenge in the clinical practice of genetics and oncology. Critical decisions such as the 
recommendation for termination of pregnancy or the use of a targeted drug for cancer patients are 
often faced with the uncertain implications of VUS reported in such cases. There are several criteria 
that are currently taken into consideration when the meaning and pathogenicity of a point mutation is 
explored such as the information regarding previous identification of similar mutations in the particular 
gene or the identification of a mutation in the vicinity of a known mutation, the type of amino acid 
substitution, evolutionary conservation and more. Yet the number of VUS reported is significant, 
resulting in a practical and emotional burden for the patients, families and caregivers. The 
AlphaMissense approach illustrates in a very convincing way the contribution of PLM to the exploration 
of VUS. The AlphaMissense and similar approaches increase our understanding of the predicted 
damage attributed to the protein structure and function by the specific alteration identified. There can 
be however some context dependent disagreement between the effect of a mutation on the structure 
and the function of the protein and its relevance to the disease question. The TriVIAl approach we 
developed is aimed to take such context understanding into consideration when determining the 
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clinical relevance of a missense mutation.  There are numerous examples where the biological and 
medical effect of a mutated protein is dependent not only on the demonstration that the protein 
product is crippled but also on whether the mutation results in a loss of function or gain of function 
This is best exemplified when dealing with mutated genes in cancer, as depicted in table 2 and 
supplementary case studies 1-4. Some mutations indiscriminately distributed along the KRAS 
oncogene, including truncating mutations, can inactivate this protein but usually will not contribute to 
cancer development and progression. On the other hand, activating mutations that change specific 
amino acids in the hotspot positions 12, 13, 59, 61 of the protein results in the GTP-bound 
conformation and constitutive signaling which will contribute to malignant transformation. Similarly, 
activating mutations in the catalytic domain of protein tyrosine kinase growth factor receptors result in 
gain of function, activation and enhanced signaling thus supporting malignant transformation. An 
inactivating or a neutral mutation in the same receptors usually will not enhance cancer development. 
A special form of gain of function is seen in some unique proteins, such as IDH1 and IDH2. The 
pathogenic mutations which are localized to a very precise hotspot, mainly codons 132 and 172 
respectively provide the protein with "neooncogene" biochemical activity. This novel biochemical 
function prevalent in AML, brain tumors and other cancers results in the generation of 2-
hydroxyglutarate instead of α-ketoglutarate and contributes to the malignant phenotype by affecting 
demethylation of DNA, RNA and histones.  

When dealing with tumor suppressor genes, the contribution of mutations to cancer depends on 
elimination or reduction of the activity. Multiple sites spread along the protein are expected to 
inactivate tumor suppression, including truncation of the protein due to nonsense mutations. This 
principle for differentiating oncogenes from tumor suppressor genes was termed the 20/20 rule as 

The above distinction is not without exceptions, where some cancer  52discussed in Vogelstein 2013.
related proteins can function as either oncogenes or tumor suppressor genes, depending on the tumor 
type. For example, activating mutations turn the NOTCH protein into an active oncogene in T cell acute 
lymphoblastic leukemia and chronic lymphocytic leukemia while in head and neck cancer mutated 
NOTCH functions as a tumor suppressor. The FMS gene, encoding for macrophage colony stimulating 
receptor, can contribute to cancerogenesis when both activated or inactivated by mutations, 
depending on the specific malignant state. p53 the prototypic tumor suppressor gene may have in 

. In some genes mutations in  53o loss of function effects also gain of function features addition t
different regions may affect differently the biological activity of the mutated protein. For example, the 
APC tumor suppressor gene predisposes to familial polyposis syndrome and the development of colon 
cancer when mutations are located in the 5' region encoding for the first N terminal 1600 amino acids, 
only when the mutations result in truncation. Mutations in the APC 3' part, encoding for the terminal 
1200 amino acids, are not associated with increased cancer predisposition. It is clear that an algorithm 
that takes into consideration the gain or loss of function attributed by the mutation contributes to 
improved characterization of the effect of the mutation. 

The nature of the biochemical outcome of a mutation GOF vs LOF is relevant also to genetic disorders. 
The study of the globin genes and proteins paved the way for basic molecular research and its 
translation to clinical applications. Mutations in these genes result in thalassemia and 
hemoglobinopathies, very prevalent genetic diseases associated with major morbidity and mortality. 
Mutations that cripple the α-globin genes usually result in alpha thalassemia, and are definitely 
pathogenic. Yet in patients with beta thalassemia major, who usually are dependent on frequent blood 
transfusions, the co-inheritance of an α-globin mutation decreases the globin chain imbalance and 
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attenuates the severity of anemia. The α-globin mutation in this case is therefore beneficial. 
globin gene resulting in the -in the β pair point mutation at position 6-Homozygotes for the single base

ickle gene globin chain (s-substitution of the amino acid valine for glutamic acid at position 6 in the β
of this  mutation) are clearly affected by severe disease. On the other hand, the hematologic effect

mutation in the heterozygous state is minimal while carriers are relatively protected against deadly 
actually beneficial for those living in areas where malaria is ne mutation is malaria. Therefore, sickle ge

endemic. This further illustrates the importance of taking into consideration the specific context when 
ontext principle of c interpreting whether a mutation in pathogenic, neutral or beneficial. This

dependent interpretation was surprisingly demonstrated when mutations in the erythropoietin 
receptor resulting in erythrocytosis, known to be a risk factor for thrombotic events, proved to be 

kier who won four Olympic gold medals, thanks country s-crossbeneficial for E. Mäntyranta, the Finnish 
to the improved tissue oxygen delivery. 

Our TriVIAl approach takes into consideration the relevance of the effect of specific mutations, be it 
mal and environmental setting. Yet the tissue, organisr, gain or loss of function, to the specific cellula

current ensemble presented here does not take into consideration all possible interacting and milieu 
associated factors. 

on, the he interpretatiFuture tools for prediction of mutation pathogenicity will benefit by adding to t
information not only of the biochemical effects but also the incorporation of medical and contextual 
data directly extracted from the Electronic Health Record (EHR) and comprehensive databases.    

The algorithm we developed has an additional advantage when aiming at providing the clinician or 
geneticist with a practical tool for improving medical decisions. The use of AI based medicine is 
expected to improve diagnosis and care yet like all new tools it is expected not to be error free. The 

The TriVIAI  54of who bears the blame when AI Medicine goes wrong is actively discussedquestion 
ensemble, when interpreting the mutation meaning and significance, is based on an explainability 
feature instead of a black box situation, thus enabling the clinician to follow and visualize the processes 
that lead to the AI derived conclusion and recommendation. This feature allows the analysts to delve 
into the detailed structure of the protein itself and to explore different active sites or functions of the 
protein, giving more biological reasoning and insights into the decision. We expect that this feature will 
be useful when handling VUS variants in well-defined and studied proteins and also for structure-driven 
novel drug design. It will ease the burden and responsibility of the caregiver when adopting the AI 
recommendation.  

 
In conclusion, the new ensemble which fuses classical features such as energy and molecular 
properties, along with a strong PLM model that has learnt the distribution of protein sequences and 
their underlying derivatives, and the 3D GNN that enabled fine-grained amino acid interactions 
provides a useful AI tool that increases the ability to decipher the interpretation of missense mutations 
while integrating biological insights with visualization and explainability.  
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Data Availability 
Public datasets including ClinVar, COSMIC, and dbNSFP4.4a, as well as the AlphaFold Protein Structure 
Database, are freely accessible for download and use. The test datasets were sourced from Zhang et. 

ken from the and are available in Supplementary Table 2. The LOF and GOF annotations ta  38al.
HGMD Pro 2022.2 is available only under a paid license. . are also freely available 48,GOF/LOF database 

Code Availability 
The code will be made public soon in GitHub. 

Tables 
Table 1: 

 Accuracy Precision Recall AUC 

Step 1 (ClinVar/HGMD only) 0.825 0.905 0.6 0.781 

Step 2 (COSMIC only) 0.790 0.971 0.594 0.801 

Step 3 (ClinVar/HGMD train, COSMIC 
validation) 

0.745 0.952 0.512 0.74 

Step 4 (COSMIC train, ClinVar/HGMD 
validation) 

0.666 0.616 0.866 0.667 

Table 1: LOF vs. GOF training experiments results. 
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Table 2:   

  Loss-of-Function Gain-of-Function 

Gene/Protein Cellular / 
Structural 
Implication 

Clinical 
Implication 

Possible 
Therapies 

Cellular / 
Structural 
Consequences 

Clinical 
Consequ
ences 

Drugs 

TP53/ 
56,55p53 

- Impaired 
DNA Damage 
Response 
Ineffective 
Cell Cycle 
Arrest and 
Apoptosis 
Enhanced 
Survival of 
Mutated Cells 

Increased 
Cancer Risk 
Poor 
Prognosis in 
Cancer 

MDM2 and 
MDM4 
inhibitors 
p53 immune-
based therapy 

Dominant-
Negative Effect 
New Oncogenic 
Functions 
Altered Gene 
Expression 

Aggressi
ve 
Cancer 
Phenoty
pes 
Resistan
ce to 
Therapy 

Atorvastatin 
SAHA 
(suberoylanil
ide 
hydroxamic 
acid) 

SCN5A / 
57NaV1.5 

Defective 
Nav1.5 
proteins 

 

Brugada 
syndrome 

 

 more 
sodium 
influx into 
cardiomyocyte 

 

Long QT 
syndrom
e 

 

Mexiletine 

KRAS / K-
59,60,58Ras 

V14I: - loss of 
the active site 
magnesium 
ion (active 
site 
destabilizatio
n) 
-Enhanced 
nucleotide 
exchange 

Cooperates 
with 
inflammatio
n / loss of 
tumor 
suppressors 
to induce 
pancreatic 
intraepitheli
al neoplasia 

- KRAS resistance 
mutations, e.g. 
Y71H: - Increased 
binding affinity 
(Higher affinity 
for RAF), 
promoting cell 
growth 
- Decreased 
GTPase activity, 
remains in active 
state and 
promotes cell 
growth 

Increase
d risk for 
lung, 
colorect
al and 
pancreat
ic 
cancer; 
Noonan 
and 
Costello 
syndrom
es 

afatinib, 
dacomitinib, 
erlotinib, 
gefitinib, 
osimertinib, 
cetuximab, 
panitumuma
b 
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Table 2: Examples for genes with both gain and loss of function and their putative direct and indirect 
implications in molecular and clinical aspects. 

  

SOD1 / 
63,62,61hSod1 

E101G, I114T: 
Loss of 
antioxidant 
activity by 
inability to 
bind copper 
and zinc; 
Protein 
misfolding 
and 
aggregation 

Neurodegen
eration in 
ALS 

Gene therapy / 
ASO / small 
molecule / 
stem-cell 
therapy 
(ongoing 
research) 

A5V: ~twofold 
faster turnover 
and ~16 fold 
lower 
concentration; 
higher 
expression; 
shorter half-life 

A5V: 
Rapid 
disease 
progress
ion and 
shorter 
survival 

Gene 
therapy 
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Figures 
Figure Legends 

Figure 1: A systematic overview of the TriVIAl missense pathogenicity ensemble classifier. TriVIAl is 
built upon three inputs: sequences, structures and tabular physical properties, and forwards them to 
three independent models: pLM, GNN, and fully-connected, respectively. These models create a latent 
representation with a unified dimension that are then concatenated and passed through either a stack 
of dense layers or a multi-head attention network towards a final classification layer. 

Figure 2: A box plot of prediction error rate by mutation position, for each of the five model flavors. 
The X axis represents the mutation position, in 250 bin size. The Y axis shows the distribution of the 
error rate for each bucket. The sequence-only classifier has a higher error rate when the mutation 
occurs beyond the model's context window of 1022 residues.  

Figure 3: A box plot of prediction error rate by mean AlphaFold's pLDDT. The structure-only classifiers 
have a higher error rate where the overall mean pLDDT is lower, i.e. there is opposite correlation 
between the mean pLDDT and the error rate of the structure models. 

Figures 4-8:  show TriVIAl prediction performance under several metrics: 

Figure 4: Validation ROC curves for TriVIAl and other leading classifiers on the validation set (Based on 
9352 DMS variants). TriVIAl results are drawn with bolder line. TriVIAl and AlphaMissense yield the top 
performance of 0.88 AUC while other tools reach notably lower results.   

Figure 5: Precision-Recall curves plot on the validation set, for TriVIAl and the other top-20 classifiers. 
TriVIAl results are drawn with bolder lines. The scores were taken from dbNSFP. 

Figure 6: ROC AUC bar comparison. TriVIAl bars are in blue, other leading classifiers bars in grey. 

Figure 7: PRC AUC bar comparison. TriVIAl bars are in blue, other leading classifiers bars in grey. 

Figure 8: Brier score bar comparison of TriVIAl with other leading classifiers. TriVIAl bars are in blue. 

Figure 9: t-stochastic neighbor embedding (t-SNE) 2D plot of the pathogenicity classifier's hidden 
representation, colored by LOF (blue) or GOF (orange) label. The hidden representation is taken from 
the last layer of the final classification, after the fusion blocks. 

Figure 10: Sequence model explanation of BRAF V600E mutation. Blue lines refer to the residues that 
contributed to the predicted outcome according to the protein language model, with connection width 
reflecting the relative contribution. The sequence model uses mainly residues from the DFG motif (594 
to 596) and from the ATP binding site, such as 483, 501 and nearby residues. 10A: Focus on the DGF 
motif area. 10B: Focus on the ATP binding site area. 10C: Focus on the mutation area. 10D: Overall view 
of the BRAF protein. 

Figure 11: Structure model explanation of BRAF V600E mutation. Pink lines refer to the residues that 
contributed to the predicted outcome, with connection width reflecting the relative contribution. The 
structure model finds mainly the residues from the activation loop (A-loop): residues 594 to 600, and 
the Glycine-rich loop (P-loop) – residues 464 to 471 - as contributing the most to the classifier decision. 
11A: Focus on the A-loop area. 11B: focus on the P-loop area. 11C: Focus on the mutation area. 11D: 
Overall view of the BRAF protein. 
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Figure 12: JAK2 V617F Sequence model explanation. Blue lines refer to the residues that contributed to 
the predicted outcome, with connection width reflecting the relative contribution. The sequence model 
focuses on residues around 588-607, 683, 592, in JH1 domain, and residues around 883-885, 922-925, 
935-947 in JH2 pseudokinase domain, which contribute to the stabilization of the JH2-JH1 interaction 
through salt bridging or van der Waals forces. 12A: Focus on JH1 (the kinase domain) area. 12B: Focus 
on JH2 (the pseudokinase domain) area. 12C: Focus on the mutation area. 12D: Overall view of the 
JAK2 protein. 

Figure 13: JAK2 V617F Structure model explanation. Pink lines refer to the residues that contributed to 
the predicted outcome, with connection width reflecting the relative contribution. The structure model 
finds, besides residues 523 and 570 which are crucial to the auto-inhibition process of the wild type 
form, those in the Phenyl ring of residues around 594 and the residues involved in the phosphorylation 
of JH2 domain and thus the SH2-JH1 interaction. 13A: Focus on the auto-inhibition area in JH1. 13B: 
Focus on the Phenyl ring area. 13C: Focus on the mutation area. 13D: Overall view of the JAK2 protein. 

Figure 14: KRAS G12D Sequence model explanation. Blue lines refer to the residues that contributed to 
the predicted outcome, with connection width reflecting the relative contribution. The sequence model 
utilizes residues mainly from the allosteric sites in switch I and II: residues 30-40 and 58-70, 
respectively; and the membrane association domain - C-terminal structural element, named the 
hypervariable region (HVR), which plays a crucial role in anchoring RAS to the membrane in residues 
180-188. In addition, it utilizes lysine residues such as K101, K104, K128 and K147 which were observed 
to function as acetylation sites. 14A: Focus on switches I and II area. 14B: Focus on the C terminal area. 
14C: Focus on the mutation area. 14D: Overall view of the KRAS protein. 

Figure 15: KRAS G12D Structure model explanation. Pink lines refer to the residues that contributed to 
the predicted outcome, with connection width reflecting the relative contribution. The structure model 
focuses on the P-loop, in residues 10-17, and Switch I and II regions, which undergo conformational 
changes upon GTP or GDP binding. The G12D mutation alters the dynamics of these regions, affecting 
how KRAS interacts with GTPase-activating proteins (GAPs), Guanine nucleotide exchange factors 
(GEFs), and downstream effectors. 15A: Focus on the P-loop area. 15B: Focus on switches I and II area. 
15C: Focus on the mutation area. 15D: Overall view of the KRAS protein. 

Figure 16: VHL R161Q Sequence model explanation. Blue lines refer to the residues that contributed to 
the predicted outcome, with connection width reflecting the relative contribution. The sequence model 
predicts the pathogenicity using residues from the β-domain of pVHL (residues 63–154 and 193–204), 
which are involved in the binding sites of both elongin-C and HIF. 16A: Focus on the β-domain. 16B: 
Different view of the β-domain. 16C: Focus on the mutation area. 16D: Overall view of the VHL protein. 

Figure 17: VHL R161Q Structure model explanation. Pink lines refer to the residues that contributed to 
the predicted outcome, with connection width reflecting the relative contribution. The structure model 
focuses on residues from α-helical domain (residues 155–192) which directly contacts elongin-C. 17A: 
Focus on the α-helical domain. 17B: A different view of the α-helical domain. 17C: Focus on the 
mutation area. 17D: Overall view of the VHL protein. 
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Figure 3: 

 

Figure 4: 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 5, 2024. ; https://doi.org/10.1101/2024.06.05.24308476doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.05.24308476


19 

Figure 5:
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Figure 6:

 

Figure 7:
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Figure 8: 

 

Figure 9: 
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Figure 13: 
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Case Studies 
Case Study 1: BRAF p.V600E 

The BRAF protein takes role in intracellular signaling pathways that regulate cell growth. It is known to 
be mutated in several human cancers, such as melanoma, non-small-cells lung carcinoma, 
adenocarcinoma of the lung, and glioblastoma among others.  

The V600E mutation, a substitution of Valine with Glutamic acid, causes the protein to be 
phosphomimetic because of the negative charge of the acidic Glutamic acid. It mimics the 
phosphorylation of other residues in the activation segment – specifically Threonine (T) at position 599 
and Serine (S) at position 602 which activate the wild-type protein. The V600E mutation disrupts the 
normal interaction between the protein's Glycine-rich loop (P-loop) and the activation loop (A-loop), 
which in their usual state help regulate the protein's activity. The loss of BRAF inhibition control is 
oncogenic, leading to poor suppression of tumor growth. Figures 10 and 11 present visualizations 
showing the classifier explanations for the "Pathogenic" outcome prediction. The sequence model uses 
mainly residues from the DFG motif (594 to 596) and from the ATP binding, such as 483, 501 and 
nearby residues (Figure 10). The structure model finds mainly the residues from the activation loop (A-
loop) – residues 594 to 600, and the Glycine-rich loop (P-loop) – residues 464 to 471 - as contributing 
the most to the classifier decision (Figure 11). 

Case Study 2: JAK2 p.V617F 
The Janus Kinase 2 (JAK2) gene encodes a key protein in the signaling pathways of several growth 
factors and cytokines, particularly those involved in hematopoiesis (blood cell production). 

The JAK2 V617F mutation is a missense mutation where Valine (V) is substituted by Phenylalanine (F) at 
the 617th amino acid position in the JAK2 protein. 

This mutation is strongly associated with myeloproliferative neoplasms (MPNs), a group of disorders 
characterized by the excessive production of one or more types of blood cells. The most common 
MPNs associated with the JAK2 V617F mutation include polycythemia vera, essential 
thrombocythemia, and primary myelofibrosis. 

In the wild type form, the JAK2 protein is activated by the binding of cytokines to their receptors, 
leading to the controlled production of blood cells. However, the V617F mutation results in a structural 
change that causes the JAK2 protein to be constitutively active, meaning it signals for blood cell 
production even in the absence of cytokines. This leads to the overproduction of erythrocytes. The 
sequence model focuses on residues around 588-607, 683, 592, in JH1; residues around 883-885, 922-
925, 935-947 in JH2 pseudokinase domain, which contribute to the stabilization of the JH2-JH1 
interaction through salt bridging or van der Waals forces (Figure 12). The structure model finds, besides 
residues 523 and 570 which are crucial to the auto-inhibition process of the wild type form, those in 
the Phenyl ring of residues around 594 and the residues involved in the phosphorylation of JH2 domain 
and thus the SH2-JH1 interaction (Figure 13). 

 70al. line with experimental structural biology findings, such as Chen, E. et-These explanations are in
.71and Gou, P. et al. 
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Case study 3: KRAS p.G12D 
GTPase KRas (KRAS) is a signal transducer protein, which plays an essential role in various cellular 
signaling events such as in regulation of cell proliferation, differentiation and survival. KRAS G12D 
mutation results in an amino acid substitution at codon 12 from Glycine (G) to Aspartic acid (D), 
contributing to uncontrolled cell growth and cancer development. The sequence model utilizes 
residues mainly from the allosteric sites in switch I and II, residues 30-40 and 58-70, respectively, and 
the membrane association domain - C-terminal structural element, named the hypervariable region 

. In addition, 72188 -, which plays a crucial role in anchoring RAS to the membrane in residues 180(HVR)
it utilizes lysine residues such as K101, K104, K128 and K147 which were observed to be acetylation 

-loop, in residues 10-. The structure model focuses on the P(Figure 14) 73Knyphausen P., et alites by s
17, and Switch I and II regions, which undergo conformational changes upon GTP or GDP binding. The 
G12D mutation alters the dynamics of these regions, affecting how KRAS interacts with GTPase-

 74ctivating proteins (GAPs), Guanine nucleotide exchange factors (GEFs), and downstream effectorsa
(Figure 15) 

Case Study 4: VHL p.R161Q 
The von-Hippel – Lindau gene (VHL) is a tumor suppression gene which plays a critical role in in 
regulating cell growth and division. The VHL protein which is encoded by this gene, pVHL, is involved in 
the degradation of hypoxia-inducible factors (HIFs) transcription factors that respond to change in the 
oxygen levels within the cellular environment. Under normal oxygen conditions, VHL binds to HIFs and 
targets them for degradation, preventing the activation of genes that promote cell survival and 
angiogenesis. pVHL forms a ternary complex with the elongin C and elongin B proteins (also known as 
VCB complex), which is essential for pVHL stability and function. 

The R161Q mutation in pVHL isoform 30 results in the substitution of Arginine (R) with Glutamine (Q) 
 75at position 161 position of the VHL amino acid sequence. 

The sequence model predicts the pathogenicity using residues from the β-domain of pVHL (residues 
63–154 and 193–204), which are involved in the binding sites of both elongin-C and HIF (Figure 16). The 
structure model focuses on residues from α-helical domain (residues 155–192) which directly contacts 
elongin-C (Figure 17). 

The presented case studies demonstrate the model capabilities in modelling the molecular properties 
involved in different pathogenicity mechanisms. These modeling also provides the end user with 
valuable insights into the etiology of the mutations and their implications. Understanding the 
mechanisms of mutations also paves the way for the development of more effective and targeted 
treatment strategies. 
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