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1. Abstract 
 
Purpose 

To develop a dentate nucleus (DN) segmentation tool using deep learning (DL) 
applied to brain quantitative susceptibility mapping (QSM) images. 

Materials and Methods 

Brain QSM images from 132 healthy controls and 170 individuals with cerebellar 
ataxia or multiple sclerosis were collected from nine different datasets worldwide for this 
retrospective study. Manual delineation of the DN (gray matter and white matter hilus) was 
first undertaken by experienced raters with a robust quality control process. Performance of 
automated segmentation was compared following training using several DL architectures. A 
two-step approach was implemented, composed of a localization model followed by DN 
segmentation. 

Results 

 The manual tracing protocol produced ground-truth data with high intra-rater 
(average ICC 0.906) and inter-rater reliability (average ICC 0.776). Initial DL architecture 
exploration indicated that the nnU-Net framework performed best. The two-step localization 
plus segmentation pipeline achieved a Dice score of 0.898±0.031 and 0.894±0.036 for left 
and right DN, respectively. In external validation, our algorithm outperformed the leading 
existing automated tool (left/right DN Dice 0.863±0.038/0.843±0.066 vs. 
0.568±0.222/0.582±0.239). The model demonstrated generalizability across unseen 
datasets during the training step. The measures showed a superior correlation index with 
manual annotations and performed well in both isotropic and anisotropic QSM datasets. 

Conclusion 

We provide a model that accurately and efficiently segments the DN from brain QSM 
images. The model can be readily deployed for use in observational, natural history, and 
treatment trials for biomarker discovery. 
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2. Introduction 
The dentate nuclei (DN) are the largest of the deep cerebellar nuclei and are the 

primary efferent stations of the human cerebellum. The DN are primarily innervated by 
Purkinje cells of the lateral hemispheres of the cerebellar cortex and give rise to the major 
ascending cerebellar output pathways, including the dentato-rubral and dentato-thalamo-
cortical tracts1. The DN are divided into motor and non-motor functional subregions with 
distinct profiles of disynaptic axonal innervation (via the thalamus) to cerebral cortices1. 
These cerebral regions, in turn, innervate corresponding subregions of the cerebellar cortex 
via descending disynaptic projections that pass through the pontine nuclei, forming the 
cerebro-cerebellar circuitry2.  

Cerebro-cerebellar systems, with the DN as a key hub, are implicated in a broad 
array of motor, cognitive, social, and language functions3. Abnormalities in the DN may 
therefore contribute to disruption in large-scale brain networks involved in a broad array of 
behavioral deficits. Abnormal functional connectivity between the DN and brain cortical areas 
has been reported in patients with Alzheimer’s disease, autism, and schizophrenia4-6. 
Furthermore, neuropathological studies have provided evidence that the DN plays a central 
role in the pathogenesis of several cerebellar diseases, especially in the inherited cerebellar 
ataxias7.  

Despite the established importance of the DN in cerebro-cerebellar loops, and 
growing evidence of involvement in brain diseases, direct in vivo quantitative investigations 
of the structure of the DN and other deep cerebellar nuclei using neuroimaging in humans 
are scarce8-11. Such investigations have been particularly challenging due to the tissue 
properties of these nuclei that make them invisible or poorly defined using standard MRI 
sequences, such as T1-weighted and T2-weighted images. Susceptibility-weighted MRI 
(SWI) offers a limited solution, allowing for visualization of the DN due to their high iron 
content12-14. However, SWI is a qualitative technique that is primarily used for the clinical 
detection of vascular abnormalities and microangiopathies15. Although useful, SWI has 
several limitations, including its non-quantitative nature and distortion of tissue boundaries 
due to blooming effects and non-local phase contributions of the iron deposits on the tissues. 
These limitations have largely been overcome through the development of quantitative 
susceptibility mapping (QSM)16. QSM allows for more precise mapping of the anatomy and a 
more direct link to the underlying iron concentration17, providing opportunities for direct, 
quantitative evaluation of DN structure and microstructure in clinical populations8,11. 

QSM has been employed to demonstrate robust and/or progressive changes in the 
DN in people with inherited cerebellar ataxias, including Friedreich’s ataxia (FRDA)11,18 and 
spinocerebellar ataxias (SCA)8. Changes in the structure and susceptibility of DN related to 
healthy aging and other movement disorders, including Parkinson’s disease and essential 
tremor, have also recently been examined9,19,20. Taken together, these studies demonstrate 
the utility of QSM in the neuroimaging toolkit for examining the DN in health and disease, 
and motivate investigation of DN changes in other neurological, developmental, and 
psychiatric diseases that impact cerebellar circuitry.  

Although QSM holds great promise for quantifying and tracking DN changes in 
disease, a major roadblock to-date in undertaking large-scale and reliable QSM 
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investigations of the DN in patient cohorts has been the reliance on manual, hand-drawn 
segmentations. In order to overcome this limitation, fully automated tools are necessary. The 
MRICloud toolkit21,22 provided the first (and currently, to our knowledge, only) publicly 
available automated DN segmentation tool. However, MRICloud has not been trained on 
data with DN pathology. In this work, we address these limitations by utilizing data from 
healthy subjects and cerebellar ataxia or multiple sclerosis (MS) patient cohorts acquired at 
multiple imaging centers using different acquisition protocols to develop an optimized and 
generalizable deep-learning analytical tool for segmenting the DN using QSM images. This 
tool can be readily deployed in observational, natural history, and treatment trials. 

3. Materials and Methods 

3.1. Data 
Multi-echo gradient-recalled echo MRI data was acquired using four different MRI 

protocols implemented across ten imaging centers around the world using 3 Tesla Philips or 
Siemens MRI scanners (Tables 1 and 2). The collected research data was de-identified at 
each source, ensuring adherence to a data pipeline free from personal health information. 
The dataset included a total of 132 healthy controls, 154 individuals with FRDA, and 15 
people with MS, as described in Table 2. Follow-up scans at 12 months were available from 
55 of these participants. Images of FRDA and MS patients were selected to account for 
anatomical variability in DN caused by neurodegeneration throughout the course of the 
diseases. The corresponding MRI acquisition protocols have been previously 
published11,23,24 and are summarized in Table 1. 
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Table 1. Acquisition protocols for each dataset. 

Dataset Scanner Sequence TR 
(ms) TE1 (ms) ΔTE 

(ms) 
# of 

echoes FoV (mm) Image matrix 
(voxels) Voxel size (mm) Acquisition 

time 

Aachen 
Campinas 
CHoP 
Melbourne 
Florida 
Minnesota 

3T Siemens Skyra 
3T Siemens Prisma 
3T Philips Ingenia 

GRE 27 3.7 6 4 220 x 220 x 176 208 x 256 x 176 0.86 iso 7' 22" 

Naples 3T Siemens 
Magnetom Trio GRE 32 7.38 14.76 2 230 x 194 x 160 378 x 448 x 160 0.51 x 0.51 x 1.0 9' 53" 

IMAGE-FRDA 3T Siemens Skyra GRE 30 7.38 14.76 2 230 x 230 
160 axial slices 232 x 256 x 160 0.90 iso 11' 30" 

INFLAM-FRDA 3T Siemens 
Biograph GRE 31 5.70 5.27 5 230 x 230 

104 axial slices 384 x 384 x 104 0.60 x 0.60 x 1.2 6' 50" 

GRE: gradient recalled echo; iso: isotropic; TR: repetition time; TE: echo time; TE1: first echo time; FoV: field of view; iso: isotropic. 

Table 2. Subject demographics for each dataset. 

 

Aachen, Campinas, 
CHoP, Melbourne, 
Florida, Minnesota 

Naples IMAGE-FRDA INFLAM-FRDA 

 Controls FRDA Controls FRDA MS Controls FRDA Controls FRDA 

Subjects 44 98 48 12 16 31 30 9 14 

Children (<18 years) 14 31 0 3 0 0 0 0 0 

Age (mean±SD) 23.6±7.7 23.9±8.7 37.8±12.7 32.6±15.8 46.8±5.6 37.6±13.1 35.7±12.2 28.6±5.8 27.8±7.6 

Sex (M/F) 24/20 49/49 19/29 4/8 5/11 16/15 17/13 8/1 12/2 
FRDA: Friedreich's ataxia; MS: multiple sclerosis.
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A sample QSM image for each dataset is presented in Figure 1, and Figure 2 
provides an overview of the data workflow. The QSM images were reconstructed using the 
JHU/KKI QSM21,25 and STI Suite 
(https://people.eecs.berkeley.edu/~chunlei.liu/software.html) toolboxes, using Laplacian 
unwrapping  to overcome  phase aliasing, V-SHARP for background field removal26 and 
either MEDI27,28 or iLSQR29 for field-to-susceptibility reconstruction. 

To train the deep learning (DL) models, we divided the available data into 70/10/20 % 
proportions for training, validation, and test sets, respectively. We applied stratified sampling, 
creating groups that maintain the relative distributions by MRI acquisition center, while also 
keeping images belonging to an individual in just one set, minimizing the possibility of data 
leakage. 

The ethics committee or institutional review board (IRB) respective to each project 
data source or site approved the use or ethics waiver for this retrospective study, and all 
participants provided written informed consent prior to original data collection. The TRACK-
FA steering committee approved the data use, and IRB reference numbers were previously 
published23 (Monash Health Human Research Ethics Committee: RES-20-0000-139A; 
Children’s Hospital of Philadelphia: IRB 20-017611; University of Minnesota: IRB 
STUDY00009047; University of Florida: IRB202000399; RWTH Aachen University: 
EK195/20; University of Campinas (CAAE NO): 83241318.3.1001.5404; McGill IRB 
Approved Project Number: 2022-8676). Ethics approval was obtained independently for the 
remaining studies, respectively: Ethical Committee “Carlo Romano” of the University of 
Naples “Federico II” (Naples A: 209/13, Naples B: 47/15), Monash University Human 
Research Ethics Committee (IMAGE-FRDA: 13201B, INFLAM-FRDA: 7810), and University 
of Minnesota IRB (1210M22281). 
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Figure 1. Image samples for each dataset. Randomly selected. Images were cropped 
focusing on the cerebellum, voxel intensities were normalized using z-score to improve 
visualization. 
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Figure 2. Diagram details the inclusion of image datasets into the study. 

 

3.2. Ground Truth Segmentation 
The DN were manually traced on each QSM image to establish the ground truth 

dataset using MRIcron (https://www.nitrc.org/projects/mricron), ITK-SNAP30, or FSLeyes31 
annotation software. The contrast threshold was set at a constant range (-0.1 to 0.2 ppm) for 
all images to minimize bias in edge detection within and across raters. 

The segmentations included the full 3D region of hyperintensity, including both the 
outer gray matter ribbon and the central white matter hilum of the DN (Figure 3). Manual 
tracing was performed in all three planes (axial, coronal, and sagittal) to ensure a smooth 
surface was generated and neighboring nuclei (e.g., emboliform) were not included. The left 
DN (LDN) and right DN (RDN) were uniquely segmented on each image (Figure 3). 

Each image was manually segmented by one of three experienced raters (SS, SC, or 
IHH), blinded to the disease pathology. Inter-rater and intra-rater reliability was assessed 
using a sample of 9 randomly selected images, stratified by acquisition center. These 
images were duplicated and randomly shuffled so that the rater was unaware of the order or 
the repetition. All three raters segmented this set of 18 images. Intra-rater and inter-rater 
variability were calculated using Dice score, Hausdorff Distance (HD), and intraclass 
correlation coefficient (ICC) metrics. 
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Figure 3. Manually segmented mask delineating the left dentate nucleus (LDN) in red and 
the right dentate nucleus (RDN) in green from a sample QSM dataset, healthy participant. 
Coronal, sagittal, and axial views as well as shaded-surface display are shown from A - D, 
respectively.  

3.3. Deep Learning Architectures 
A number of artificial intelligence approaches for image segmentation are available. In 

the DL domain, convolutional neural network (CNN) architectures are typically used to process 
image data. For image segmentation tasks, a great number of studies rely on U-Nets32 and 
their 3D variation, 3D U-Net33, both based on CNNs. Numerous variations of these 
architectures have been reported in the literature. The no-new-Net (nnU-Net) is considered 
one of the state-of-the-art medical imaging segmentation frameworks, capable of dealing with 
image sets comprising different domains34. The nnU-Net does not implement a rigorous 
complex architecture, instead relying on a conventional U-Net with deep supervision35. More 
recently, the scientific community introduced new architectures based on transformers36, 
which arose in the language sequence models domain. These include TransUNet37, UNETR38 
and Swin UNETR39. In this work, we applied and contrasted the performance of three DL 
architectures, described below, to develop an optimal approach for automated DN 
parcellation. 

3.4. 3D U-Net with Deep Supervision 
The 3D U-Net33 is an extension of the original U-Net architecture32 to handle three-

dimensional data. Designed for image segmentation tasks, the architecture is composed of a 
contracting path, which gradually downsamples the input image, and an expanding path, 
which upsamples the feature maps back to the original image size. Also, the network makes 
use of skip connections, allowing information to flow directly from the contracting path to the 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 28, 2024. ; https://doi.org/10.1101/2024.06.17.24308662doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.17.24308662


 

12 
 

corresponding layer in the expanding path. This helps to preserve spatial information and 
improve the accuracy of the segmentation. Additionally, the 3D U-Net can leverage the 
context information in the whole 3D image, learning intricate and complex spatial 
relationships between the voxels in the image. 

Deep supervision (DS)35 is a technique that adds extra output layers at different 
levels of the network. These output layers are trained to predict the final segmentation and 
guide the network in the earlier stages of training, providing additional guidance that helps 
improve segmentation accuracy. This allows gradients to be injected deeper into the network 
and facilitates the training of all layers in the network34. This architecture is also adopted by 
the nnU-Net framework. 

3.5. Swin UNETR 
The Shifted WINdows UNEt TRansformers (Swin UNETR) is a Swin transformer-

based deep learning model designed for medical image segmentation39. Swin transformer40 
implements a hierarchical vision transformer that computes self-attention locally in non-
overlapping windows, enabling the model to capture long-range dependencies. In the 
hierarchical structure, patches are merged layer by layer, decreasing the dimension of 
feature maps at each stage. The cyclic-shifting implements the shifted window partitioning 
approach and introduces important cross-windows connections, overlapping with previous 
windows, while the number of patches remains fixed. These properties explain the linear 
computational complexity to image size, unlike to the quadratic in other transformed-based 
models, such as Vision Transformers41 (ViT), which would impose an issue of scalability for 
semantic segmentation, a dense prediction task. Swin transformers build hierarchical feature 
maps to obtain multi-resolution feature representations, making them suitable as backbone 
networks for various computer vision tasks. In Swin UNETR, the Swin transformer serves as 
the encoder and is integrated with a CNN-based decoder through skip connections in a U-
shaped architecture. 

3.6. nnU-Net 
The nnU-Net is a deep learning framework for medical image segmentation that 

features automated configuration34. The core architecture of nnU-Net is a U-Net with DS, 
which is enhanced with a data-driven initialization strategy. This approach adapts the 
training to the specific characteristics of the input data, resulting in improved performance. 
The pipeline includes data augmentation and training across different configurations such as 
2D U-Net, 3D U-Net at full resolution, and 3D U-Net cascade (a combination of a model 
trained on downsampled images followed by a refinement model at full resolution). 
Additionally, the nnU-Net has the capability to apply post-processing steps, such as “non-
largest component suppression”, if it improves the results. It can also self-adjust 
hyperparameters to fit the GPU memory available during training. 

This framework has been demonstrated to achieve state-of-the-art performance on 
various medical image segmentation tasks, leading to widespread adoption in the medical 
imaging community. 
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3.7. Augmentation Techniques 
In order to improve model generalization capacity, we applied data augmentation 

techniques such as flipping, rotation, scaling, elastic deformation, and intensity scale and 
shift operations. These operations were randomly applied to each image during the training 
phase. Utilizing these transformations is an important strategy to artificially increase data 
variability, thereby preventing overfitting and boosting generalizability. To accomplish this, 
we selected MONAI42 augmentation implementations. 

3.8. Deep Learning Segmentation Pipeline 
The DL segmentation pipeline is presented in Figure 4. First, the QSM image is 

resampled to a common isotropic voxel spacing of 0.86 mm, consistent with the original 
resolution of the majority of the datasets.  

The second step in our pipeline is the application of the localization model, which is a 
deep learning network designed to identify the location of the cerebellum within a 3D MRI 
dataset. The localization model was trained with cerebellar masks obtained with 
ACAPULCO43 based on T1-weighted MRI of each subject. To ensure spatial alignment of 
the cerebellum masks with the QSM images, the T1w data were registered to the 
corresponding QSM data using ANTs toolkit44, and the resulting transformation matrix was 
applied to the cerebellum mask. The localization model will therefore output a cerebellar 
mask. The centroid of the mask is determined and used to place a bounding box cropping 
around the cerebellum, ensuring the preservation of the entire structure without any loss or 
truncation, thereby constraining and reducing the spatial extent of the region of interest 
(RoI). This approach allows the retention of contextual anatomical references. 

The third step was the segmentation stage. The output of this model was the binary 
mask for each dentate nucleus label (left and right). Subsequently, another resampling 
process is performed to provide the predicted DN segmentation mask in the original voxel 
spacing and in the same dimensions as the input image. 

 

 
Figure 4. Deep learning QSM segmentation pipeline. 
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3.9. Statistical Analysis 
The Sørensen-Dice similarity coefficient (DSC), also known as the Dice score 

coefficient45,46, is a widely used metric for assessing segmentation tasks. It is noteworthy that 
the Dice score, which measures the overlap between two binary segmentation masks, 
considers both size and localization agreement47 that is, both volumetric and anatomic 
characteristics. The Dice score is defined as follows: 

𝐷𝑖𝑐𝑒 = 2
|𝐺 ∩ 𝑃|
|𝐺| + |𝑃|

	

where |𝐴| is the cardinality of set 𝐴. 𝐺 and 𝑃	represent the ground truth segmentation mask 
and the model prediction segmentation, respectively. This metric ranges from 0 to 1, with a 
value of 1 indicating a perfect agreement. The Dice score was our main performance metric, 
and it was also part of the loss metric for model training in the form of Dice loss: 

𝐷𝑖𝑐𝑒	𝑙𝑜𝑠𝑠 = 1 − 𝐷𝑖𝑐𝑒	
Additionally, other segmentation metrics were evaluated. The Hausdorff Distance48 

and Average Hausdorff Distance (AHD)49 are relevant for boundary quality assessment. 
AHD calculates the average distance between points in both masks instead of considering 
only the maximum distance as in HD. Also, Intersection over Union (IoU) or Jaccard index50, 
which is similar to Dice, was evaluated. Finally, volume similarity49 was assessed to measure 
the quantitative volume agreement, ignoring shape, position, and quality information. To 
compare metrics between models, we used the Wilcoxon signed-rank test. Kolmogorov-
Smirnov test was employed to assess normality in continuous variables. Pearson correlation 
coefficients were chosen to evaluate relationships within variables. We measured the 
reliability of measurements from multiple raters using the intraclass correlation coefficient 
(ICC) and evaluated the results (ICC<0.5 poor, 0.5≤ICC<0.75 moderate, 0.75≤ICC<0.9 
good, and ICC≥0.9 excellent reliability)51. ICC confidence intervals were calculated to 
provide a range within which the ICC is likely to fall, typically with 95% confidence. Statistical 
analysis was conducted using Python 3.10.8, R 4.1.1, and SPSS 27.0.1.0. P-values < 0.05 
were considered statistically significant. 

3.10. Comparison with other available methods 
In order to compare our results with the leading available automated DN 

segmentation solution, we processed all our test images through the MRICloud web-based 
service21,22 using its susceptibility multi-atlas tool for segmentation of QSM images. 

The MRICloud pipeline requires both coregistered QSM and skull-stripped T1 images 
in ANALYZE file format. We used ANTs (SyNQuick) for co-registration, FSL52 Brain 
Extraction Tool (BET) for skull-stripping, and FSL for file conversion between NIfTI and 
ANALYZE formats. MRICloud jobs for the segmentation model architecture comparison 
section were executed between January 5 and January 7, 2023, and then again from March 
9 to March 31, 2024, for the external validation datasets. 
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3.11. External Validation 
In order to assess the performance of our DN segmentation model on unseen data, 

21 external datasets of 10 participants were acquired from three new imaging sites: n=4 
healthy participants from Instituto Neurologico “Carlo Besta”, Italy; n=2 MS patients from the 
Medical University of Graz, Austria; and n=3 healthy participants and n=1 FRDA patient from 
McGill University. QSM maps were derived for all participants using both the JHU/KKI QSM 
v3.021,53 and SEPIA v1.2.2.654 toolboxes, resulting in two images per participant for Carlo 
Besta and McGill datasets. Three reacquired Carlo Besta anisotropic QSM images 
processed with SEPIA were added. An experienced rater (SS) manually segmented the right 
and left DN, and the data was processed through both our models and MRICloud to 
compare their performances. For SEPIA processing, 3D best path55 was used for phase 
unwrapping and MEDI non-linear fit for echo phase combination, Laplacian Boundary Value 
(LBV)56 approach for background magnetic field removal, and quantitative susceptibility 
maps were obtained using STreaking Artifact Reduction for QSM (Star-QSM)57. 

The institutional ethics committee respective to each project approved their study 
(Fondazione IRCCS Istituto Neurologico “Carlo Besta”: 42/2017 07/06/2017; Medical 
University of Graz local ethics-committee: 31-432ex18/191264-2019). 

4. Results 

4.1. Intra-Rater and Inter-Rater Reproducibility Results 
All raters demonstrated good to excellent intra-rater reliability (ICC > 0.8; Table 3), 

and moderate (ICC > 0.5) to good inter-rater agreement (ICC > 0.75) when evaluated in 
pairs51 (Table 4). Analyzing all three raters at once, the ICC is 0.763, 95% CI [0.541, 0.897] 
for LDN and 0.675, 95% CI [0.173, 0.883] for RDN. Dice and HD additionally support strong 
reliability, evaluating segmentation overlapping and annotation deviations. Volume similarity 
metric, comparing the segmented volumes (mm3), indicates that absolute differences within 
and between raters are marginal. The results are shown in Tables 3 and 4. 
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Table 3. Intra-rater reproducibility results (mean±SD). 

 Rater 1 Rater 2 Rater 3 

Metric LDN RDN LDN RDN LDN RDN 

Dice 0.884±0.025 0.888±0.027 0.904±0.023 0.918±0.024 0.892±0.014 0.912±0.010 

HD 3.276±1.174 3.491±1.169 2.397±0.837 2.109±0.879 2.324±0.394 1.745±0.256 

Volume 
similarity 0.943±0.037 0.961±0.029 0.964±0.023 0.963±0.029 0.969±0.016 0.980±0.015 

ICC 
[95% CI]  

0.839 
[0.258, 0.965] 

0.849 
[0.440, 0.964] 

0.939 
[0.306, 0.989] 

0.902 
[0.640, 0.977] 

0.930 
[0.735, 0.984] 

0.977 
[0.905, 0.995] 

LDN: left dentate nucleus, RDN: right dentate nucleus, HD: Hausdorff distance, ICC: intraclass correlation 
coefficient, CI: confidence interval. 

 

Table 4. Inter-rater reproducibility results (mean±SD). 

 Raters 

 1 and 2 2 and 3 1 and 3 

Metric LDN RDN LDN RDN LDN RDN 

Dice 0.852±0.040 0.864±0.027 0.852±0.032 0.855±0.025 0.872±0.020 0.870±0.028 

HD 3.361±1.325 3.569±1.021 3.416±1.154 3.573±1.230 2.946±1.266 3.867±1.451 

Volume 
similarity 0.931±0.055 0.944±0.041 0.918±0.040 0.897±0.041 0.950±0.026 0.933±0.039 

ICC 
[95% CI] 

0.751 
[0.451, 0.899] 

0.740 
[0.298, 0.905] 

0.709 
[0.268, 0.890] 

0.599 
[-0.079, 0.886] 

0.845 
[0.376, 0.951] 

0.731 
[-0.048, 0.925] 

LDN: left dentate nucleus, RDN: right dentate nucleus, HD: Hausdorff distance, ICC: intraclass correlation 
coefficient, CI: confidence interval. 

4.2. Localization Model 
 The model for the cerebellum localization features a 3D U-Net model with feature 
channels ranging from 16 to 256, doubling at each subsequent level. Levels combine two 
3x3x3 convolutions, followed by instance normalization58 and Parametric Rectified Linear 
Unit (PReLU)59 activations. An AdamW optimizer60 with learning rate = 3x10-4, weight decay 
= 1x10-5, β1 = 0.9, β2 = 0.999, and ϵ = 1x10!". A learning rate scheduler reduced the 
learning rate by a factor of 0.5 if no improvement in loss was observed for 20 epochs. The 
batch size was configured to 1, and training was limited to 400 epochs. After 105 epochs, 
the model training was interrupted by the early stopping scheduler, after 30 epochs without a 
decrease in Dice loss. Consequently, the model checkpoint at epoch 75, which performed 
best on the validation set, was saved. The trained model showed a high Dice score, 
0.918±0.030, when compared to the ground truth. After running inference for all available 
QSM images, they were cropped to 128x96x96, considering the centroid of the mask as the 
crop center for the enclosing region of interest. The localization model inference runs in less 
than five seconds when executed on CPU-only hardware and provides the model with as 
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much spatial context as possible, while taking into account computational resources 
constraints. 

4.3. Segmentation Model Architectures Comparison 
All the results presented below refer to metrics calculated on the test set (17 images) 

from the model experimentation set (Figure 2). The performance of three model 
architectures (3D U-Net with DS, Swin UNETR architectures, and nnU-Net framework) were 
compared with MRICloud (Table 5). The nnU-Net architecture provided the best 
performance across most comparison metrics (Table 5), and all DL architectures were 
substantially superior to MRICloud (Dice score comparison, p<0.0001 in all cases; Figure 5). 
Jaccard index and AHD also indicate an advantage for nnU-Net, considering overlap and 
mask similarity. While the Hausdorff distance is lower in the U-Net with DS model, the 
average values for the two dentate nuclei are close to those of nnU-Net. Finally, despite U-
Net with DS having the best average volume similarity, the nnU-Net standard deviation is 
lower, which is preferable.
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Table 5. Trained models and MRICloud performance metrics (mean±SD) for left DN (LDN) and right DN (RDN) on the experimentation set. 

 Dice Jaccard HD AHD Volume similarity 

Model LDN RDN LDN RDN LDN RDN LDN RDN LDN RDN 

U-Net with DS 0.889±0.021 0.895±0.023 0.802±0.033 0.810±0.037 2.514±0.749 2.361±0.654 0.117±0.024 0.112±0.027 0.965±0.021 0.963±0.026 

Swin UNETR 0.890±0.022 0.896±0.021 0.803±0.035 0.812±0.034 2.887±0.885 2.495±0.550 0.120±0.032 0.111±0.024 0.962±0.023 0.953±0.029 

nnU-Net 0.896±0.020 0.900±0.021 0.811±0.032 0.819±0.034 2.518±0.915 2.198±0.534 0.112±0.025 0.106±0.025 0.964±0.018 0.958±0.023 

MRICloud 0.725±0.074 0.760±0.053 0.573±0.090 0.616±0.068 6.302±2.611 5.736±1.725 0.445±0.187 0.367±0.125 0.850±0.086 0.877±0.074 

DN: dentate nucleus; LDN: left DN; RDN: right RN; DS: deep supervision; HD: Hausdorff distance; AHD: average Hausdorff distance.
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Figure 5. Bar plots of the trained segmentation models and MRICloud. All metrics of the 
segmentation model variants are statistically significantly higher than the MRICloud results. 
ns: non-significant; * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001. DN: dentate 
nucleus, DS: deep supervision. 

 

After the extensive exploration of model architectures, the nnU-Net framework was 
selected for our study.  

4.4. Final Segmentation Model Outputs  
 The final trained model (nnU-Net) with the entire dataset resulted in metrics on the 
test set presented in Table 6, including those for the control and patient groups individually. 
Samples of predicted segmentation masks for each center are shown in Figure 6. In 
agreement with that, the predicted DN volumes highly correlate with the volumes of the 
ground truth annotations (Figure 7). 
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Table 6. Trained nnU-Net final model performance metrics (mean±SD) for left DN (LDN) and right DN (RDN) on the complete test set. 

 Dice Jaccard HD AHD Volume similarity 

Group LDN RDN LDN RDN LDN RDN LDN RDN LDN RDN 

All participants 0.898±0.031 0.894±0.036 0.816±0.050 0.810±0.057 3.124±1.825 4.025±4.569 0.118±0.060 0.140±0.144 0.943±0.044 0.944±0.050 

    Controls 0.893±0.033 0.891±0.044 0.808±0.053 0.806±0.067 3.408±1.916 3.850±2.046 0.127±0.068 0.134±0.073 0.949±0.046 0.951±0.058 

    Patients* 0.901±0.029 0.896±0.032 0.821±0.048 0.813±0.051 2.932±1.783 4.144±5.747 0.112±0.055 0.144±0.179 0.940±0.043 0.939±0.044 

* FRDA and MS patients. FRDA: Friedreich’s ataxia; MS: multiple sclerosis; DN: dentate nucleus; LDN: left DN; RDN: right RN; HD: Hausdorff distance; AHD: average 
Hausdorff distance. 
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Figure 6. Overview of pipeline prediction examples for datasets of each center. QSM 
images without (top) and with the predicted segmentation mask as overlay (bottom) are 
presented in the coronal, axial, and sagittal planes, respectively. Left dentate nucleus is 
depicted in red and the right one in green. 
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Figure 7. Volume scatter plots for the final segmentation model. Ground truth measures 
versus model predicted values. Each dot represents a prediction sample from the test set. 
Pearson correlation coefficients and p-values are indicated in each plot. The red line 
represents the line of identity, i.e., the expected perfect fit. DN: dentate nucleus. 

4.5. External Validation 
Our model performed satisfactorily on an external dataset of 21 images from three 

different sites, achieving Dice scores of 0.863±0.038 for LDN and 0.843±0.066 for RDN. In 
contrast, MRICloud demonstrated significantly lower performance for both LDN (Dice score: 
0.568±0.222) and RDN (Dice score: 0.582±0.239). The observed performance difference in 
Dice metric was found to be statistically significant according to the Wilcoxon test for both 
LDN and RDN (p<0.05). Additionally, Pearson correlation between volumes predicted by the 
DL model (LDN: r=0.740, p<0.001; RDN: r=0.484, p=0.026) and those manually traced was 
significant for both DN sides (p<0.05), a result not observed with MRICloud outcomes (LDN: 
r=0.420, p=0.058; RDN: r=0.187, p=0.417). Interestingly, our model showed consistency 
across three external datasets when considering the individual QSM subsets per acquisition 
center. Furthermore, our segmentation pipeline demonstrated robust performance when 
evaluating susceptibility maps generated by the alternative QSM reconstruction method 
(Star-QSM, see section 3.11), yielding high Dice scores both overall and individually for each 
site (Tables 7 and 8). 

 

 

 

 

 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 28, 2024. ; https://doi.org/10.1101/2024.06.17.24308662doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.17.24308662


 

23 
 

 

 

Table 7. External validation Dice scores (mean±SD) for both DN, comparing results from 
MRICloud and our proposed DL model. 

Dataset Voxel QSM 
reconstruction n 

MRICloud Our model 

LDN RDN LDN RDN 

Carlo Besta Anisotropic Star-QSM 3 0.513±0.125 0.494±0.214 0.830±0.007 0.741±0.067 

 Isotropic MEDI 4 0.537±0.305 0.538±0.307 0.900±0.017 0.892±0.025 

  Start-QSM 4 0.478±0.114 0.519±0.223 0.856±0.039 0.834±0.048 

Graz Anisotropic Star-QSM 2 0.247±0.349 0.298±0.422 0.841±0.001 0.788±0.098 

TRACK-FA 
McGill 

Isotropic MEDI 4 0.698±0.121 0.710±0.073 0.895±0.008 0.880±0.023 

 Star-QSM 4 0.760±0.029 0.771±0.034 0.837±0.046 0.872±0.028 
DN: dentate nucleus; QSM: quantitative susceptibility mapping; LDN: left DN; RDN: right RN. 

 

Table 8. Quantitative validation (mean±SD) of QSM reconstruction methods on external 
data. 

QSM 
reconstruction Voxel 

MRICloud Our model 

LDN RDN LDN RDN 

MEDI Isotropic 0.618±0.231 0.624±0.226 0.898±0.012 0.886±0.023 

Star-QSM Anisotropic 0.407±0.244 0.415±0.281 0.835±0.008 0.760±0.073 

 Isotropic 0.619±0.169 0.645±0.200 0.847±0.041 0.853±0.042 

DN: dentate nucleus; QSM: quantitative susceptibility mapping; LDN: left DN; RDN: right RN. 

4.6. Biological Findings 

4.6.1. DN Volume versus Mean Magnetic Susceptibility 
Significant positive correlations between DN volume and magnetic susceptibility were 

observed in the healthy control group (r>0.3, Figure 8, Figure S2). These findings were 
consistently observed in manual tracings (Figure S2) and model-predicted segmentations 
(Figure 8), with correction for age and head size (total intracranial volume). Moreover, the 
correlation is stronger in children (<18 years) than in adults. This effect replicates previous 
reports19,20. 

This correlation suggests that the susceptibility/intensity level may impact border 
detection due to partial volume effects, possibly introducing a bias in volume estimation. 
However, the volume versus susceptibility correlation persists, although it is partially 
attenuated, even after z-score intensity normalization (in a subset of n=20 images, before 
normalization: LDN (r=0.288), RDN (r=0.197); after normalization: LDN (r=0.087), RDN 
(r=0.347)).  
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Figure 8. Model prediction results. Pearson’s correlation coefficients and p-values for each 
group of individuals and DN side. Correlation coefficients with p<0.05 are emphasized with a 
gray background. Children: subjects under 18 years of age. The volume estimations were 
corrected for age and head size (eTIV). FRDA: Friedreich’s ataxia; DN: dentate nucleus; 
LDN: left DN; RDN: right DN. 
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4.6.2. Statistical Correction for Susceptibility-Driven Volume Bias  
The impact of susceptibility variability on volume estimation may be estimated, and 

thus corrected for, using susceptibility and site (if applicable) as independent variables in 
multiple linear regression. A correction factor can be estimated from healthy control samples, 
and subsequently applied to patient data, to avoid confounds between true disease effects 
and quantification artifacts.  

We have estimated a representation correction factor (𝐶𝐹 = 3636.84) in a large 
cohort of demographically-diverse healthy individuals (age range 11-64 years, male to 
female ratio of 0.93:1) and several imaging protocols (including different imaging 
resolutions), which can be used to adjust data in future research studies using the following 
equation: 

𝑦!"# = 𝑦 − 𝐶𝐹(𝑥 − 𝑥$%"&!')	
where 𝑦 is the individual DN volume predicted by the segmentation model, 𝑥 is the individual 
median DN susceptibility in ppm, 𝑥$%"&!' is the population estimate of median DN 
susceptibility across a dataset, and 𝐶𝐹 is the regression/correction factor. Note that this 
formula must be applied uniformly across both disease and control groups in a study to 
ensure accurate comparative analyses. 

5. Discussion 
Here we propose and develop an automated DN segmentation solution consisting of 

a two-step deep learning pipeline based on convolutional neural networks. Starting from a 
comprehensive dataset of QSM images sourced from several MRI centers and high-quality 
DN manual tracings by experienced annotators, we trained and tested multiple potential 
model architectures. All tested models delivered statistically superior results compared to 
MRICloud, the current state-of-the-art automated technique. Our final trained pipeline using 
the nnU-Net framework performed strongly during external validation, and we have 
introduced guidance regarding appropriately controlling for the influence of magnetic 
susceptibility on volume measurements. This work provides a robust, new, open-source tool 
(https://github.com/art2mri/QSM-Cereb) to the neuroscience community. 

In the field of artificial intelligence, validation with external datasets is crucial to 
assess the generalization capacity of the proposed models61, although rarely reported62. This 
step is important to challenge the model across different acquisition protocols, populations, 
MRI sites, and scanner vendors, providing a valuable way to perform a real-world scenario 
analysis by evaluating model robustness and performance on unseen data63. Our external 
validation provided strong support for the accuracy and robustness of the model, indicated a 
low risk of overfitting, and exceeded the accuracy of currently available approaches across a 
range of experimental conditions (different imaging acquisitions and QSM reconstruction 
protocols). When focusing on the reconstruction pipeline metrics, after aggregating the 
results, consistent Dice performance metrics were observed regardless of which QSM 
pipeline and reconstruction method was used (Table 8). A greater score for MEDI 
reconstructed images may derive from the fact that experienced raters were exposed to a 
majority of QSM images processed using this pipeline. We therefore provide a generalizable, 
fast and open-source solution for accurate and automated DN segmentation.   
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A combination of several factors contributes to the performance of the proposed 
model. First, we have gathered an extensive dataset that effectively captures the diversity 
found in real-world data, enabling good generalizability of the trained model. Additionally, we 
directly compared multiple DL frameworks to select the nnU-Net34 as the optimal architecture 
for our medical imaging segmentation task among the architectures we tested. The nnU-Net 
incorporates a well-known architecture and a thorough set of data augmentation techniques. 
Moreover, our findings are aligned with analogous studies, such as the TotalSegmentator64, 
wherein the nnU-Net stands out as a recognized solution for intricate tasks in the medical 
imaging domain. Also, our proposed pipeline is composed of two-step models, comprising 
localization followed by segmentation. In this way, we drive the focus of the second model 
into a restricted region of the brain, mitigating false positives. Certain voxels in the basal 
ganglia were predicted as DN in some outputs when the entire image was provided as input, 
potentially due to the presence of iron in these structures and slight shape similarity. The 
entire pipeline runs in less than 60 seconds using only the CPU and at most 15 seconds in 
GPU-based hardware (Intel Core i7 and Nvidia RTX 4070 12 GB). 

This work provides a reliable automated solution to a task that has often been 
undertaken, to-date, by manual delineation (i.e., human hand-drawn segmentation). As 
such, research outcomes have traditionally relied on the availability of human expertise and 
are prone to errors resulting from task fatigue and inherent human variability. These 
considerations have limited the efficiency and accuracy of research outcomes, such as 
volumetric studies of DN volume in populations with neurological disorders that impact the 
cerebellum. The availability of a fast, accurate, and scalable automated segmentation tool 
opens new avenues of research into the DN structure in health and disease, including 
longitudinal natural history studies and clinical trials in disorders with known DN involvement, 
such as FRDA and SCA365. 

In terms of biological findings, we replicated previously reported positive significant 
correlations between dentate nucleus volume and the magnetic susceptibility measures, in 
the healthy population19,20. These effects were present both in the manual tracings and the 
prediction masks obtained using the trained models and could be explained by partial 
volume effects along the edges of the structure, whereby voxels that include a mix of tissue 
both inside and outside the DN would be more likely to be identified as being inside the DN 
in individuals with higher mean susceptibility intensity. The result persisted (albeit with a 
lesser magnitude) even after intensity normalization. Moreover, work by Li and colleagues19 
also found that this positive association (with manual tracing) was present in the DN, but not 
in other midbrain or basal ganglia nuclei. If intensity-induced variability were indeed driving 
partial volume effects, this effect would be expected to be more severe in small structures 
such as the DN and the red nucleus19.  

 Regardless of the mechanism (biological or methodological) underlying this 
dependency between susceptibility and volume, it could be seen as an artifact that may be 
accounted for in DN volume assessments. This is further supported by the observation that, 
because susceptibility increases naturally with age, failure to correct for this dependency 
results in an apparent positive relationship between DN volume and age in the adult 
population (i.e., apparent DN growth over time)19,20, which is biologically implausible. Care 
must also be taken when assessing populations with brain pathology, as the relationship 
between susceptibility and volume in neurological conditions may be a mix of true disease 
effects and the artifact described above. Neurological diseases, such as FRDA, SCA1, and 
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multiple system atrophy are characterized by increased DN susceptibility8,66, which may lead 
to underestimation of DN volume loss. We, therefore, recommend statistically controlling for 
susceptibility levels when inferring volume effects to account for this artifact. In studies of 
normative populations, this can be achieved through simple regression (e.g., including a 
predictor of non-interest coding for susceptibility in regression models); for studies in 
pathological conditions, a correction factor estimated from normative data can be applied. 
We have reported a correction factor of 3636.84 for adjusting the total volume of DN, which 
represents the average of LDN and RDN volumes. However, it is important to note that 
slightly different correction factors were observed for LDN (3553.7188) and RDN 
(3422.2106). Consequently, future studies may select the appropriate correction factor 
based on their specific data and objective. Additionally, adjustments for other confounding 
variables, such as the impact of aging on DN volumes, susceptibility, or other measures, can 
be made either in sequential steps or by integrating all the confounding variables into a 
multiple regression model. 

 A limitation of this study lies in the fact that only three QSM reconstruction pipelines 
were used for generating the training images. Several QSM pipelines are available, including 
the possibility of combining a wide range of phase unwrapping, background field removal, 
and susceptibility mapping reconstruction methods and parameters. However, collecting 
such a diverse dataset would impose another layer of complexity on the study. As the QSM 
field continues to mature, it is likely that a narrower range of acquisition and reconstruction 
protocols will become the norm, reducing variability in this dimension. Notably, recent 
consensus papers have provided recommendations focused on clinical research in this 
area67,68, which might be usefully explored in future investigations. Future work should also 
explore histological validation of the imaging segmentations to provide further improved 
ground truth. Similarly, higher resolution imaging protocols combined with increasingly 
accurate QSM reconstruction approaches offer the potential to isolate the gray matter ribbon 
of the DN from the central white matter core, which will enable tissue-type specific 
inferences. 

In conclusion, our work provides state-of-the-art performance in automated DN 
segmentation from in vivo MRI based on extensive training and evaluation of a diverse 
dataset and methods. This outcome provides an important tool for characterizing cerebellar 
neuroanatomy in health and disease and biomarker discovery relevant for tracking disease 
progression and treatment efficacy in cerebellar disorders. 

6. Data and Code Availability Statement 
The patient MRI data are not publicly available due to privacy regulations. Access 

can be provided upon reasonable request to scientists in accordance with our Data Use and 
Access Policy. TRACK-FA and Enigma data might be provided upon request directed to 
Helena Bujalka (helena.bujalka@monash.edu) or Ian Harding 
(ian.harding@qimrberghofer.edu.au). 

The source code of QSM deep-learning segmentation pipeline will be made publicly 
available on GitHub (https://github.com/art2mri/QSM-Cereb) upon acceptance. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 28, 2024. ; https://doi.org/10.1101/2024.06.17.24308662doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.17.24308662


 

28 
 

7. Acknowledgments 
The authors gratefully thank all of the individuals for their participation in the study 

and the Friedreich’s Ataxia Research Alliance (FARA, USA) for their help with FRDA 
participant recruitment. 

The authors thank and acknowledge the FARA, Takeda Pharmaceuticals Company, 
Novartis Gene Therapies, IXICO plc and PTC Therapeutics for support in funding and for 
their participation in the TRACK-FA Neuroimaging Consortium, including providing advice 
and feedback on study design, implementation and analysis of outcomes. 

Study data were collected and managed using REDCap electronic data capture tools 
hosted and managed by Helix (Monash University, Australia). 

Study data were collected, stored, and managed using XNAT, a software framework 
for managing neuroimaging laboratory data hosted by Monash (MXNAT) and Monash 
Biomedical Imaging (MBIXNAT) (Monash University, Australia). 

The authors thank the research coordinators across all TRACK-FA sites for their 
assistance in participant recruitment and testing. 

The following TRACK-FA collaborators opted to have their name acknowledged: 
Helena Bujalka, School of Psychological Sciences, The Turner Institute for Brain and Mental 
Health, Monash University, Clayton, Victoria, Australia; Manuela Corti, Powell Gene Therapy 
Centre, University of Florida, Gainesville, Florida, United States of America; Jennifer Farmer, 
Friedreich’s Ataxia Research Alliance (FARA), Downingtown, Pennsylvania, United States of 
America; Myriam Rai, Friedreich’s Ataxia Research Alliance (FARA), Downingtown, 
Pennsylvania, United States of America. 

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 28, 2024. ; https://doi.org/10.1101/2024.06.17.24308662doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.17.24308662


 

29 
 

8. References 
1 Dum, R. P. & Strick, P. L. An unfolded map of the cerebellar dentate nucleus and its 

projections to the cerebral cortex. J Neurophysiol 89, 634-639 (2003). 
https://doi.org/10.1152/jn.00626.2002 

2 Henschke, J. U. & Pakan, J. M. Disynaptic cerebrocerebellar pathways originating from 
multiple functionally distinct cortical areas. Elife 9 (2020). 
https://doi.org/10.7554/eLife.59148 

3 Stoodley, C. J. & Schmahmann, J. D. Evidence for topographic organization in the 
cerebellum of motor control versus cognitive and affective processing. Cortex 46, 831-
844 (2010). https://doi.org/10.1016/j.cortex.2009.11.008 

4 Anteraper, S. A. et al. Intrinsic Functional Connectivity of Dentate Nuclei in Autism 
Spectrum Disorder. Brain Connect 9, 692-702 (2019). 
https://doi.org/10.1089/brain.2019.0692 

5 Olivito, G. et al. Cerebellar dentate nucleus functional connectivity with cerebral cortex 
in Alzheimer's disease and memory: a seed-based approach. Neurobiol Aging 89, 32-
40 (2020). https://doi.org/10.1016/j.neurobiolaging.2019.10.026 

6 Xie, Y. J. et al. Functional connectivity of cerebellar dentate nucleus and cognitive 
impairments in patients with drug-naive and first-episode schizophrenia. Psychiatry 
Res 300, 113937 (2021). https://doi.org/10.1016/j.psychres.2021.113937 

7 Koeppen, A. H. The pathogenesis of spinocerebellar ataxia. Cerebellum 4, 62-73 
(2005). https://doi.org/10.1080/14734220510007950 

8 Deistung, A. et al. Quantitative susceptibility mapping reveals alterations of dentate 
nuclei in common types of degenerative cerebellar ataxias. Brain Commun 4, fcab306 
(2022). https://doi.org/10.1093/braincomms/fcab306 

9 Jaschke, D. et al. Age-related differences of cerebellar cortex and nuclei: MRI findings 
in healthy controls and its application to spinocerebellar ataxia (SCA6) patients. 
Neuroimage 270, 119950 (2023). https://doi.org/10.1016/j.neuroimage.2023.119950 

10 Stefanescu, M. R. et al. Structural and functional MRI abnormalities of cerebellar cortex 
and nuclei in SCA3, SCA6 and Friedreich's ataxia. Brain 138, 1182-1197 (2015). 
https://doi.org/10.1093/brain/awv064 

11 Ward, P. G. D. et al. Longitudinal evaluation of iron concentration and atrophy in the 
dentate nuclei in friedreich ataxia. Mov Disord 34, 335-343 (2019). 
https://doi.org/10.1002/mds.27606 

12 Diedrichsen, J. et al. Imaging the deep cerebellar nuclei: a probabilistic atlas and 
normalization procedure. Neuroimage 54, 1786-1794 (2011). 
https://doi.org/10.1016/j.neuroimage.2010.10.035 

13 Haacke, E. M., Xu, Y., Cheng, Y. C. & Reichenbach, J. R. Susceptibility weighted 
imaging (SWI). Magn Reson Med 52, 612-618 (2004). 
https://doi.org/10.1002/mrm.20198 

14 Ramos, P. et al. Iron levels in the human brain: a post-mortem study of anatomical 
region differences and age-related changes. J Trace Elem Med Biol 28, 13-17 (2014). 
https://doi.org/10.1016/j.jtemb.2013.08.001 

15 Halefoglu, A. M. & Yousem, D. M. Susceptibility weighted imaging: Clinical applications 
and future directions. World J Radiol 10, 30-45 (2018). 
https://doi.org/10.4329/wjr.v10.i4.30 

16 Liu, C., Li, W., Tong, K. A., Yeom, K. W. & Kuzminski, S. Susceptibility-weighted 
imaging and quantitative susceptibility mapping in the brain. J Magn Reson Imaging 
42, 23-41 (2015). https://doi.org/10.1002/jmri.24768 

17 Langkammer, C. et al. Quantitative susceptibility mapping (QSM) as a means to 
measure brain iron? A post mortem validation study. Neuroimage 62, 1593-1599 
(2012). https://doi.org/10.1016/j.neuroimage.2012.05.049 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 28, 2024. ; https://doi.org/10.1101/2024.06.17.24308662doi: medRxiv preprint 

https://doi.org/10.1152/jn.00626.2002
https://doi.org/10.7554/eLife.59148
https://doi.org/10.1016/j.cortex.2009.11.008
https://doi.org/10.1089/brain.2019.0692
https://doi.org/10.1016/j.neurobiolaging.2019.10.026
https://doi.org/10.1016/j.psychres.2021.113937
https://doi.org/10.1080/14734220510007950
https://doi.org/10.1093/braincomms/fcab306
https://doi.org/10.1016/j.neuroimage.2023.119950
https://doi.org/10.1093/brain/awv064
https://doi.org/10.1002/mds.27606
https://doi.org/10.1016/j.neuroimage.2010.10.035
https://doi.org/10.1002/mrm.20198
https://doi.org/10.1016/j.jtemb.2013.08.001
https://doi.org/10.4329/wjr.v10.i4.30
https://doi.org/10.1002/jmri.24768
https://doi.org/10.1016/j.neuroimage.2012.05.049
https://doi.org/10.1101/2024.06.17.24308662


 

30 
 

18 Bonilha da Silva, C. et al. Dentate nuclei T2 relaxometry is a reliable neuroimaging 
marker in Friedreich's ataxia. Eur J Neurol 21, 1131-1136 (2014). 
https://doi.org/10.1111/ene.12448 

19 Li, G. et al. Age-dependent changes in brain iron deposition and volume in deep gray 
matter nuclei using quantitative susceptibility mapping. Neuroimage 269, 119923 
(2023). https://doi.org/10.1016/j.neuroimage.2023.119923 

20 Zhang, Y. et al. Visualizing the deep cerebellar nuclei using quantitative susceptibility 
mapping: An application in healthy controls, Parkinson's disease patients and essential 
tremor patients. Hum Brain Mapp 44, 1810-1824 (2023). 
https://doi.org/10.1002/hbm.26178 

21 Li, X. et al. Multi-atlas tool for automated segmentation of brain gray matter nuclei and 
quantification of their magnetic susceptibility. Neuroimage 191, 337-349 (2019). 
https://doi.org/10.1016/j.neuroimage.2019.02.016 

22 Mori, S. et al. MRICloud: delivering high-throughput MRI neuroinformatics as cloud-
based software as a service. Computing in Science & Engineering 18, 21-35 (2016).  

23 Georgiou-Karistianis, N. et al. A natural history study to track brain and spinal cord 
changes in individuals with Friedreich's ataxia: TRACK-FA study protocol. PLoS One 
17, e0269649 (2022). https://doi.org/10.1371/journal.pone.0269649 

24 Khan, W. et al. Neuroinflammation in the Cerebellum and Brainstem in Friedreich 
Ataxia: An [18F]-FEMPA PET Study. Mov Disord 37, 218-224 (2022). 
https://doi.org/10.1002/mds.28825 

25 Chen, L. et al. Quantitative Susceptibility Mapping of Brain Iron and beta-Amyloid in 
MRI and PET Relating to Cognitive Performance in Cognitively Normal Older Adults. 
Radiology 298, 353-362 (2021). https://doi.org/10.1148/radiol.2020201603 

26 Fang, J., Bao, L., Li, X., van Zijl, P. C. M. & Chen, Z. Background field removal using 
a region adaptive kernel for quantitative susceptibility mapping of human brain. J Magn 
Reson 281, 130-140 (2017). https://doi.org/10.1016/j.jmr.2017.05.004 

27 Liu, T. et al. Morphology enabled dipole inversion (MEDI) from a single-angle 
acquisition: comparison with COSMOS in human brain imaging. Magn Reson Med 66, 
777-783 (2011). https://doi.org/10.1002/mrm.22816 

28 Liu, J. et al. Morphology enabled dipole inversion for quantitative susceptibility 
mapping using structural consistency between the magnitude image and the 
susceptibility map. Neuroimage 59, 2560-2568 (2012). 
https://doi.org/10.1016/j.neuroimage.2011.08.082 

29 Li, W., Wu, B. & Liu, C. Quantitative susceptibility mapping of human brain reflects 
spatial variation in tissue composition. Neuroimage 55, 1645-1656 (2011). 
https://doi.org/10.1016/j.neuroimage.2010.11.088 

30 Yushkevich, P. A. et al. User-guided 3D active contour segmentation of anatomical 
structures: significantly improved efficiency and reliability. Neuroimage 31, 1116-1128 
(2006). https://doi.org/10.1016/j.neuroimage.2006.01.015 

31 FSLeyes v. 1.11.0 (Zenodo, 2024). 
32 Ronneberger, O., Fischer, P. & Brox, T. in Medical image computing and computer-

assisted intervention–MICCAI 2015: 18th international conference, Munich, Germany, 
October 5-9, 2015, proceedings, part III 18.  234-241 (Springer). 

33 Çiçek, Ö., Abdulkadir, A., Lienkamp, S. S., Brox, T. & Ronneberger, O. in Medical 
Image Computing and Computer-Assisted Intervention–MICCAI 2016: 19th 
International Conference, Athens, Greece, October 17-21, 2016, Proceedings, Part II 
19.  424-432 (Springer). 

34 Isensee, F., Jaeger, P. F., Kohl, S. A. A., Petersen, J. & Maier-Hein, K. H. nnU-Net: a 
self-configuring method for deep learning-based biomedical image segmentation. Nat 
Methods 18, 203-211 (2021). https://doi.org/10.1038/s41592-020-01008-z 

35 Lee, C.-Y., Xie, S., Gallagher, P., Zhang, Z. & Tu, Z. in Artificial intelligence and 
statistics.  562-570 (Pmlr). 

36 Vaswani, A. et al. Attention is all you need. Advances in neural information processing 
systems 30 (2017).  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 28, 2024. ; https://doi.org/10.1101/2024.06.17.24308662doi: medRxiv preprint 

https://doi.org/10.1111/ene.12448
https://doi.org/10.1016/j.neuroimage.2023.119923
https://doi.org/10.1002/hbm.26178
https://doi.org/10.1016/j.neuroimage.2019.02.016
https://doi.org/10.1371/journal.pone.0269649
https://doi.org/10.1002/mds.28825
https://doi.org/10.1148/radiol.2020201603
https://doi.org/10.1016/j.jmr.2017.05.004
https://doi.org/10.1002/mrm.22816
https://doi.org/10.1016/j.neuroimage.2011.08.082
https://doi.org/10.1016/j.neuroimage.2010.11.088
https://doi.org/10.1016/j.neuroimage.2006.01.015
https://doi.org/10.1038/s41592-020-01008-z
https://doi.org/10.1101/2024.06.17.24308662


 

31 
 

37 Chen, J. et al. Transunet: Transformers make strong encoders for medical image 
segmentation. arXiv preprint arXiv:2102.04306 (2021).  

38 Hatamizadeh, A. et al. in Proceedings of the IEEE/CVF winter conference on 
applications of computer vision.  574-584. 

39 Hatamizadeh, A. et al. in International MICCAI Brainlesion Workshop.  272-284 
(Springer). 

40 Liu, Z. et al. in Proceedings of the IEEE/CVF international conference on computer 
vision.  10012-10022. 

41 Dosovitskiy, A. et al. An image is worth 16x16 words: Transformers for image 
recognition at scale. arXiv preprint arXiv:2010.11929 (2020).  

42 Cardoso, M. J. et al. Monai: An open-source framework for deep learning in healthcare. 
arXiv preprint arXiv:2211.02701 (2022).  

43 Han, S., Carass, A., He, Y. & Prince, J. L. Automatic cerebellum anatomical 
parcellation using U-Net with locally constrained optimization. Neuroimage 218, 
116819 (2020). https://doi.org/10.1016/j.neuroimage.2020.116819 

44 Avants, B. B. et al. A reproducible evaluation of ANTs similarity metric performance in 
brain image registration. Neuroimage 54, 2033-2044 (2011). 
https://doi.org/10.1016/j.neuroimage.2010.09.025 

45 Dice, L. R. Measures of the Amount of Ecologic Association between Species. Ecology 
26, 297-302 (1945). https://doi.org/Doi 10.2307/1932409 

46 Sorenson, T. A method of establishing groups of equal amplitude in plant sociology 
based on similarity of species content, and its application to analysis of vegetation on 
Danish commons. Kong Dan Vidensk Selsk Biol Skr 5, 1-5 (1948).  

47 Bertels, J. et al. Optimizing the Dice Score and Jaccard Index for Medical Image 
Segmentation: Theory and Practice. Lect Notes Comput Sc 11765, 92-100 (2019). 
https://doi.org/10.1007/978-3-030-32245-8_11 

48 Huttenlocher, D. P., Klanderman, G. A. & Rucklidge, W. J. Comparing Images Using 
the Hausdorff Distance. Ieee T Pattern Anal 15, 850-863 (1993). https://doi.org/Doi 
10.1109/34.232073 

49 Taha, A. A. & Hanbury, A. Metrics for evaluating 3D medical image segmentation: 
analysis, selection, and tool. BMC Med Imaging 15, 29 (2015). 
https://doi.org/10.1186/s12880-015-0068-x 

50 Jaccard, P. The distribution of the flora in the alpine zone. 1. New phytologist 11, 37-
50 (1912).  

51 Koo, T. K. & Li, M. Y. A Guideline of Selecting and Reporting Intraclass Correlation 
Coefficients for Reliability Research. J Chiropr Med 15, 155-163 (2016). 
https://doi.org/10.1016/j.jcm.2016.02.012 

52 Jenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich, M. W. & Smith, S. M. Fsl. 
Neuroimage 62, 782-790 (2012). https://doi.org/10.1016/j.neuroimage.2011.09.015 

53 van Bergen, J. M. et al. Quantitative Susceptibility Mapping Suggests Altered Brain 
Iron in Premanifest Huntington Disease. AJNR Am J Neuroradiol 37, 789-796 (2016). 
https://doi.org/10.3174/ajnr.A4617 

54 Chan, K. S. & Marques, J. P. SEPIA-Susceptibility mapping pipeline tool for phase 
images. Neuroimage 227, 117611 (2021). 
https://doi.org/10.1016/j.neuroimage.2020.117611 

55 Abdul-Rahman, H. S. et al. Fast and robust three-dimensional best path phase 
unwrapping algorithm. Appl Opt 46, 6623-6635 (2007). 
https://doi.org/10.1364/ao.46.006623 

56 Zhou, D., Liu, T., Spincemaille, P. & Wang, Y. Background field removal by solving the 
Laplacian boundary value problem. NMR Biomed 27, 312-319 (2014). 
https://doi.org/10.1002/nbm.3064 

57 Wei, H. et al. Streaking artifact reduction for quantitative susceptibility mapping of 
sources with large dynamic range. NMR Biomed 28, 1294-1303 (2015). 
https://doi.org/10.1002/nbm.3383 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 28, 2024. ; https://doi.org/10.1101/2024.06.17.24308662doi: medRxiv preprint 

https://doi.org/10.1016/j.neuroimage.2020.116819
https://doi.org/10.1016/j.neuroimage.2010.09.025
https://doi.org/Doi
https://doi.org/10.1007/978-3-030-32245-8_11
https://doi.org/Doi
https://doi.org/10.1186/s12880-015-0068-x
https://doi.org/10.1016/j.jcm.2016.02.012
https://doi.org/10.1016/j.neuroimage.2011.09.015
https://doi.org/10.3174/ajnr.A4617
https://doi.org/10.1016/j.neuroimage.2020.117611
https://doi.org/10.1364/ao.46.006623
https://doi.org/10.1002/nbm.3064
https://doi.org/10.1002/nbm.3383
https://doi.org/10.1101/2024.06.17.24308662


 

32 
 

58 Ulyanov, D., Vedaldi, A. & Lempitsky, V. Instance normalization: The missing 
ingredient for fast stylization. arXiv preprint arXiv:1607.08022 (2016).  

59 He, K., Zhang, X., Ren, S. & Sun, J. in Proceedings of the IEEE international 
conference on computer vision.  1026-1034. 

60 Loshchilov, I. & Hutter, F. Decoupled weight decay regularization. arXiv preprint 
arXiv:1711.05101 (2017).  

61 Ramspek, C. L., Jager, K. J., Dekker, F. W., Zoccali, C. & van Diepen, M. External 
validation of prognostic models: what, why, how, when and where? Clin Kidney J 14, 
49-58 (2021). https://doi.org/10.1093/ckj/sfaa188 

62 Collins, G. S. & Moons, K. G. M. Reporting of artificial intelligence prediction models. 
Lancet 393, 1577-1579 (2019). https://doi.org/10.1016/S0140-6736(19)30037-6 

63 de Hond, A. A. H. et al. Guidelines and quality criteria for artificial intelligence-based 
prediction models in healthcare: a scoping review. NPJ Digit Med 5, 2 (2022). 
https://doi.org/10.1038/s41746-021-00549-7 

64 Wasserthal, J. et al. TotalSegmentator: Robust Segmentation of 104 Anatomic 
Structures in CT Images. Radiol Artif Intell 5, e230024 (2023). 
https://doi.org/10.1148/ryai.230024 

65 Koeppen, A. H. The Neuropathology of Spinocerebellar Ataxia Type 3/Machado-
Joseph Disease. Adv Exp Med Biol 1049, 233-241 (2018). https://doi.org/10.1007/978-
3-319-71779-1_11 

66 Harding, I. H. et al. Tissue atrophy and elevated iron concentration in the 
extrapyramidal motor system in Friedreich ataxia: the IMAGE-FRDA study. J Neurol 
Neurosurg Psychiatry 87, 1261-1263 (2016). https://doi.org/10.1136/jnnp-2015-
312665 

67 Committee, Q. S. M. C. O. et al. Recommended implementation of quantitative 
susceptibility mapping for clinical research in the brain: A consensus of the ISMRM 
electro-magnetic tissue properties study group. Magn Reson Med 91, 1834-1862 
(2024). https://doi.org/10.1002/mrm.30006 

68 Oz, G. et al. MR Imaging in Ataxias: Consensus Recommendations by the Ataxia 
Global Initiative Working Group on MRI Biomarkers. Cerebellum (2023). 
https://doi.org/10.1007/s12311-023-01572-y 

 

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 28, 2024. ; https://doi.org/10.1101/2024.06.17.24308662doi: medRxiv preprint 

https://doi.org/10.1093/ckj/sfaa188
https://doi.org/10.1016/S0140-6736(19)30037-6
https://doi.org/10.1038/s41746-021-00549-7
https://doi.org/10.1148/ryai.230024
https://doi.org/10.1007/978-3-319-71779-1_11
https://doi.org/10.1007/978-3-319-71779-1_11
https://doi.org/10.1136/jnnp-2015-312665
https://doi.org/10.1136/jnnp-2015-312665
https://doi.org/10.1002/mrm.30006
https://doi.org/10.1007/s12311-023-01572-y
https://doi.org/10.1101/2024.06.17.24308662


 

33 
 

Figure Legends 
Figure 1. Image samples for each dataset. Randomly selected. Images were cropped 
focusing the cerebellum, voxel intensities were normalized using z-score to improve 
visualization. 

Figure 2. Diagram details the inclusion of image datasets into the study. 

Figure 3. Manually segmented mask delineating the left dentate nucleus (LDN) in red and 
the right dentate nucleus (RDN) in green from a sample QSM dataset, healthy participant. 
Coronal, sagittal, and axial views as well as shaded-surface display are shown from A - D, 
respectively.  

Figure 4. Deep learning QSM segmentation pipeline. 

Figure 5. Bar plots of the trained segmentation models and MRICloud. All metrics of the 
segmentation model variants are statistically significantly higher than the MRICloud results. 
ns: non-significant; * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001. DN: dentate 
nucleus, DS: deep supervision. 

Figure 6. Overview of pipeline prediction examples for datasets of each center. QSM images 
without (top) and with the predicted segmentation mask as overlay (bottom) are presented in 
the coronal, axial, and sagittal planes, respectively. Left dentate nucleus is depicted in red 
and the right one in green. 

Figure 7. Volume scatter plots for the final segmentation model. Ground truth measures 
versus model predicted values. Each dot represents a prediction sample from the test set. 
Pearson correlation coefficients and p-values are indicated in each plot. The red line 
represents the line of identity, i.e., the expected perfect fit. DN: dentate nucleus. 

Figure 8. Model prediction results. Pearson’s correlation coefficients and p-values for each 
group of individuals and DN side. Correlation coefficients with p<0.05 are emphasized with a 
gray background. Children: subjects under 18 years of age. The volume estimations were 
corrected for age and head size (eTIV). FRDA: Friedreich’s ataxia; DN: dentate nucleus; 
LDN: left DN; RDN: right DN. 
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Table Legends 
Table 1. Acquisition protocols for each dataset. 

Table 2. Subject demographics for each dataset. 

Table 3. Intra-rater reproducibility results (mean±SD). 

Table 4. Inter-rater reproducibility results (mean±SD). 

Table 5. Trained models and MRICloud performance metrics (mean±SD) for left DN (LDN) 
and right DN (RDN) on the experimentation set. 

Table 6. Trained nnU-Net final model performance metrics (mean±SD) for left DN (LDN) and 
right DN (RDN) on the complete test set. 

Table 7. External validation Dice scores (mean±SD) for both DN, comparing results from 
MRICloud and our proposed DL model. 

Table 8. Quantitative validation (mean±SD) of QSM reconstruction methods on external 
data. 
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