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ABSTRACT: 

Purpose: The precise classification of thymic 

tumors using whole slide images (WSIs) is 

essential for accurate diagnosis and treatment. 

While traditional Convolutional Neural Networks 

(CNNs) are commonly used for this purpose, 

emerging models tailored to pathology, such as 

Phikon and HistoEncoder, present promising 

alternatives as feature extractors. Additionally, the 

limited availability of annotated WSIs has driven 

the development of weakly-supervised classifiers 

like multiple-instance learning (MIL) models. In 

this study, we evaluate nine different combinations 

of extractor-classifier pairs for thymic tumor 

subtyping, including a novel, self-developed 

attention-based MIL classifier, AttenMIL. 

Methods: The process began with curating a 

dataset of thymic tumor Whole Slide Images 

(WSIs) from the TCGA platform. Using the 

Yottixel method, patches were derived from these 

WSIs, and features were extracted from the patches 

using three different pathology-specific models: 

Phikon, HistoEncoder, and a pathology-fine-tuned 

ResNet50. The extracted features were then 

organized into small bags of instances through a 

chunking technique. Subsequently, three MIL 

classifiers AttenMIL, TransMIL, and Chowder 

were trained. Finally, the efficacy and 

generalizability of nine different combinations of 

extractor-classifier pairs were evaluated on unseen 

test images. Confusion matrices for each pair were 

utilized to provide insights into misclassification 

patterns and potential error sources. 

Results: The Phikon feature extractor consistently 

delivered the highest classification accuracies, 

particularly when paired with the AttenMIL and 

Chowder classifiers, achieving up to 99% accuracy. 

This combination significantly outperformed other 

feature extractor-classifier pairs. Confusion 

matrices revealed that the AB and B3 subtypes 

were the most commonly confused classes across 

the different models. 

Conclusions: The study demonstrates the potential 

of domain-specific feature extractors like Phikon, 

when coupled with robust MIL classifiers such as 

the novel AttenMIL and Chowder, in enhancing the 

accuracy and reliability of thymic tumor 

classification. The chunking-based augmentation 

method proved effective for thymic tumors, which 

are relatively homogeneous, but its applicability to 

heterogeneous tumors remains to be explored. 

Future research should address class imbalances 

and improve generalizability to different datasets. 
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1 INTRODUCTION 

Histopathology is the study of diseased tissues at 

the microscopic level, using various staining 

techniques and imaging modalities. It plays a 
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crucial role in the diagnosis and classification of 

tumors, including thymic neoplasms. 

Histopathological examination involves analyzing 

cellular morphology, and architectural patterns of 

tumor samples obtained through biopsy or surgical 

resection. 

Thymic tumors, a type of anterior mediastinum 

neoplasm, originate from epithelial cells of the 

thymus gland. These tumors fall into two broad 

categories: thymomas and thymic carcinomas. 

Thymomas are typically slow-growing, while 

thymic carcinomas tend to be more aggressive, 

invasive, and prone to metastasizing. Thymomas 

display a diverse array of histological subtypes, 

formed by thymic epithelial cells with varying 

degrees of lymphocytic infiltration. The World 

Health Organization (WHO) classifies five types of 

thymomas based on their histological features: type 

A (spindle epithelial cell with rare lymphocytes), 

type AB (mixed A & B), type B1 (lymphocyte-

rich), type B2 (equal epithelial and lymphocyte 

count), and type B3 (epithelial-rich) [1]. 

Accurate diagnosis and subtyping of thymic tumors 

are critical for determining appropriate treatment 

strategies and predicting patient prognosis. 

However, this task can be challenging due to 

tumors' complexity and variability, which include a 

broad spectrum of overlapping histological patterns 

and cellular compositions. Traditional diagnostic 

methods, such as microscopic examination of 

biopsy samples, are subjective and potentially 

susceptible to human error, interpretation biases, 

and inter-observer variability among pathologists. 

Consequently, there is a growing interest in 

producing more objective and reproducible tumor 

classification methods by leveraging the power of 

artificial intelligence (AI) and deep learning 

techniques. 

Deep learning (DL), a subset of machine learning, 

employs artificial neural networks inspired by the 

structure and functionality of the human brain. 

These networks consist of multiple interconnected 

layers capable of learning hierarchical 

representations of data, allowing them to recognize 

complex patterns and make precise predictions. 

DL, particularly convolutional neural networks 

(CNNs), has demonstrated impressive performance 

in various medical imaging tasks in recent years 

[2]. CNNs are designed to extract relevant features 

from raw image data, making them well-suited for 

analyzing complex visual patterns and 

morphological characteristics present in 

histopathology images. These techniques have the 

potential to enhance diagnostic accuracy, reduce 

inter-observer variability, and provide quantitative 

analyses beneficial for clinical decision-making [2]. 

One challenge in applying CNN to histopathology 

images is the limited availability of large datasets 

necessary for training complex models. To address 

this limitation, researchers have implemented 

transfer learning techniques that adapt CNN 

models trained on a large dataset (such as 

ImageNet, a vast dataset of natural images) to a 

smaller, domain-specific dataset (such as 

histopathology images). This method allows the 

model to utilize the low-level features learned from 

the larger dataset while refining its higher layers to 

meet the specific task requirements [3]. 

However, the scarcity of annotations in 

histopathology Whole Slide Images (WSIs) 

necessitates the adoption of weakly-supervised 

approaches, such as multiple instance learning 

(MIL).  

WSI, a huge histopathology image comprising 

hundreds of thousands of pixels, could generate 

hundreds or even thousands of small 

images/patches (called instances). The patches 

generated from each WSI are considered a single 

unit (or a bag of instances) sharing the same WSI 

label.  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 17, 2024. ; https://doi.org/10.1101/2024.06.07.24308609doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.07.24308609
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 
 

MIL models are designed to predict WSI/bag-level 

labels. Several well-established MIL models, 

including attention-based MIL, have proven 

effective in weakly-supervised medical image 

classification [4-6]. Herein, we introduce a simple, 

and robust attention-based MIL classifier 

(AttenMIL) to enhance the classification 

performance. 

To address the limited number of WSIs in weakly-

supervised tasks, we propose a novel method for 

dataset augmentation called ‘feature chunking’. In 

this method, WSI-derived features are split into 

smaller bags, each containing 200 features. This 

approach simulates the diagnostic process of 

pathologists, where a few relevant microscopic 

fields, rather than the entire slide, are sufficient for 

an accurate diagnosis. 

On the other hand, unlike CNNs, which perform 

feature extraction and classification within the 

same model, training MILs require pre-extracted 

features using a separate model. Furthermore, 

while CNNs are effective at producing high-quality 

features, emerging pathology-specific models like 

Phikon [7] and HistoEncoder [8] are proving more 

efficient at extracting relevant and reliable features 

from histopathology images. 

In the current study, we present a comprehensive 

analysis of AI-based subtyping of thymic tumors in 

WSIs. This analysis compares 3 domain-specific 

feature extractors combined with 3 MIL classifiers, 

in different combinations, describing end-to-end 

weakly-supervised WSI classification pipelines. In 

these pipelines, we employ the novel chunking 

method and introduce the novel AttenMIL 

classifier. 

2 METHOD 

The DL classification pipelines included several 

key stages: initial dataset preparation, model 

training, and performance evaluation (Fig. 1). This 

process began with the meticulous curation of 

datasets, starting with the collection of WSIs. 

Patches were then extracted from these images, and 

features were subsequently extracted from the 

patches using 3 different models. These extracted 

features were organized using chunking techniques. 

Three distinct classifiers were trained on the 

bagged features, and their performance was 

rigorously evaluated using unseen test images to 

assess their effectiveness and generalization 

capabilities. 

 

Fig. 1 Flowchart illustrates the Overall Methodology 
(end-to-end pipeline), depicting the different stages and 

components involved in the AI-based classification 
process 

2.1 DATASET PRE-PROCESSING 

2.1.1 Data Collection and Selection: 

The dataset comprised 242 histopathology WSIs of 

thymic epithelial tumors obtained from the publicly 

accessible TCGA database. These WSIs varied in 

size, ranging from 51 MB to 3.4 GB. The WSIs 

were categorized into six distinct subtypes/classes, 

with slide-level labels provided; detailed tumor 

annotations or masks were unavailable. 

2.1.2 Patch Extraction: 

WSIs are huge multilayer images with hundreds of 

thousands of pixels that necessitate being split into 

small patches to fit DL model training 

requirements.  

To extract patches from tissue areas in WSIs, rather 

than blank backgrounds, we adopted a robust 

technique, called Yottixel, developed by KimiaLab 
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[9]. Initially, Yottixel generates a tissue mask to 

isolate patches solely from tissue areas, 

maintaining a predetermined tissue-to-background 

ratio; patches with 30% background or more, were 

subsequently discarded. This method produces 

patches of size 250x250 pixels. Yottixel can also 

cluster the resulting patches, extract their features, 

and generate a barcode based on them to build an 

Image Search Engine. However, in this study, we 

only utilized the patch extraction part. 

2.2 Feature Extraction: 

Before feature extraction, patches were 

standardized and resized to 224x224 pixels to 

comply with the requirements of extraction models. 

During this phase, three distinct models were 

employed to extract features from patches: 

ResNet50: A CNN pre-trained on ImageNet [10], 

and finetuned on the UBC-OCEAN dataset. This 

dataset contains more than 500 WSIs of different 

types of epithelial ovarian cancers [11-13]. 

Histoencoder: A pathology-specific model that has 

been trained in a self-supervised technique on 

Prostate cancer tissue images to extract and cluster 

features from histology images [8]. 

Phikon: Another self-supervised learning model 

tailored to extract features from histology images 

[7].  

Phikon has its preprocessing function 

(AutoImageProcessor), while the other 2 models 

needed a custom normalization technique. 

2.3 Construction of Features Bags: 

Instead of treating the features extracted from each 

WSI as a unit/bag, and consequently getting a 

limited number of bags for training, a pioneering 

chunks-based method was introduced. This 

innovative approach involves grouping features 

into bags of uniform size, each containing 200 

features/instances. This process is achieved by the 

(torch.chunk) function. Employing this technique 

not only increased the size of the training dataset 

by a factor of ten (as shown in Table 1) but also 

produced bags of consistent sizes, eliminating the 

need for additional padding measures. 

Although, this method works very well in thymic 

tumors, which are relatively homogeneous; 

however, in heterogeneous tumors, larger-sized 

bags or an additional tumor segmentation phase 

might be required. 

The following table presents the dataset with the 

distribution of thymic tumor subtypes including the 

number of WSIs, the patches/features extracted, 

and the corresponding number of bags created.  

 

 

 

 

Table 1 Dataset distribution among thymic tumor 

subtypes 

Tumors’ 

Subtypes 

A AB B1 B2 B3 CA 

N. of 

WSIs 

34 68 39 61 22 18 

N. of 

Patches/ 

Thousand 

56 120 80 102 40 30 

N. of 

Bags 

(200-

sized) 

280 600 400 510 200 150 

2.4 Classification Models 

Given the weakly supervised nature of our 

approach, which involves slide/bag-level labels, the 

most suitable classifiers were those based on 

Multiple Instance Learning (MIL). In MIL, the 

training data is organized into bags, with each bag 

containing multiple instances that share a single 

label. In this study, we experimented with two 

well-known MIL models (TransMIL and 

Chowder), as well as a novel self-built, attention-

based MIL classifier named ‘AttenMIL’. 

AttenMIL incorporates attention mechanisms 

within a MIL architecture. The attention 

mechanism allows the model to focus on specific 

regions or features within the input data, enhancing 

its ability to capture relevant information. This 

model is particularly effective in tasks where 

certain parts of input data are more informative 

than others. AttenMIL is composed of the 

following layers: 

1. Normalization function ensures that the input 

data is on a consistent scale, which is crucial for the 
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stability and performance of neural network 

models. 2. Instance Normalization Layer 

normalizes the input data instance-wise, improving 

the model's robustness. 3. Fully Connected Layers 

with ReLU activations and dropout for 

regularization. 4. Attention Mechanism computes 

attention scores for instance-level predictions, 

allowing the model to focus on the most relevant 

parts of the input. 5. Bag-level prediction uses 

attention scores to aggregate instance-level 

predictions into a final bag-level output. 

TransMil (Transformer based Correlated Multiple 

Instance Learning for WSI Classification) [5]: 

Unlike traditional MIL methods that treat instances 

independently, TransMIL accounts for the 

correlation between different instances within a 

WSI. This approach uses a transformer model to 

capture both morphological and spatial information 

from images. 

Chowder [14]: A MIL-based classifier designed for 

weakly supervised learning tasks. It employs a 

combination of convolutional neural networks 

(CNNs) and MIL techniques to learn discriminative 

representations from bag-level labels. This involves 

embedding the features from individual image tiles 

and aggregating the most relevant positive and 

negative evidence tiles to make predictions. 

These 3 classifiers are specifically tailored for tasks 

where only limited labeling is available, making 

them suitable choices for scenarios where 

annotations are provided at a higher level of 

granularity, such as slide/bag-level labels. 

2.5 Classifier Training & Evaluation 

2.5.1 Experimental Setup 

Train-test Split: The dataset was partitioned into 

training and testing sets using an 80% train and 

20% test split, ensuring a stratified distribution 

across classes. This approach maintained a 

proportional representation of each tumor subtype 

in both training and testing subsets, thus 

minimizing bias in model evaluation. 

Hardware Specifications: The experiments were 

conducted on a robust hardware setup comprising a 

GPU with 12 GB of memory and 8000 CUDA 

cores, supplemented by 32 GB of RAM and an 

Intel Core i7 13th Generation processor. This high-

performance configuration enabled efficient 

training and evaluation of the deep learning 

models. 

Implementation Framework: PyTorch, a widely 

adopted deep learning framework renowned for its 

flexibility and scalability, served as the primary 

implementation tool. Its intuitive interface and 

extensive library of pre-built modules facilitated 

seamless development and experimentation with 

complex neural network architectures. 

Hyperparameters: Several key hyperparameters 

were meticulously tuned to optimize model 

performance. The batch size was set to 32, striking 

a balance between computational efficiency and 

model convergence. Number of epochs was set at 

100. We utilized Adams as an optimizer with a 

learning rate scheduler (the initial learning rate was 

configured to start at 0.001). Additional 

hyperparameters fine-tuning tailored to each 

specific model architecture and training regimen 

was conducted iteratively in cross-validation 

training loops to maximize model efficacy and 

generalization capabilities. 

2.5.2 Training Process 

The training process involved training these deep 

learning architectures to effectively classify the 

features extracted in the preceding step and 

associate them with their respective tumor 

subtypes. This encompassed two key phases: 

training and validation, where meticulous attention 

was paid to prevent over-fitting and enhance model 

generalization. 

Despite the relatively high number of epochs set at 

100, a cautious approach was taken by 

incorporating early stopping with a patience of 10 

into the training regimen. This strategic measure 

ensured that training ceased when the model's 

performance plateaued on the validation set, thus 

mitigating the risk of overfitting. By monitoring the 

model's performance at regular intervals during 

training, early stopping provided a safeguard 

against the potential deleterious effects of over-

training, allowing the model to attain optimal 

performance while maintaining generalization 

capabilities. 

The decision to employ the Adam optimizer 

stemmed from its proven efficacy in iteratively 

updating the model's parameters to minimize 

classification error. To further enhance its 

performance, the Adam optimizer was integrated 
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with a learning rate scheduling mechanism with 

patience of 3. This adaptive technique dynamically 

modulated the learning rate throughout the training 

process, thereby facilitating smoother convergence 

toward the optimal solution. By intelligently 

adjusting the learning rate based on the observed 

performance, the model could navigate through the 

optimization landscape more efficiently, ultimately 

enhancing its convergence speed and overall 

effectiveness. 

Addressing the variability in class sizes, a 

customized loss function named 

ClassWeightedCrossEntropyLoss was utilized. 

This loss function assigned higher weights to less 

frequent classes, thereby alleviating the impact of 

class imbalances on model training.  

Furthermore, to comprehensively assess model 

performance and robustness, a cross-validation 

strategy employing 5 K-folds with an 80/20 split 

ratio and 32 batch size, was implemented. This 

technique partitioned the dataset into five equally 

sized folds, iteratively training the model on four 

folds and validating on the remaining fold to obtain 

reliable estimates of performance metrics. 

2.5.3 Classifier Inference Procedure: 

To evaluate the performance of each combination 

extractor-classifier on an unseen test dataset, the 

best-performing weight, across all the five folds of 

the cross-validation training process, has been 

chosen. 

2.5.4 Performance Metrics 

In evaluating the efficacy of classification models 

for thymic tumors, a comprehensive suite of 

evaluation metrics has been utilized. These metrics 

serve as quantitative measures by which the 

model's predictions are compared against the 

ground truth labels provided by expert pathologists 

(dataset labels). 

Evaluation metrics employed in this study include: 

Accuracy: represents the overall proportion of 

correctly classified samples across all classes. It 

provides a broad assessment of the model's 

performance in accurately predicting tumor 

subtypes. 

Confusion Matrix: A fundamental tool in 

performance evaluation, the confusion matrix 

provides a detailed breakdown of correct and 

incorrect classifications for each class. It offers 

insights into the model's strengths and weaknesses, 

facilitating a granular analysis of its predictive 

capabilities across different tumor subtypes. 

3 RESULTS 

3.1 Extracted features: 

The following table provides valuable information 

regarding the dimensions (number of features per 

patch) and storage requirements of the extracted 

features (Table 2). 

Table 2: Extracted features by each DL model 

Extractor ResNet50 Histoencoder Phikon 

N. of 
Features 

2048 1152 768 

Required 
Storage 

4.4 GB 2.5 GB 1.6 GB 

3.2 Performance metrics: 

Best Overall Performance: The combination of 

Phikon as a feature extractor with either AttenMIL 

or Chowder as classifiers demonstrated the highest 

performance with near-perfect scores. 

The classification accuracies of the different 

combinations (extractor-classifier) are shown in 

(Fig. 2).  

 

Fig. 2 Classification accuracy of the different 
combinations (extractor-classifier) 
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3.3 Confusion Matrix and Error Analysis 

The confusion matrices for each feature extractor-

classifier pair provide insights into 

misclassification patterns and potential error 

sources (table 3).  

ResNet50-AttenMIL model performs very well in 

predicting class A, B2, and CA, with 100%, 97.8%, 

and 97.1% accuracy respectively. It also does well 

on class B3, correctly predicting 95.7% of samples 

with 4.4% of B3 predicted as AB and B2. The 

model struggles most with classes AB (88.7% 

correct), and B1 (84.8%) with 8.7% of AB and 

10.1% of B1 samples misclassified as B2. 

ResNet50-TransMil also excels at predicting class 

A (100% accuracy). It performs well on class AB 

(93.2), CA (93.1%), and B3 (92.1%), while it 

struggles with class B1 (88.5%) and B2 (88.5%). 

There is some confusion between B1 and B2 (6.9% 

of B1 is misclassified as B2 and 4.3% of B2 is 

misclassified as B1). 

ResNet50-Chowder performs exceptionally well on 

class A and CA, with 100% accuracy for both. It 

also does very well on classes B2 (99.3%), B1 

(98.1%), and AB (97.8%). The main issue was with 

class B3 (93.6%) with 4.3% confused as AB. 

HistoEncoder-AttenMIL achieves high accuracy for 

classes B3 (97.9%) and AB (97.4%). Performance 

is also strong for class B2 at 96.9% and Class B1 at 

94.4%. However, it struggles with classes A, and 

CA, with accuracies of 87.5%, and 90.9% 

respectively. There is notable confusion between 

classes A with AB and B3. Furthermore, a high 

percentage (9.1%) of CA is weirdly misclassified 

as B3. 

HistoEncoder-TransMil delivers the best 

performance on class CA at 97.7% accuracy. It also 

performs well on classes AB (94.9%), A (92.8%), 

and B2 (92.1%). However, there is more confusion 

with classes B1 (87.6%) and B3 (88.0%), with 8% 

of B3 cases misclassified as class AB. 

HistoEncoder-Chowder performs extremely well 

for class CA, achieving 100% accuracy. It also 

does well on classes B3 (97.9%), and AB (97.5%). 

Performance on classes B1, A, and B2 is slightly 

lower at (96.4%, 96.4%, and 96.0% respectively). 

There was 6% confusion between B1 and B2 cases.  

Phikon-AttenMIL (Fig. 3) performs very well at 

classifying class CA, with 100% accuracy. It also 

does well in classes A, AB, B1, and B2 with 

98.5%, 98.2%, 98.9%, and 99.2% accuracy 

respectively. Performance is slightly lower on class 

B3 at 97.8% accuracy. There is very little 

confusion between the classes, 2.2% of B3 cases 

are misclassified as B2, and 1.5% of A cases are 

misclassified as AB. 

Phikon-TransMil has 100% accuracy on class A. It 

performs well on classes AB, B1, B2, and CA at 

97.4%, 98.8%, 97.6%, and 97.3% respectively. 

Accuracy is lower on class B3 at 92.7%. There is 

more confusion compared to the other two 

classifiers. A 7.6% of B3 cases are misclassified as 

AB and B2. 

Phikon-Chowder (Fig. 4) achieves 100% accuracy 

on classes A, B1, and CA. Performance is very 

high on classes AB, B2, and B3 at 98.1%, 99.2%, 

and 97.7% respectively. There is slight confusion 

in some classes with 2.3% of B3 cases 

misclassified as AB, and 1.3% of AB cases 

misclassified as B2. 

 

Table 3: Accuracy of Thymic Tumor prediction by Different Extractor-Classifier Combinations for each subtype. 

Class R-A R-T R-C H-A H-T H-C P-A P-T P-C AvgClass 

A 100.0% 100.0% 100.0% 87.5% 92.8% 96.4% 98.5% 100.0% 100.0% 97.24% 

AB 88.7% 93.2% 97.8% 97.4% 94.9% 97.5% 98.2% 97.4% 98.1% 95.91% 

B1 84.8% 88.5% 98.1% 94.4% 87.6% 96.4% 98.9% 98.8% 100.0% 94.17% 

B2 97.8% 88.5% 99.3% 96.9% 92.1% 96.0% 99.2% 97.6% 99.2% 96.29% 

B3 95.7% 92.1% 93.6% 97.9% 88.0% 97.9% 97.8% 92.7% 97.7% 94.82% 

CA 97.1% 93.1% 100.0% 90.9% 97.7% 100.0% 100.0% 97.3% 100.0% 97.34% 

AvgCom 94.02% 92.57% 98.13% 94.17% 92.18% 97.37% 98.77% 97.30% 99.17%  

R: ResNet50, H: HistoEncoder, P: Phikon, A: AttenMIL, T: TransMil, C: Chowder AvgCom: Average accuracy for each combination 

across all classes. AvgClass: Average accuracy for each class across all combinations.
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Fig. 3 Confusion matrix for the Phikon-AttenMIL model 

 
Fig. 4 Confusion matrix for the Phikon-Chowder model

4 DISCUSSION 

In this study, we evaluated the performance of nine 

different deep-learning pipelines for subtyping 

thymic tumors WSIs into six classes (A, AB, B1, 

B2, B3, CA). The pipelines were constructed by 

combining a pathology-specific feature extractor 

(ResNet50, HistoEncoder, or Phikon) with a MIL 

classifier (AttenMIL, TransMil, or Chowder).  

4.1 Analysis of Classification Performance 

The classification performance of the proposed 

models is evaluated using accuracy and confusion 

matrices. By rigorously analyzing these metrics, we 

could gain insights into the strengths and 

limitations of these models, allowing for informed 

comparisons between approaches.  

The study reports impressive results, with most 

combinations achieving accuracies above 0.92 and 

some even reaching near-perfect accuracy (0.98-

0.99). Our results show that the choice of feature 

extractor and classifier had a significant impact on 

the overall model performance. 

ResNet50, a well-established architecture, 

demonstrated high accuracy with Chowder (0.98) 

but lower accuracy with the other 2 classifiers 

(0.93, 0.92). Overall, its accuracy across all 

classifiers was above 0.92 which is better than a 

previous study that reported (AUC 0.91 and 0.9) 

using ResNet50-Chowder for lung tumors and 

lymph node metastasis classification tasks 

respectively [14]. However, the model was only 

pre-trained on ImageNet in that study, while our 

version was fine-tuned on histopathology images.  

ResNet50's primary weakness lies in its 

computational complexity and resource-intensive 

nature. Extracted features are of high 

dimensionality, leading to increased storage 

requirements and computational overhead during 

training and inference.  

Histoencoder, a self-supervised learning foundation 

model designed to extract features from 

histopathology images, showed competitive 

performance, especially with AttenMIL and 

Chowder (Acc. 0.95 and 0.97). This is also better 

than a recent study exploring the potential of 

Histoencoder to classify breast cancers (Accuracy 

0.89) [15]. While its average performance across 

all the classifiers is close to ResNet50, the smaller 

size of extracted features (1152) compared to 

ResNet50 (2048) may indicate a potential trade-off 

between feature richness and classification 

performance. The current available Histoencoder is 

pre-trained on prostate cancer images which are 

different in morphology and architecture from 

thymoma, this might explain its modest 

achievement, however, Histoencoder proved its 

superiority in features clustering and tissue 

segmentation [8]. 

Phikon, another histopathology-specific self-

supervised learning model, exhibits outstanding 

results across the board, with near-perfect metrics 

(0.98-0.99) for all classifiers. Phikon's ability to 

learn discriminative representations from 

histopathological data contributes to its exceptional 

performance. This novel approach advances the 
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field by demonstrating the effectiveness of domain-

specific self-supervised learning in capturing 

discriminative features for thymic tumor 

classification. Its extracted features, while useful, 

are smaller in size compared (768) to ResNet50, 

and HistoEncoder, possibly indicating a trade-off 

between feature richness and performance. 

However, its exceptionally high-performance 

warrants further validation on external datasets to 

assess generalization and rule out overfitting.  

The introduction of self-supervised domain-

specific learning models, especially Phikon, 

represents a notable improvement over the 

traditional CNN-based approach. These models 

demonstrate superior performance in tumor 

classification tasks, underscoring the importance of 

leveraging domain-specific features for enhanced 

accuracy and robustness. 

On the other hand, using MIL classifiers in 

conjunction with domain-specific feature extractors 

further enhances performance by effectively 

utilizing bag-level labels in weakly supervised 

settings.  

AttenMIL, while simple, showed impressive results 

when combined with the proper domain-specific 

feature extractor (Phikon). 

Through careful hyperparameter tuning, 

regularization techniques, and model selection, we 

have optimized the performance of each approach, 

achieving commendable accuracy scores across 

different combinations of extractors and classifiers. 

4.3 Confusion Matrix and Error Analysis: 

The confusion matrices for each feature extractor-

classifier pair provide insights into 

misclassification patterns and potential error 

sources. All the nine confusion matrices 

corresponding to the nine different combinations 

are available on the current project repository: 

https://github.com/hkussaibi. 

The Phikon extractor consistently yielded the 

highest accuracies when paired with any of the 

three classifiers, with most class-level accuracies 

exceeding 97%. The HistoEncoder and ResNet50 

extractors also performed well but had slightly 

lower accuracies and more inter-class confusion 

compared to Phikon. 

Regarding classifiers, AttenMIL and Chowder 

generally outperformed TransMil when combined 

with any feature extractors. AttenMIL 

demonstrated the best overall performance, 

achieving the lowest inter-class confusion. 

Chowder delivered comparable results with slightly 

more confusion between certain classes. TransMil 

had lower accuracies on some classes and more 

misclassifications compared to the other two 

classifiers. 

These trends suggest that Phikon paired with 

Chowder or AttenMIL offers the most robust 

performance for thymic tumor classification, while 

ResNet50 and HistoEncoder also perform well but 

with specific areas of improvement needed. 

Based on these findings, we recommend using the 

Phikon extractor combined with either AttenMIL 

or Chowder classifier for thymic tumor 

classification tasks. These combinations delivered 

the best performance in our experiments. However, 

the specific choice may depend on the relative 

importance of accuracy versus inter-class confusion 

for a given use case. 

Achieving high accuracy for class A, and CA is a 

notable strength across all combinations, indicating 

a relatively easier classification for this tumor 

subtype due to its distinct morphology from other 

classes. 

The models struggled in correctly predicting 

certain types like B3 which might be explained by 

the low number of B3 training cases and also by a 

relatively close morphology with other types.  

To further improve classification performance, we 

suggest focusing on better-differentiating types 

AB, B1, and B3, as those were the most commonly 

confused classes. Collecting more training data, 

especially for the rare types like B3, may help the 

models learn to distinguish these challenging cases. 

Experimenting with other neural network 

architectures and hyperparameter settings could 

also potentially boost performance. 

4.4 Potential Biases and Limitations 

While the current study demonstrates significant 

progress in applying deep learning techniques to 

the classification of thymic tumors, it is important 

to acknowledge potential biases and limitations in 

the dataset, methodology, and results.  

Class imbalances, where certain thymic tumor 

subtypes may be under-represented, can lead to 

biases and reduced performance for those classes.  
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Thymic tumors are relatively homogeneous, which 

explains the high performance of chunking-based 

augmentation of the dataset. However, this method 

might not work well with heterogeneous tumors, or 

WSIs that include only a focal tumor area. In such 

cases, using larger-sized bags or incorporating a 

pre-segmentation step is necessary. 

The generalizability of the models to unseen data 

from different sources or acquired under different 

conditions should also be considered. 

Histopathology images can be affected by various 

artifacts, such as staining variations, tissue folds, or 

image quality issues, which may impact the 

model's performance. Ensuring robustness to these 

artifacts and noise is crucial for reliable 

classification results.  

On the other hand, the interpretability of 

pathology-specific self-supervised models 

(Histoencoder & Phikon) remains a concern, as 

they are often perceived as "black boxes" making it 

difficult to understand the reasoning behind their 

predictions. This lack of transparency can hinder 

trust and acceptance among healthcare 

professionals. 

4.5 Future Research Directions 

Future work could include incorporating additional 

data augmentation techniques to address class 

imbalances, improve generalization, and enhance 

clinical trust and adoption. Acquiring larger, high-

quality, and diverse datasets through collaborative 

efforts among multiple medical centers and 

standardized data collection protocols can improve 

the generalization and robustness of the models. 

Collaborations between AI experts and pathologists 

to validate findings with prospective clinical 

validation studies to assess real-world performance 

will be crucial for translating these research 

advances into clinical practice and integrating them 

into diagnostic workflows. 

Exploring multi-modal data fusion, such as 

incorporating radiology images, genetic 

information, or electronic health records, could 

potentially improve the accuracy and 

comprehensiveness of thymic tumor classification. 

Integrating complementary information from 

different data sources may provide a more holistic 

understanding of the disease.  

Developing transparent and explainable AI systems 

can enhance trust among healthcare professionals 

and facilitate accountability.  

Finally, as new data becomes available and our 

understanding of thymic tumors evolves, 

developing frameworks for continuously updating 

and improving AI-based classification models will 

be necessary. This ensures that the models remain 

up-to-date and incorporate the latest knowledge 

and advancements in the field. 

5 CONCLUSION 

In conclusion, our study demonstrates that deep 

learning models can accurately classify thymic 

tumor histology images, but the choice of feature 

extractor and classifier significantly impacts 

performance. The Phikon extractor combined with 

AttenMIL or Chowder appears to be the most 

promising approach. With further refinements, 

these models could be valuable tools for assisting 

pathologists and informing thymic tumor treatment 

decisions. 

Acknowledgment: The results shown here are 

based on data generated by the TCGA Research 

Network: https://www.cancer.gov/tcga. 

Code availability: The full pipelines will be 

available on (https://github.com/hkussaibi). 

6 REFERENCES: 

1. Marx A, Chan JKC, Chalabreysse L, 

Dacic S, Detterbeck F, French CA, 

Hornick JL, Inagaki H, Jain D, Lazar AJ 

et al: The 2021 WHO Classification of 

Tumors of the Thymus and 

Mediastinum: What Is New in Thymic 

Epithelial, Germ Cell, and 

Mesenchymal Tumors? J Thorac Oncol 

(2022). 

https://doi.org/10.1016/j.jtho.2021.10.010 

2. Tucci F, Laurinavicius A, Kather JN, Eloy 

C: The digital revolution in pathology: 

Towards a smarter approach to 

research and treatment. Tumori (2024). 

https://doi.org/10.1177/030089162412310

35 

3. Chitnis SR, Liu S, Dash T, Verlekar TT, 

Di Ieva A, Berkovsky S, Vig L, Srinivasan 

A: Domain-Specific Pre-training 

Improves Confidence in Whole Slide 

Image Classification. Annu Int Conf 

IEEE Eng Med Biol Soc (2023). 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 17, 2024. ; https://doi.org/10.1101/2024.06.07.24308609doi: medRxiv preprint 

https://www.cancer.gov/tcga
https://github.com/hkussaibi
https://doi.org/10.1101/2024.06.07.24308609
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 
 

https://doi.org/10.1109/EMBC40787.2023

.10340659 

4. Del Amor R, Launet L, Colomer A, 

Moscardo A, Mosquera-Zamudio A, 

Monteagudo C, Naranjo V: An attention-

based weakly supervised framework for 

spitzoid melanocytic lesion diagnosis in 

whole slide images. Artif Intell Med 

(2021). 

https://doi.org/10.1016/j.artmed.2021.102

197 

5. Shao Z, Bian H, Chen Y, Wang Y, Zhang 

J, Ji X, Zhang Y: TransMIL: 

Transformer based Correlated Multiple 

Instance Learning for Whole Slide 

Image Classification. NeurIPS (2021). 

https://openreview.net/forum?id=LKUfu

WxajHc 

6. Gadermayr M, Tschuchnig M: Multiple 

instance learning for digital pathology: 

A review of the state-of-the-art, 

limitations & future potential. Comput 

Med Imaging Graph (2024). 

https://doi.org/10.1016/j.compmedimag.20

24.102337 

7. Filiot A, Ghermi R, Olivier A, Jacob P, 

Fidon L, Mac Kain A, Saillard C, Schiratti 

J-B: Scaling Self-Supervised Learning 

for Histopathology with Masked Image 

Modeling. medRxiv (2023). 

https://doi.org/10.1101/2023.07.21.23292

757 

8. Pohjonen, J: HistoEncoder: Foundation 

models for digital pathology. GitHub 

(2023). 

https://github.com/jopo666/HistoEncoder 

9. Kalra S, Tizhoosh HR, Choi C, Shah S, 

Diamandis P, Campbell CJV, Pantanowitz 

L: Yottixel - An Image Search Engine 

for Large Archives of Histopathology 

Whole Slide Images. Med Image Anal 

(2020). 

https://doi.org/10.1016/j.media.2020.1017

57 

10. He K, Zhang X, Ren S, Sun J: Deep 

Residual Learning for Image 

Recognition. IEEE Conference on 

Computer Vision and Pattern Recognition 

(2016). 

https://doi.org/10.48550/arXiv.1512.0338

5 

11. Farahani H, Boschman J, Farnell D, 

Darbandsari A, Zhang A, Ahmadvand P, 

Jones SJM, Huntsman D, Kobel M, Gilks 

CB et al: Deep learning-based histotype 

diagnosis of ovarian carcinoma whole-

slide pathology images. Mod Pathol 

(2022). https://doi.org/10.1038/s41379-

022-01146-z 

12. Bashashati A, Farahani H, Consortium O, 

Karnezis A, Akbari A, Kim S, Chow A, 

Dane S, Zhang A, Asadi M: UBC 

Ovarian Cancer Subtype Classification 

and Outlier Detection (UBC-OCEAN). 

Kaggle (2023). 

https://kaggle.com/competitions/UBC-

OCEAN 

13. Asadi-Aghbolaghi M, Farahani H, Zhang 

A, Akbari A, Kim S, Chow A, Dane S, 

Huntsman DG, Gilks CB, Ramus S et al: 

Machine Learning-driven Histotype 

Diagnosis of Ovarian Carcinoma: 

Insights from the OCEAN AI 

Challenge. medRxiv (2024). 

https://doi.org/10.1101/2024.04.19.24306

099 

14. Courtiol P, Tramel EW, Sanselme M, 

Wainrib G: Classification and Disease 

Localization in Histopathology Using 

Only Global Labels: A Weakly-

Supervised Approach. arXiv (2020). 

https://arxiv.org/abs/1802.02212 

15. Baroni, G. L., Rasotto, L., Roitero, K., 

Tulisso, A., Di Loreto, C., Della Mea, V.: 

Optimizing Vision Transformers for 

Histopathology: Pretraining and 

Normalization in Breast Cancer 

Classification. Journal of Imaging (2024). 

https://doi.org/10.3390/jimaging10050108 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 17, 2024. ; https://doi.org/10.1101/2024.06.07.24308609doi: medRxiv preprint 

https://github.com/jopo666/HistoEncoder
https://arxiv.org/abs/1802.02212
https://doi.org/10.1101/2024.06.07.24308609
http://creativecommons.org/licenses/by-nc-nd/4.0/

