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Abstract  White matter hyperintensities (WMH) of presumed vascular origin are an MRI-based biomarker of cerebral small vessel 
disease (CSVD). WMH are associated with accelerated cognitive decline and increased risk of stroke and dementia, and are commonly 
observed in aging, vascular cognitive impairment, Alzheimer’s and Parkinson’s disease, and related dementias. The accurate, reliable, 
and rapid measurement of WMH in large-scale multi-site clinical studies with heterogeneous patient populations remains challenging. 
The diversity of MRI protocols and image characteristics across different studies as well as the diverse nature of WMH, in terms of 
their highly variable shape, size, distribution, and underlying pathology, adds additional complexity to this task. Here, we present 
segcsvdWMH, a novel convolutional neural network-based tool for quantifying WMH. segcsvdWMH is specifically designed for accurate 
and robust performance when applied to diverse clinical patient datasets. Central to the development of this tool is the curation of a 
large patient dataset (>700 scans) sourced from seven multi-site studies, encompassing a wide range of clinical populations, WMH 
burden, and imaging parameters. The performance of segcsvdWMH is evaluated against three widely used WMH segmentation tools, 
where we demonstrate significantly enhanced accuracy and robustness across a range of challenging conditions and datasets.  

Introduction  

White maPer hyperintensiQes (WMH) of presumed vascular 
origin, are commonly observed on brain magneQc resonance 
imaging (MRI) in older adults and paQents with neurovascular 
and neurodegeneraQve disease (Wardlaw et al., 2013). 
Visualized as hyperintense (bright) signals on T2-weighted 
Fluid-APenuated Inversion Recovery (FLAIR) MRI scans, WMH 
are a key imaging biomarker of cerebral small vessel disease 
(CSVD) and are associated with a range of poor clinical 
outcomes, including accelerated cogniQve decline and 
increased risk for stroke and demenQa (Prins and Scheltens, 
2015). Accurate detecQon and quanQficaQon of WMH are 

crucial for diagnosis, monitoring disease progression, and 
research into the underlying mechanisms of these condiQons 
(Wardlaw et al., 2019), necessitaQng automated, reliable, and 
efficient tools for measurement of WMH.  
 
Recent advances in machine learning, parQcularly in the field 
of deep learning and specifically convoluQonal neural networks 
(CNN) (Derry et al., 2023), have greatly expanded the 
availability of automated WMH segmentaQon tools. Despite 
these advancements, significant challenges remain in their 
effecQve applicaQon across large and diverse clinical datasets. 
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One challenge lies in the heterogeneity of MRI data across 
diverse clinical and research datasets. Factors such as image 
resoluQon, contrast properQes, and the presence of arQfacts 
can substanQally influence the accuracy of WMH detecQon (De 
Guio et al., 2016). Furthermore, the diverse nature of WMH, in 
terms of their highly variable shape, size, distribuQon, and 
underlying pathology further complicates the segmentaQon 
task. 
 
These challenges o[en manifest as inconsistent segmentaQon 
performance across different datasets. A common issue is poor 
generalizaQon, characterized by a decline in performance 
when exisQng tools are applied to new datasets with different 
imaging or paQent characterisQcs (Wang et al., 2023). To 
achieve comparable performance levels across datasets, these 
tools o[en require semi-automated parameter tuning, such as 
adjustments to the threshold that converts model probabiliQes 
into binary segmentaQons. In some cases, the model itself 
must be fine-tuned or re-trained to adapt to the unique 
characterisQcs of a new dataset. These dataset-specific 
adjustments require considerable Qme and resources and are 
not always feasible or successful. 
 
Given the challenges involved in WMH segmentaQon, there is 
a conQnued demand for tools that provide greater accuracy 
and robustness across diverse imaging datasets. This work aims 
to address this demand through the development of 
segcsvdWMH, a novel WMH segmentaQon tool designed 
specifically for enhanced segmentaQon performance in 
heterogeneous clinical datasets characterized by highly varied 
imaging parameters, paQent types, and WMH burden. 
 
Central to the development of segcsvdWMH was the curaQon of 
a large paQent dataset (>700 scans) sourced from seven mulQ-
site studies, encompassing a range of clinical populaQons, 
WMH burden, and imaging parameters. This dataset was 
further enriched by the creaQon of highly accurate ground 
truth labels. IniQally synthesized from two legacy WMH 
segmentaQon tools (Gibson et al., 2010; Mojiri Forooshani et 
al., 2022), these labels were meQculously refined through a 
semi-automated procedure consisQng of precise manual 
thresholding and/or ediQng. 
 

segcsvdWMH features an innovaQve two-stage approach to 
WMH segmentaQon. In the first stage, SynthSeg, a recently 
validated CNN-based tool (Billot et al., 2023) from the 
FreeSurfer so[ware suite (Fischl, 2012) is uQlized. This tool was 
developed using a large syntheQc dataset and provides fast and 
robust segmentaQon of non-WMH corQcal and subcorQcal 
structures for diverse clinical scans of any contrast and 
resoluQon. segcsvdWMH leverages the SynthSeg segmentaQon 
to generate a regional mask consisQng of hippocampal and 
sulcal cerebrospinal (sCSF) voxels. This regional mask provides 
valuable spaQal context to inform and constrain the 
subsequent WMH segmentaQon task, where the hippocampus 
acts as a key anatomical reference point and sCSF serves as a 
marker for the perimeter of corQcal gray maPer. In the second 

stage, the regional mask and FLAIR image are used as dual 
inputs to a CNN opQmized for the task of WMH segmentaQon. 
Minimal preprocessing, consisQng of brain masking, bias 
correcQon, and intensity standardizaQon, is performed to 
enhance consistency across datasets prior to inpu_ng the 
FLAIR images into the CNN. This two-stage approach explicitly 
combines relevant anatomical informaQon with the contrast 
characterisQcs of the FLAIR image to improve the accuracy and 
sensiQvity of the WMH segmentaQon. 

 
Several advanced training strategies were integrated into the 
development of segcsvdWMH to ensure robust WMH 
segmentaQon. These include the creaQon of three disQnct 
models, each fine-tuned by adjustment of Tversky loss funcQon 
parameters to achieve unique precision-sensiQvity weighQngs. 
This fine-tuning yielded a diverse collecQon of models, each 
with varied yet capable performance characterisQcs. In 
addiQon, segcsvdWMH employs sophisQcated data 
augmentaQon strategies, both during training and predicQon, 
to further enhance its segmentaQon capabiliQes across 
datasets. 
 
The performance of segcsvdWMH was evaluated by 
benchmarking it against three previously validated 
segmentaQon tools: HyperMapp3r (Mojiri Forooshani et al., 
2022), SAMSEG (Puon] et al., 2016), and WMH-SynthSeg (Laso 
et al., 2024). These tools were all developed with the aim of 
achieving robust performance on diverse clinical datasets 
without retraining, and are easily accessible, either distributed 
within the FreeSurfer suite or available for direct download, 
providing ideal benchmarks in this context. In addiQon to 
benchmarking against these tools, other key aspects of 
segmentaQon performance were evaluated, including 
consistency across different binary segmentaQon thresholds, 
robustness to simulated MR arQfacts, and adaptability to 
diverse and unseen data. CollecQvely, these evaluaQons 
provided a comprehensive assessment of segcsvdWMH 
segmentaQon performance across a variety of challenging 
datasets and condiQons. 

Results 

This secQon begins with a detailed descripQon of the datasets 
used to develop and validate segcsvdWMH and conQnues with 
the calculaQon of WMH volumes and FLAIR WMH contrast 
raQos to quanQfy the degree of variability in WMH burden and 
FLAIR contrast properQes across the included datasets. 
Subsequent secQons focus on evaluaQng the performance of 
segcsvdWMH against the three benchmark tools using several 
metrics. These include an overlap metric (Dice score) which 
evaluates the agreement with ground truth voxels; a boundary-
based metric (normalized surface distance) which assesses 
accuracy in the shape of the segmented objects; a volume-
based metric (average volume difference) which quanQfies the 
accuracy of volume esQmaQon; and two addiQonal metrics 
(sensiQvity and precision) which assess accuracy based on the 
proporQon of false negaQve or false posiQve voxels. 
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CollecQvely, these metrics provide a comprehensive 
assessment of segmentaQon accuracy at the pixel, shape, and 
volume level, in accordance with established 
recommendaQons for the evaluaQon of pixel-level 
segmentaQon tasks (Maier-Hein et al., 2024). 
 
Descrip(on of datasets  
 
A large dataset consisQng of 947 3T FLAIR images and FLAIR-
based SynthSeg segmentaQons was assembled from seven 
different studies (Table 1). Many of these studies were large 
mulQ-site projects, and two (ADNI/LD n=85/70) employed 
newer 3D FLAIR imaging protocols with 1 mm isotropic, or 
approximately isotropic, voxel resoluQon. These studies 
spanned a wide range of paQent populaQons, including 
individuals with Alzheimer’s disease, vascular cogniQve 
impairment, aphasia, sleep apnea, caroQd stenosis, as well as 
normal controls. Altogether, this dataset consisted of a highly 
heterogeneous set of images, encompassing a wide range of 
imaging parameters and paQent populaQons. 
 
The full dataset (n=947) was parQQoned into separate training 
(n=781), validaQon (n=12), and test (n=154) datasets. A 
minimal amount of data was allocated to the validaQon 
dataset, as it was used only to select the binary segmentaQon 
threshold and to set coarse limits for the random selecQon of 
models for ensembling. For model validaQon purposes, the test 
data were further subdivided into four separate datasets based 
on two criteria: whether they were included (“in-sample”) or 
excluded (“out-of-sample”) from the training dataset, and 
whether they were acquired with approximately isotropic 
1mm voxels (3D) or with 3mm thick slices (2D). This resulted in 
four separate test datasets: 2DIS (2D in-sample; n=18); 2DOOS 
(2D out-of-sample; n=41); 3DIS (3D in-sample; n=10); and 3DOOS 
(3D out-of-sample; n=5 with and n=80 without ground truth 
segmentaQon), where the in-sample datasets provided a test 
of performance on familiar data, and the out-of-sample 
datasets provided a test of generalizaQon performance on 
unseen data. 

A second set of test datasets was generated by applying a 
transform to each image (FLAIR and FLAIR-based SynthSeg 
segmentation) in the first set of test datasets. This transform 
involved swapping the x and z axes, and then updating the 
orientation field in the image header to incorrectly reflect this 
change. Specifically, all images were in LPI or RPI format 
initially, and were transformed to IPL or IPR format, with the 
orientation field in the image header updated to indicate SPL 
or SPR format. This produced a set of images formatted in an 
orientation that was neither present in the training data nor 
discernible from the image header description, allowing for a 
rigorous test of whether model performance was entirely 
independent of orientation.  

A third test dataset was created to augment the 3DOOS test 
dataset and assess segmentation performance in the presence 

of simulated MR artifacts. This was accomplished by randomly 
introducing five levels of spike noise artifact to each FLAIR 
image, resulting in a total of 30 FLAIR images for this dataset, 
each with ground truth segmentations. Following the addition 
of spike noise, the SynthSeg segmentations were regenerated, 
thereby exposing all components of the segcsvdWMH tool to the 
effects of simulated spike noise. 

Table 1. Key imaging characteris;cs for each dataset, including the resolu;on 
of the acquired and processed FLAIR data, a cri;cal factor influencing model 
performance. Other MR acquisi;ons parameters that affect FLAIR contrast are 
also important factors, and these varied by study and site. To provide a more 
direct and interpretable assessment of these contrast differences, FLAIR WMH 
contrast ra;os were calculated for each dataset and are reported in the results 
sec;on. 

 
 
Abbrevia(ons: (LD) Fonda(on Leducq Transatlan(c Network of Excellence on the 
Role of the Perivascular Space in Cerebral Small Vessel Disease; (ADNI) Alzheimer’s 
Disease Neuroimaging Ini(a(ve 3; (VBH) Vascular Brain Health; (LIPA) Language 
Impairment in Progressive Aphasia; (MIT) Medical Imaging Trials Network of 
Canada Project C6; (ONDRIIS/OOS) Ontario Neurodegenera(ve Disease Research 
Ini(a(ve, ‘IS’ in-sample, ‘OOS’ out-of-sample; (CAIN) Canadian Atherosclerosis 
Imaging Network Project 1 (CAIN); (AD) Alzheimer’s Disease; (CVD) cerebrovascular 
disease; (PD)Parkinson’s disease; (Dx) clinical diagnosis; (VCI) Vascular Cogni(ve 
Impairment. 

Variation in WMH burden and contrast ratios across datasets 

The degree of WMH burden across datasets was evaluated by 
expressing the ground truth WMH volumes as a percentage of 
the total intracranial volume (Figure 1A). A high degree of 
variability in these volumes was observed both across and 
within datasets, ranging from 0.1% to 7% of total intracranial 
volume, indicating substantial heterogeneity in CSVD severity 
across individuals and datasets included in this work.  

Differences in FLAIR contrast properties across datasets were 
assessed using WMH contrast ratios, which quantified the 
visibility of WMH relative to gray matter (GM) and white 
matter (WM) (Figure 1B). The LD 3DIS and ADNI 3DOOS datasets, 
which employed isotropic or nearly isotropic FLAIR imaging 
protocols, exhibited significantly lower WMH contrast ratios 
than all other datasets (permuted p-values < 0.05), indicating 
reduced visibility of WMH on FLAIR for these datasets 

 

  FLAIR image properties 

Dataset Patient 
population Type Acquisition in- 

plane resolution 
(mm) 

Acquisition 
slice 

thickness 
(mm) 

Processed (upsampled) voxel size 
(mm) n 

LD sleep apnea 3D 1.0 x 1.0 1 — 70 70 
ADNI AD 3D 1.0 x 1.0 1.2 1.0x1.0x1.0 79 

85 
3D 1.0 x 1.0 1 — 6 

VBH CVD VCI AD 2D ~1.0x1.0 3 0.86 x 0.86 x 1.0 12 
52 3 0.86 x 0.86 x 1.4 28 

3 1.0x1.0x1.0 12 

LIPA aphasia/ controls 2D ~1.0x1.0 3 0.86 x 0.86 x 1.0 46 92 
3 1.0x1.0x1.0 46  

MIT Mixed Dx with 
high CSVD 2D ~1.0x1.0 3 1.0x1.0x1.0 53 53 

ONDIS/OOS CVD, PD 2D ~1.0x1.0 3 1.0x1.0x1.0 194 194 
CAIN non-surgical 

carotid stenosis 2D ~1.0x1.0 3 0.63 x 0.63 x 1.2 87 
401 3 0.86 x 0.86 x 1.0 67 

3 1.0x1.0x1.0 247 
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 Figure 1. Varia;on in WMH burden (A) and WMH contrast ra;os (B) across datasets. Mean values are represented by solid lines and individual data points are ploSed 
in grey. A high degree of varia;on was present in both measures, indica;ng substan;al heterogeneity in the data used to develop and validate segcsvdWMH.. 
 
Segmentation performance for the standard test data 

Agreement with ground truth segmentations 
 

Overall, segcsvdWMH was the only tool that maintained a 
consistently high level of performance across all metrics on the 
standard test data (Figure 2; first column). To facilitate a more 
direct performance comparison, the mean difference for each 
performance metric was calculated between segcsvdWMH and 
the benchmark tools for the standard test data (Table 2). 
Permutation tests revealed that segcsvdWMH significantly 
outperformed the benchmark tools in almost all instances. 
Often these performance improvements were quite 
substantial. For example, segcsvdWMH exhibited mean Dice 
score enhancements across test datasets of: 8.0%+-9.7% over 
HyperMapp3r; 23.0%+-7.6% over SAMSEG; and 45.0%+-5.5% 
over WMH-SynthSeg. Notably, there were only two instances 
where a benchmark tool significantly outperformed 
segcsvdWMH. HyperMapp3r exhibited significantly higher 
sensitivity on the 2DOOS dataset, however this result was 
expected given that 38 of the 41 scans in that dataset were 
used to train HyperMapp3r, thereby inflating its sensitivity for 
familiar data. HyperMapp3r also exhibited significantly higher 
precision for the 3DOOS dataset, but this was offset by worse 
performance for all other metrics, indicating that the 
enhanced precision for this dataset was associated with an 
overall decrease in performance. 
 
Agreement with ground truth volumes  
 

The agreement with ground truth volumes was analyzed for 
each tool in several regions of interest (ROIs) that included 
either periventricular, deep, or total WMH voxels (Figure 3). 
segcsvdWMH was the only tool that exhibited strong and stable 
correlations with ground truth volumes across all ROIs (mean 

r=0.99+-0.007). In contrast, the benchmark tools tended to 
exhibit either slightly weaker correlations (e.g. SAMSEG for all 
ROIs; mean r=0.93+- 0.05) that were biased toward 
underestimation of the true volumes, or much weaker 
correlations (e.g. HyperMapp3r for deep WMH; mean r=0.53+-
0.18 and WMH-SynthSeg for all ROIs; r=0.74+-0.08). In general, 
the benchmark tools were more prone to underestimation 
than segcsvdWMH, and this tendency was also clearly apparent 
upon visualization of their segmentation outputs (Figure 4).  

A follow-up analysis was performed on the total WMH 
volumes, stratified into three levels based on the ground truth 
segmentation volumes, corresponding to low, moderate, or 
high WMH burden. Correlations with ground truth volumes 
across these three levels were stronger and more consistent 
for segcsvdWMH (mean r=0.93+-0.07) compared to 
HyperMapp3r (mean r=0.68+-0.28), SAMSEG (mean 
r=0.72+0.22), and WMH-SynthSeg (mean r=0.51+-0.24). Thus, 
segcsvdWMH exhibited greater agreement with total WMH 
volumes, both across all levels, and at each level, of WMH 
burden, indicating strong and consistent performance across 
all WMH severity levels. 

Segmentation performance for the transformed test data  

Performance metrics were calculated for the transformed test 
data, after reorientation with inaccurate orientation 
information embedded into the image header (Figure 2; 
second column). For segcsvdWMH, performance on the 
transformed data was in line with performance on the 
standard test data across all metrics and test sets (Figure 2; 
first column). In contrast, for the benchmark tools, there was 
a marked decline in performance on the transformed data 
across metrics and test sets

Table 2. Mean performance differences between segcsvdWMH and the three benchmark tools for the standard test data. Asterisks signify significant differences, with a 
single asterisk (*) indica;ng p < 0.05 and double asterisks (**) indica;ng p < 0.001. Asterisk color indicates the direc;on of the performance effect, with green signifying 
performance improvements, and red indica;ng performance declines, for segcsvdWMH compared to the benchmark tools. 

 
 
 

 
HyperMapp3r SAMSEG WMH-SynthSeg 
2DIS 2DOOS 3DIS 3DOOS 2DIS 2DOOS 3DIS 3DOOS 2DIS 2DOOS 3DIS 3DOOS 

Dice Score  0.00  0.00  0.20**  0.12*  0.15**  0.24**  0.33**  0.20*  0.44**  0.53**  0.41**  0.42* 
Sensitivity -0.04 -0.09**  0.31**  0.25**  0.24**  0.28**  0.40**  0.31*  0.57**  0.58**  0.45**  0.54* 
Precision  0.02  0.06 -0.01 -0.08*  0.02  0.10**  0.14  0.01  0.20**  0.46**  0.24**  0.11** 
AVD -10.3 -14.7** -30.4** -26.0* -12.2* -21.6** -32.6** -24.7* -33.0** -49.8** -36.8** -43.9* 
NSD  0.00  0.03**  0.14**  0.13**  0.14**  0.23**  0.33**  0.23**  0.45**  0.49**  0.38**  0.44** 
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Figure 2. Performance across three test datasets for the four segmenta;on tools. The first column shows performance on the standard test data. The second column 
shows performance on the transformed test data aYer reorienta;on with inaccurate orienta;on informa;on embedded into the image header. The last column shows 
performance on the standard test data using a lower binary segmenta;on threshold of 0.1. For clarity and ease of comparison, the AVD plots were truncated from 750 
to 350 and do not display all outlier points for SAMSEG and WMH-SynthSeg. segcsvdWMH was the only tool to maintain a consistently high level of performance across all 
metrics and test datasets. 
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Figure 3. Rela;onship with ground truth volumes for total, periventricular and deep WMH.  First column displays the Pearson correla;on coefficients (solid line) with 
their 95% bootstrap es;mated confidence intervals (shaded area). Remaining columns display the corresponding scaSerplots for these correla;ons with their 95% 
bootstrap es;mated confidence intervals (solid lines), represen;ng the upper and lower bounds of the regression line. ScaSerplots include data from all test datasets 
with available ground truth segmenta;ons (n=74). segcsvdWMH was the only tool that exhibited strong, stable, and unbiased correla;ons with ground truth volumes 
consistently across all ROIs. In contrast, the benchmark tools tended to exhibit lower and more variable performance across ROIs. This was par;cularly evident for 
HyperMapp3r, which showed good performance for global and periventricular WMH, but substan;ally lower performance for deep WMH. 
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Figure 4. Illustra;ve examples of the segmenta;on output for each tool. segcsvdWMH demonstrated robust performance on the test data, showcasing consistently high 
agreement with ground truth segmenta;ons and less underes;ma;on than the benchmark tools. 
 
Segmentation performance for standard test data with lower 
segmentation threshold  

For segcsvdWMH, HyperMapp3r and SAMSEG, a secondary 
analysis was performed using a lower binary segmentation 
threshold of 0.1 for the standard test data to determine 
whether any observed WMH underestimation for the 
benchmark tools could be improved using a more inclusive 
threshold (Figure 2; last column). This yielded a similar overall 
pattern of results as with the original (default) thresholds 
(Figure 2; first column), indicating that the lower sensitivity of 
the benchmark tools was not simply due to the use of an overly 
conservative threshold.  

Robustness to different binary segmentation thresholds  

Performance metrics were evaluated at 20 different binary 
segmentation thresholds for both segcsvdWMH and 
HyperMapp3r (Figure 5). segcsvdWMH demonstrated high 
stability in its performance metrics. For example, the Dice 
score for segcsvdWMH remained consistently high at thresholds 
of 0.1 or higher across all test datasets. Importantly, for any 
given threshold, the performance metrics for segcsvdWMH 
showed a high degree of uniformity across test datasets, 
indicating robust and consistent segmentation outcomes 
independent of the threshold. In contrast, the optimal binary 
segmentation threshold was highly dependent upon the 
dataset for HyperMapp3r (e.g. max Dice Score of 0.87 at a 
threshold of 0.7 for 2DOOS, versus max Dice Score of 0.83 at a 
threshold of 0.05, decreasing to 0.65 at a threshold of 0.7, for 
3DOOS).  

Figure 5. Performance comparison for segcsvdWMH and HyperMapper across 20 
binary segmentation thresholds. Mean performance metrics are plotted with 
shaded areas signifying the 95% bootstrap estimated confidence intervals. 
Performance metrics for segcsvdWMH (orange) exhibited much greater stability 
in response to changes in the binary segmentation threshold than 
HyperMapper (red), and this stability was largely maintained across the test 
datasets. 
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Figure 6. Illustra;ve example of the simulated spike noise ar;facts added to the uncorrupted FLAIR data (A). The normalized MaSes mutual informa;on (NMMI) metric 
served as an objec;ve measure of ar;fact severity. This metric was implemented within a minimiza;on framework where smaller values indicate greater similarity. In 
the current context, low NMMI values indicate minimal visible ar;facts (B). Moderate NMMI values reflect visible ar;facts, more typical of those oYen observed on actual 
MR scans (C,D). High NMMI values correspond to highly visible ar;facts characterized by a pronounced cross-hatching paSern, less typical of those observed on actual 
MR scans (E,F). 
 
 
Qualitative assessment of segmentation performance for the 
3DOOS dataset 

For each scan in the 3DOOS ADNI test dataset without ground 
truth labels (n=80), the segmentation output for the three top-
performing tools was anonymized and visually ranked in terms 
or their relative accuracy. segcsvdWMH ranked as most accurate 
for 100% of the scans. Conversely SAMSEG and HyperMapp3r 
ranked as least accurate, for 91.8% and 8.2% of the scans, 
respectively. 

Robustness to simulated MRI artifacts 

The normalized MaPes mutual informaQon (NMMI) metric was 
used to quanQfy the severity of the simulated spike noise 
arQfact (Figure 6) and the performance of each tool at six levels 
of arQfact severity was assessed (Figure 7). Overall, segcsvdWMH 
exhibited highly robust performance in the presence of mild to 
moderate spike noise arQfacts, with minimal change in its 
performance metrics between severity levels 0 (no arQfact) 
and 3 (moderate arQfacts). Its performance decreased 

substanQally at the higher severity levels 4 and 5. In contrast, 
the performance of SAMSEG progressively decreased as the 
severity increased, while HyperMapp3r and WMH-SynthSeg 
exhibited the greatest robustness to simulated spike noise 
arQfacts, maintaining higher consistency in their performance 
metrics across all levels, however, the overall performance of 
WMH-SynthSeg was consistently low. Consequently, in the 
context of simulated spike noise, HyperMapp3r emerged as 
most effecQve for data with severe arQfacts (levels 4 and 5), 
while segcsvdWMH proved most effecQve for data with minimal 
to moderate arQfacts (levels 0 to 3). 

Individual Dice scores for this test dataset were visualized to 
further examine the impact of arQfact severity on 
segmentaQon performance (Figure 8). This highlighted the 
strong and stable performance of segcsvdWMH at low to 
moderate levels of simulated arQfact (NMMI < ~0.125), but 
also revealed its potenQal for segmentaQon failures (Dice 
scores less than ~0.6), at higher levels of simulated arQfact 
(NNMI > ~0.125). In contrast, while the Dice Scores for 
HyperMapp3r tended to be lower overall, no such 
segmentaQon failures were observed. 

Figure 7. Performance of each tool across the six levels of simulated spike noise ar;fact. Ar;fact severity was quan;fied using the normalized MaSes Mutual Informa;on 
metric (NMMI), stra;fied into 5 levels of increasing severity (plot 1). Mean values are represented by solid lines, with shaded areas indica;ng the 95% bootstrap es;mated 
confidence intervals (plots 2-6). Overall, segcsvdWMH exhibited the strongest and most stable performance for lower levels of ar;fact (severity levels 0 through 3). In 
contrast, HyperMapper exhibited the strongest and most stable performance for higher levels of ar;fact (severity levels 4 and 5). 
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Figure 8. Dice scores for the test dataset with simulated spike noise artifacts. Dotted lines correspond to a Dice score of 0.8 and solid lines correspond to a NMMI of 
0.125. Overall, segcsvdWMH exhibited strong and robust performance, with consistently high Dice Scores for low to moderate levels of simulated spike noise artifact 
(NMMI < ~0.125). However, segmentation failures for segcsvdWMH were observed at higher levels of simulated spike noise artifact (NMMI >~0.125), with Dice scores 
below ~0.6.

 Discussion 

This work introduced segcsvdWMH, an innovative CNN-based 
tool designed specifically for enhanced WMH segmentation on 
FLAIR images in heterogeneous clinical datasets with varying 
degrees of CSVD severity. This tool represents a significant 
improvement over existing segmentation methods, providing 
greater accuracy and consistency in performance across a wide 
range challenging conditions and datasets. These 
improvements, along with key innovations and contributions, 
are detailed in the following sections. 

High-fidelity ground truth dataset 

Critical to the success of segcsvdWMH was the creation of a 
large, diverse, and highly accurate ground truth dataset. This 
multi-study dataset, comprising over 700 individual FLAIR 
images, featured a wide range of CSVD severities from various 
patient populations and healthy controls, and diverse imaging 
protocols, including newer 3D isotropic FLAIR protocols 
characterized by low WMH contrast. The ground truth 
segmentations, initially derived from two existing WMH 
segmentation tools, were meticulously refined through a  
precise and time-intensive process of manual thresholding 
and/or editing. This dataset was further enriched through a 
variety of data augmentation and resampling techniques. The 
creation of this large, diverse, and highly accurate ground truth 
dataset was an important component of the segcsvdWMH 
development strategy aimed at enhancing segmentation 
performance.  

Superior agreement with ground truth 

The performance of segcsvdWMH and the benchmark tools was 
evaluated using a comprehensive set of performance metrics, 
each designed to measure a different aspect of segmentation 
accuracy. Across a diverse set of test datasets, segcsvdWMH 
consistently outperformed the benchmark tools, 
demonstrating significant improvements in each metric. For 
the 3D isotropic datasets with reduced WMH contrast, these 
improvements were particularly substantial, with 
performance metrics for segcsvdWMH exceeding the 
benchmark tools by 8% to 45%.  

Compared to the benchmark tools, segcsvdWMH also displayed 
stronger and more consistent correlations with 
periventricular, deep, and total WMH ground truth ROI 
volumes. In contrast, the benchmark tools showed varying 
levels of performance across ROIs, with weaker correlations, 
and/ or biased correlations characterized by a tendency 
toward underestimation of the true volumes. Furthermore, for 
HyperMapp3r, strong performance for total and 
periventricular ROIs was observed alongside much weaker 
performance for deep WMH ROIs, indicating that global 
performance measures can obscure important differences in 
regional sensitivity unless specifically evaluated. 

Importantly, segcsvdWMH also exhibited greater agreement 
with WMH volumes across low, moderate and high levels of 
total WMH burden compared to the benchmark tools. 
Altogether, these results suggest that segcsvdWMH may provide 
more accurate and reliable segmentation performance in 
complex clinical datasets characterized by varying degrees of 
CSVD severity.  

Consistent performance across binary segmentation 
thresholds and datasets  

segcsvdWMH exhibited highly robust performance across a wide 
range of binary segmentation thresholds, maintaining strong 
and consistent performance metrics across four diverse test 
datasets. Importantly, for any particular binary segmentation 
threshold, a similar level of performance was observed for 
each metric across all datasets. This indicates that segcsvdWMH 
provides a high degree of stability in segmentation outcomes, 
potentially eliminating the need for dataset-specific 
adjustments to the binary segmentation threshold to achieve 
similar levels of performance across datasets, as can be 
required for other segmentation tools. 

Robustness to moderate levels of simulated MR artifact 

 segcsvdWMH also displayed robust performance across a range 
of mild to moderately severe levels of simulated spike noise 
artifact, effectively handling data most likely to pass standard 
quantitative or qualitative quality control procedures. At 
higher severity levels, segmentation failures for segcsvdWMH 
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were observed whereas HyperMapp3r displayed more 
accurate and consistent performance under these extreme 
conditions. While the translation of performance from 
simulated to real-world artifacts is complex, this result 
nevertheless suggests that in instances where data is 
substantially compromised by artifacts, other WMH 
segmentation tools may be more suitable than segcsvdWMH.  

Orientation independence of segcsvd 

The performance of segcsvdWMH remained consistent across 
both the standard and transformed test datasets, showcasing 
its robustness to changes in image orientation and 
inaccuracies in the image orientation metadata. For the latter 
finding to be useful in practice, FreeSurfer’s SynthSeg tool 
would also need to demonstrate similar robustness, and this 
was not assessed because preliminary work indicated that 
inaccuracies in the image orientation metadata resulted in 
segmentation failures for this tool. Nevertheless, these 
findings effectively highlight the orientation independence of 
the core segcsvdWMH segmentation model and validate the 
success of the orientation augmentation strategy in ensuring 
consistent performance for image orientations absent from 
the (non-augmented) training dataset. These findings suggest 
that segcsvdWMH did not merely learn to segment WMH based 
on a single, fixed image orientation, but instead developed a 
deeper, more generalized representation of spatial 
relationships critical for WMH segmentation, which may have 
been one factor contributing to its overall success  

Strong generalization performance  

The generalization performance of segcsvdWMH was evaluated 
on two out-of-sample datasets that were excluded from the 
model training process (2DOOS; n=41 and 3DOOS; n=5). 
segcsvdWMH displayed high agreement with ground truth 
segmentations across all metrics for both datasets, where 
performance was comparable to that observed for the in-
sample test datasets. Additionally, for the qualitative analysis 
performed on the scans in the 3D dataset without ground truth 
labels (n=80), segcsvdWMH consistently ranked as the most 
accurate compared to the two highest-performing benchmark 
tools. Altogether, these findings highlight the strong 
generalization capabilities of segcsvdWMH on two challenging 
out-of-sample test datasets.  

Innovative approach to WMH segmentation 

segcsvdWMH segments WMH on FLAIR images, reducing the 
variability that is introduced by multi-modal segmentation 
approaches that utilize other scans/image sequences as 
additional inputs (e.g. FLAIR+T1), rendering it more accessible 
and streamlined for both clinical and research applications. 
segcsvdWMH also employs a hierarchical two-stage 
segmentation framework, leveraging anatomical context in 
the first stage to enhance WMH segmentation performance in 
the second stage. This approach significantly outperformed 

the single-stage benchmark tools, including WMH-SynthSeg, 
which also segments the two regions included in the 
segcsvdWMH regional map concurrently with WMH. Future 
comparison of these methodologies promises to be 
informative, potentially revealing inherent advantages and 
disadvantages of concurrent versus hierarchical WMH 
segmentation strategies.  

Diversity of the training data  

HyperMapp3r was trained using a much smaller range of 
gamma values for contrast augmentation and included only 2D 
isotropic FLAIR data with high WMH contrast. This approach 
led to a significant reduction in sensitivity when applied to 3D 
isotropic FLAIR data with low WMH contrast, and highlights 
the importance of including a variety of contrast profiles in the 
training data, as this can be crucial for adequately framing and 
defining the segmentation task. Without such diversity, deep 
neural networks can be highly susceptible to the phenomenon 
of “shortcut learning” (Geirhos et al., 2020). This occurs when 
the network learns an unintended “shortcut” strategy that is 
only superficially successful and fails under slightly different 
circumstances. In the context of WMH segmentation, relying 
primarily on high WMH contrast data for training may cause 
the network to prioritize global intensity features, potentially 
neglecting more nuanced features related to local contrast or 
spatial context which are vital for accurately differentiating 
WMH from non-WMH on images with reduced WMH contrast 
in 3D isotropic datasets. 

Challenge and limitations  

Despite its strengths, certain limitations of segcsvdWMH should 
be noted. While a multi-resolution dataset was used to train 
segcsvdWMH, its ability to adapt to data with substantially 
different voxel sizes, or data acquired at field strengths above 
3T, is unknown. Its performance for stroke populations is also 
unknown and would likely be adversely affected, given that 
only small infarcts were present in the training dataset. 
Furthermore, segmentation failures may occur for data 
affected by substantial MR artifacts, necessitating quality 
control measures and possibly restricting its applicability for 
certain datasets. The generalizability of segcsvdWMH, while 
outperforming the benchmark tools, also requires ongoing 
assessment, and fine-tuning the segmentation model with 
additional data may be necessary to maintain or improve its 
efficacy on unseen data. 

A further limitation of this study concerns the selection of a 
finite number of benchmark tools for comparison. While an 
effort was made to select the most accessible and appropriate 
alternatives, this selection inherently limits the scope of the 
comparison. Nevertheless, segcsvdWMH significantly 
outperformed three other tools which themselves have 
previously been found to outperform several other established 
methods. Furthermore, while recently released tools like LST-
AI (Wiltgen et al., 2024) were considered, in preliminary 
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testing they were found to miss critical CSVD-specific WMH, 
but may yield better results on other datasets, particularly 
when applied to their targeted clinical populations, such as 
multiple sclerosis (MS). 

Summary of key contributions  

This work introduced segcsvdWMH a novel FLAIR-based WMH 
segmentation tool optimized for enhanced performance 
across diverse clinical datasets. The strategy for achieving this 
enhanced performance was twofold. First, in contrast to other 
machine learning approaches that employ strategies to 
compensate for noisy labels (Nagarajan et al., 2024), 
significant resources were dedicated to the creation of a large 
and diverse training dataset with highly accurate, manually 
refined, ground truth labels. Second, unlike traditional 
approaches that incorporate minimally processed data from 
other image modalities (e.g. T1+FLAIR; Mojiri Forooshani et al., 
2022), regional anatomical information from a prior FLAIR-
based segmentation was incorporated as an additional input 
to the model.  

This approach proved to be highly effective, with segcsvdWMH 
demonstrating significant performance improvements over 
the three benchmark tools across a variety of challenging test 
datasets. Consequently, segcsvdWMH represents a significant 
step toward more reliable, precise, and adaptable WMH 
segmentation, demonstrating that substantial performance 
gains are achievable through the creation of high-fidelity 
training labels combined with the strategic design of model 
inputs. 

Future directions  

Future segmentation tools are planned to expand upon the 
hierarchical segmentation framework established by 
segcsvdWMH. These tools will utilize the output of segcsvdWMH 
output to improve the segmentation accuracy of other CSVD 
markers. Additionally, the strong performance of segcsvdWMH 
will be leveraged to create exceptionally large and diverse 
ground truth datasets, which will be used to train new 
segmentation models that operate independently of SynthSeg 
and provide greater robustness to MR artifacts. 

Methods 

MRI data  

A large dataset was assembled from seven cohort studies, 
consisting of FLAIR and FLAIR-based SynthSeg segmentations, 
from 733 individual patients. This dataset also included T1 
images, but these were not used for model development and 
were instead used as a reference space to co-register and up-
sample the FLAIR data, in keeping with in-house imaging 
processing practices for cases where the resolution of the T1 
was superior to that of the FLAIR. Additionally, the T1 images 

served as a second input for two of the three benchmark tools, 
as described in the following sections. 

This dataset (n=733) was further augmented by additionally 
resampling the images to have an isotropic voxel size of 1 mm3, 
for a subset of images that were not already at this resolution 
(n=214). This resulted in a total of 947 FLAIR images (Table 1). 
This inclusion of resampled data served two main objectives. 
First, it allowed for a multi-resolution training framework, 
which has the potential to yield models with enhanced 
adaptability and generalization performance. Second, the 
inclusion of images intentionally sampled at two different 
voxel sizes was intended to emphasize essential features that 
persist across different resolutions, potentially enhancing 
feature extraction to produce more robust models.  

The augmented dataset (n=947) was partitioned into separate 
training (n=781), validation (n=12), and test (n=154) datasets. 
Patient data that were sampled at two different resolutions 
(n=214) were assigned exclusively to either the training, 
validation or test datasets, ensuring that data from individual 
patients was not distributed across the partitioned datasets.  

The test dataset was further subdivided into four separate 
datasets based on two factors: whether scans were from a 
dataset included (“in-sample”) or excluded (“out-of-sample”) 
from the training dataset, and whether the scans were 
acquired with approximately isotropic 1mm resolution (3D) or 
with 3mm thick slices (2D). This resulted in four separate 
datasets: 2DIS, which includes 2D in-sample scans from the 
VBH, LIPA, MIT, ONDIS, and CAIN datasets, totaling 18 scans; 
2DOOS, which includes 2D out-of-sample scans from the 
ONDOOS dataset, totaling 41 scans; 3DIS, which includes 3D in-
sample scans from the LD dataset, totaling OOS , which 
includes 3D out-of-sample scans from 10 scans; and 3D the 
ADNI dataset, with 5 scans having ground truth segmentation 
and 80 without. 

Image pre-processing  

The FLAIR images were processed according to one of two 
pipelines. In the first pipeline, the FLAIR images were first skull-
stripped using ICVMapp3r (Ntiri et al., 2021), bias field 
corrected using the N4 algorithm (Tustison et al., 2010), and 
then the masked, bias-corrected images were segmented 
using FreeSurfer’s SynthSeg tool (Billot et al., 2023). In the 
second pipeline, the FLAIR images were first segmented using 
FreeSurfer’s SynthSeg tool, then masked with the SynthSeg 
output, and finally bias field corrected using the N4 algorithm 
(n=85; 3DOOS test dataset). The second pipeline was adopted 
later in the project, after the release of the SynthSeg tool, and 
its integration into the current approach. The use of this 
pipeline not only streamlined the workflow, reducing total pre-
processing time to under 3 minutes inclusive of time required 
for FreeSurfer’s SynthSeg tool on a 8-core Intel i7-11700 CPU, 
but also enhanced the pre-processing diversity of the out-of-
sample test data. Lastly, after masking and bias correction of 
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the FLAIR image, all foreground voxels were z-score intensity 
normalized to have a mean of zero and a standard deviation of 
one. 

WMH contrast Ratios  

Contrast ratios for WMH were used to analyze differences in 
the visibility of WMH relative to grey matter (GM) and white 
matter (WM) on the FLAIR images across datasets. These were 
calculated for each FLAIR image as:  

CRWMH	=	
(𝑚𝑒𝑎𝑛	𝑠𝑖𝑔𝑛𝑎𝑙	𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦	𝑜𝑓	𝑊𝑀𝐻) − (𝑚𝑒𝑎𝑛	𝑠𝑖𝑔𝑛𝑎𝑙	𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦	𝑜𝑓	𝐺𝑀/𝑊𝑀)

𝑚𝑒𝑎𝑛	𝑠𝑖𝑔𝑛𝑎𝑙	𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦	𝑜𝑓	𝐺𝑀/𝑊𝑀 	

The ground truth segmentations were used to identify WMH 
voxels and the SynthSeg output was used to identify GM/WM 
voxels. Larger WMH contrast ratios indicate increased visibility 
of WMH relative to grey matter (GM) and white matter (WM), 
suggesting a reduction in the complexity of the segmentation 
task.  

Model design and training  

Model architecture  
 

The segmentation model for segcsvdWMH is based on the U-Net 
architecture with residual units (Falk et al., 2019), which is a 
convolutional neural net (CNN) designed specifically for 
medical image segmentation tasks. It is composed of encoder 
and decoder pathways with skip connections to link the 
corresponding layers. These skip connections allow the 
network to capture both local and global features within the 
input data. The encoder pathway progressively downsamples 
the input data to extract hierarchical features at multiple 
spatial scales, while the decoder pathway upsamples the 
extracted features to generate the final segmentation output. 
This model, implemented in PyTorch using the MONAI toolkit 
(Cardoso et al., 2022), was configured using: 3 spatial 
dimensions; 2 input channels; a channel progression of 32, 62, 
128, 256, 320; kernel size of 3, strides of 2, 2 residual units, 
batch normalization and a dropout rate of 0.1. The model takes 
as input both the pre-processed (masked/bias-corrected) 
FLAIR image and the SynthSeg segmentation. The SynthSeg 
segmentation is then masked to include only the sulcal CSF and 
hippocampal regions. These regions were selected because 
they provide relevant spatial context but are also sufficiently 
distanced from the white matter compartment to minimize 
the potential impact of any errors in the SynthSeg output on 
the WMH segmentation task. 
 
Model training, ensembling, and prediction  
 

Three separate models were trained using the Tversky loss 
function, which is an extension of the Dice coefficient that 
measures the similarity between two samples. The Tversky 
loss (TL) is defined as:  

𝑇𝐿 = 1 −	
∑ pigi	+	∈!
"

∑ pigi	+	α	 ∑ (1-gi)	+	β	∑ (1-pi)gi	+	∈	!
" 	!

"
!
"

 

where: 

pi and gi are the predicted and ground truth binary values at each pixel i 
 
a and b are parameters that control the relative importance of false 
positives and false negatives respectively 
 
∈ is a small constant added for numerical stability 
 
N is the total number of pixels 

When beta is equal to alpha, the Tversky loss function is 
equivalent to the Dice coefficient and provides a balanced 
weighting between false positives and false negatives. When 
beta is either greater than or less than alpha, more emphasis 
is placed on minimizing false negatives or false positives, 
respectively. 

The three models were trained using different beta values for 
the Tversky loss function (β=0.50, 0.55, 0.60), and each model 
was initialized using a different random seed. This approach 
was designed to encourage each model to follow slightly 
different learning trajectories, thereby creating a diverse set of 
models, each characterized by subtle variations in their trade-
off between precision and sensitivity. All other training 
hyperparameters remained the same across the three models. 
These hyperparameters included the use of the Adam 
optimizer with a learning rate of 0.00014, a training duration 
of 600 epochs, a patch size of 96 voxels3, a batch size of 4, a 
dropout rate of 0.1 and batch normalization. These 
parameters were empirically chosen based on their efficacy in 
preliminary experiments using small “toy” datasets, with the 
rationale that parameters yielding favorable results in this 
context are likely to generalize well to the full-scale task. This 
strategy aimed to reduce the risk of overfitting, by selecting 
parameters with broad applicability rather than finely tuning 
parameters to a particular validation dataset.  

Patch-based training was selected instead of whole-brain 
training as a strategy to address the issue of class imbalance by 
maintaining a consistent positive-to-negative label ratio for 
the WMH class. For each sample in the batch, four patches 
were extracted using a 3:1 positive-to-negative label ratio.  

To enhance model performance in response to variations in 
image contrast, noise, and orientation, several data 
augmentation transforms were randomly applied during 
training, each with a probability of 0.5. These transforms 
included: contrast adjustment with gamma values randomly 
sampled between 0.4 and 1.2; the addition of Rician noise with 
a mean of 1.0 and standard deviation equal to the maximum 
voxel intensity of the image divided by 10,000; and random 90-
degree rotations along each of three principal image axes. 
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These transforms were selected to simulate the types of 
variability that are often present in clinical imaging datasets.  

After training, a final, composite ensemble model was 
generated from the three base models. This was accomplished 
by establishing limits on the number of training epochs that 
would be considered for model ensembling, to prevent 
inclusion of models prone to overfitting or underfitting. The 
lower and upper limits were set to 300 and 525 epochs, 
respectively. These limits marked the initial performance 
plateau for the validation data, where the Dice coefficient and 
sensitivity scores first stabilized, and after which, began to 
exhibit only marginal improvements. Five models were then 
randomly selected from within these limits for each base 
model to form the final composite model (n=15).  

To obtain the final segmentation image from the composite 
model, the input images were first resampled to have an 
isotropic voxel size of 1 mm3. This was implemented as an 
optional parameter, allowing for flexibility in cases where a 
alternative voxel sizes would be preferable for specific 
applications or datasets. Predictions were then generated 
from each model in the ensemble using a simple test-time 
augmentation strategy consisting of two different patch sizes: 
one identical to the patch size used during training (96 voxels3), 
and one larger (128 voxels3). This strategy was informed by 
preliminary experiments which suggested that the use of 
patches larger than those used during training reduced 
underestimation in some cases of very high WMH burden. This 
approach produced 50 predictions per voxel, which were 
averaged to form a consensus segmentation image. This image 
was then resampled to match the input resolution, and 
thresholded at 0.35 to produce the final binary WMH 
segmentation image. This threshold was selected empirically 
to provide a balance between thresholds that tended to 
achieve the highest dice scores (~0.4) and thresholds that 
achieved the highest sensitivity scores (~0.3), on the validation 
data and in similar segmentation tasks.  

On an older generation Intel i7-11700 CPU, segcsvdWMH 
completes WMH segmentation in approximately 4 minutes, 
inclusive of the time required for FreeSurfer’s SynthSeg.  

Ground truth generation 
  

For most of the datasets in this work, ground truth WMH 
segmentations were available. These segmentations were 
generated by a legacy pipeline (Gibson et al., 2010), and 
tended to be relatively conservative, often missing smaller 
lesions or voxels at the edges of WMH. To correct this, one of 
the benchmark tools, HyperMapp3r, was used in a semi-
automated manner to generate an improved set of ground 
truth WMH segmentations. Skull-stripped, bias-corrected co-
registered T1 and FLAIR images were used as inputs to 
HyperMapp3r, and the HyperMapp3r output was subjected to 
variable manual thresholding at either 0.3, 0.5, 0.7, or 0.9, to 
optimize and fine-tune the segmentation result for each 
individual image. Finally, a consensus image was created that 

included all voxels present in both the manually thresholded 
HyperMapp3r output and legacy ground truth image.  
 
For the non-isotropic data (2DIS/2DOOS), manual thresholding 
of the HyperMapp3r output improved the capture of true 
positive voxels, but also introduced occasional false positive 
voxels. This issue was corrected by removing any 3D connected 
component on the consensus segmentation image that was 
not also connected to a WMH voxel on the legacy GT image, 
with subsequent visual verification of the output.  
 
For the isotropic or nearly isotropic data (3DIS/3DOOS), only 
HyperMapp3r segmentations were available. Optimal manual 
thresholding of the HyperMapp3r segmentation resulted in a 
considerable number of both false positive and false negative 
voxels for these datasets, and the correction of these errors 
required extensive manual editing. This editing was performed 
sequentially in all three image planes (axial/coronal/sagittal) 
to ensure the accurate delineation of each WMH as a cohesive 
3D object. E.G. performed the initial 3D manual editing, and an 
experienced image analyst (L.A.W.) reviewed the output and 
corrected any remaining errors. This was a time-consuming 
process, requiring between 4 to 16 hours per scan, depending 
upon WMH burden, and was performed for all 70 scans in the 
3DIS dataset (used for both model training and testing), and 
five scans in 3DOOS dataset (used only for model testing).  

Model performance evaluation  

Benchmark tools  
 

Three existing WMH segmentation tools, HyperMapp3r, 
SAMSEG and WMH-SynthSeg, were used to benchmark the 
performance of segcsvdWMH. These tools were selected 
because they are widely accessible and were all developed 
specifically with the aim of providing robust performance on 
diverse clinical datasets without retraining. HyperMapp3r is an 
earlier iteration of segcsvdWMH, based on a similar network 
architecture and trained on a subset of the current data. 
SAMSEG is part of the FreeSurfer neuroimaging analysis 
package and performs simultaneous segmentation of WMH 
and other cortical and subcortical structures. WMH-SynthSeg 
was recently added to the development version of the 
FreeSurfer package (as of December 2023) and is an expanded 
version of SynthSeg that also performs WMH segmentation. 

HyperMapp3r was developed using multi-site, patient data but 
was limited to older 2D imaging protocols, while SAMSEG and 
WMH-SynthSeg were developed using synthetic data and an 
unsupervised approach specifically designed to adapt to data 
acquired with different imaging protocols (Laso et al., 2024; 
Puonti et al., 2016). Both T1 and FLAIR images were provided 
as inputs to HyperMapp3r and SAMSEG. This was required for 
HyperMapp3r and optional for SAMSEG. For SAMSEG, the T1 
was included because prior work indicated that this resulted in 
better performance than using the FLAIR alone (Puonti et al., 
2016). In addition, the optional lesion-mask-pattern 
parameter was used for SAMSEG. This was set to “0 1”, 
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indicating that candidate WMH voxels should be considered 
only if their intensity is brighter than cortical gray matter. This 
option was strongly recommended in the documentation, and 
a visual assessment of the results, both with and without this 
parameter, suggested that it was beneficial for minimizing 
false positive WMH voxels within cortical gray matter. WMH-
SynthSeg requires a single input image. In this work, the FLAIR 
image was used as the single input, guided by previous findings 
(Billot et al., 2023) and preliminary tests, which indicated that 
WMH-SynthSeg produces more accurate segmentation results 
with FLAIR images as compared to T1 images. 

Binary segmentation thresholding 
  

All four tools apply a threshold to model probabilities to 
produce the final binary WMH segmentation output. For 
segcsvdWMH and HyperMapp3r, this threshold was set to 0.35, 
which was determined empircally, as described above. For 
SAMSEG and WMH-Synthseg, their default thresholds of 0.3 
and 0.5 respectively were used. WMH-SynthSeg was excluded 
from the secondary analysis with the lower segmentation 
threshold because it lacks a user-defined option for threshold 
adjustment, and initial visual assessments of its segmentation 
output revealed poor performance that was unlikely to be 
improved through threshold adjustments.  

One further analysis was performed for segcsvdWMH and 
HyperMapp3r to assess the stability of their segmentation 
performance across 20 different binary thresholds. The 
segmentation thresholds were varied systematically in 
increments of 0.05, between 0 to 0.95. SAMSEG and WMH-
SynthSeg were excluded from this analysis, as these tools do 
not generate WMH probability maps by default, and the 
extensive time required to generate probability maps for these 
tools post hoc rendered their inclusion in this analysis 
unfeasible.  

Agreement with ground truth segmentations and volumes  
 

The performance of each tool was assessed for each test 
dataset using fives metrics that measured the agreement with 
the ground truth segmentations for each of the test datasets. 
These metrics were selected to provide a comprehensive 
measure of segmentation performance, in accordance with 
established recommendations for pixel-level segmentation 
tasks (Puonti et al., 2016; Billot et al., 2023): 

𝐷𝑖𝑐𝑒	𝑆𝑐𝑜𝑟𝑒 =
2 ∗ 𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒	𝑁𝑒𝑔𝑎𝑖𝑡𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒	𝑁𝑒𝑔𝑎𝑖𝑡𝑣𝑒𝑠 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒	𝑉𝑜𝑙𝑢𝑚𝑒	𝐷𝑖𝑓𝑓. (𝐴𝑉𝐷) = B
𝑇𝑟𝑢𝑒	𝑉𝑜𝑙𝑢𝑚𝑒 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝑉𝑜𝑙𝑢𝑚𝑒

𝑇𝑟𝑢𝑒	𝑉𝑜𝑙𝑢𝑚𝑒
B 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑	𝑆𝑢𝑟𝑓𝑎𝑐𝑒	𝐷𝑖𝑠𝑡. (𝑁𝑆𝐷) =
|SA	 ∩ SBτ| + 	 |SB	 ∩ SAτ|	

|SA| + 	 |SB|
 

where: 
 

SA = boundary of A 
 
AB = boundary of B 
 
BA

t = border regions of A 
 
BB

t = border regions of B 
 
SA Ç BB

t = boundary outside of SA Ç BB
t 

 

SB Ç BA
t = boundary outside of SB Ç BA

t 

 

t = 1 

The performance of each tool on the full test dataset (n=74) 
was further assessed by examining the relationship with 
ground truth volumes for several ROIs that included either 
periventricular, deep, or total WMH voxels. Periventricular 
WMH voxels were identified as WM voxels within 1, 2 or 3 
voxels from a ventricular CSF voxel, and deep WMH voxels 
were identified as WMH voxels within 1, 2 or 3 voxels from a 
cortical GM voxel. This allowed for an assessment of the 
accuracy of the derived WMH volumes across a total of 7 ROIs. 

Given the time-intensive nature of manual tracing for 3D FLAIR 
data, ground truth data was available for only a small number 
(n=5) of scans in the ADNI/3DOOS dataset. Consequently, the 
following two additional analyses were performed to further 
evaluate segmentation performance in this dataset.  

Qualitative performance evaluation  

A trained image analyst (L.A.W.) conducted a detailed 
qualitative evaluation of the segmentation output for all scans 
in the ADNI/3DOOS dataset without ground truth labels (n=80). 
The three top-performing tools, identified by their Dice scores 
on the standard test data, were included in this analysis. The 
segmentation output for these tools was anonymized with 
random filenames, visualized, and subsequently ranked by the 
analyst in order of most to least accurate.  

Robustness to simulated artifact  

The robustness of segmentation performance to increasing 
levels of data corruption resulting from the addition of 
simulated spike noise artifacts was examined for the five 
subjects in the ADNI/3DOOS dataset with available ground truth 
segmentations. The TorchIO “random spike” data 
augmentation transform (Pérez-García et al., 2021) was used 
to add simulated spike noise artifacts to the acquired image 
data. Five separate random spike transforms were generated 
for each subject by randomly varying two of the transform 
parameters: the number of spikes (randomly set to either one 
or two), and the intensity of these spikes (randomly sampled 
between 1.5 and 2.5). This resulted in five unique transforms 
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that spanned a range of severity levels. These transforms were 
then applied to the image data (T1/FLAIR/FLAIR-SynthSeg) for 
each of the five subjects, resulting in a larger, augmented 
3DOOS test dataset, each with ground truth segmentations and 
varying levels of simulated artifact (n=30).  

Artifact severity was quantified for the transformed data using 
the Mattes mutual information (MMI) metric, as implemented 
by ITK (Mattes et al., 2003). In this implementation, a lower 
MMI value indicates greater similarity between two images. 
Computing the MMI between the two FLAIR images, with and 
without simulated artifact, therefore provides a quantitative 
measure of artifact severity, where smaller MMI values 
indicate greater similarity, or lower artifact severity, than 
larger values. Given that the MMI between an image and itself 
is not guaranteed to be zero, the MMI between the 
uncorrupted FLAIR image and itself was calculated first, and 
then subtracted from the MMI between the uncorrupted 
FLAIR image and each artifact-corrupted FLAIR image. This 
subtraction resulted in a normalized measure of artifact 
severity (NMMI) for each transform, where 0 indicates the 
absence of simulated artifacts, and larger values indicate 
greater severity of simulated artifacts (Figure 4). Lastly, the 
NMMI values for each subject were sorted into six levels of 
artifact severity, from least severe (level 0; no artifacts), to 
most severe (level 5; max NMMI).  

Performance metrics were computed at each artifact severity 
level and used to assess the robustness of the segmentation 
performance of each tool, following the methodology 
introduced in previous work benchmarking the robustness of 
deep learning models on artifact-corrupted data (Boone et al., 
2023). Spike noise artifact was selected for this analysis as this 
transform was not employed during the training phase as a 
data augmentation strategy for either segcsvdWMH or the 
benchmark tools. Consequently, this transform provided a 
challenging “out-of-distribution” test of the robustness of each 
tool against a type of data corruption not encountered during 
training.  

Statistical analyses  

Permutation tests, consisting of 10,000 permutations, were 
performed to detect significant differences in the contrast 
ratios across datasets, and also in the performance metrics for 
each of the segmentation tools. The criterion for determining 
statistical significance was defined as a permuted p-value less 
than 0.05. To provide a more precise characterization of 
statistical significance, permuted p-values were reported as p 
< 0.05 or p < 0.001.  
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Data and code availability statement  

A portion of the data used in this work is available from the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database, 
which can be accessed through an application process on the 
project website. All other data originates from studies that 
are not presently publicly available. The code, models, and 
detailed usage instructions for segcsvdWMH are openly 
available on GitHub, accessible via the following link: 
https://github.com/AICONSlab/segcsvd.  

References 

Billot B, Magdamo C, Cheng Y, Arnold SE, Das S, Iglesias JE. 
2023. Robust machine learning segmentation for large-
scale analysis of heterogeneous clinical brain MRI datasets. 
Proceedings of the National Academy of Sciences 
120:e2216399120. doi:10.1073/pnas.2216399120 

Boone L, Biparva M, Mojiri Forooshani P, Ramirez J, Masellis 
M, Bartha R, Symons S, Strother S, Black SE, Heyn C, Martel 
AL, Swartz RH, Goubran M. 2023. ROOD-MRI: Benchmarking 
the robustness of deep learning segmentation models to 
out-of-distribution and corrupted data in MRI. Neuroimage 
278:120289. doi:10.1016/j.neuroimage.2023.120289 

Cardoso MJ, Li W, Brown R, Ma N, Kerfoot E, Wang Y, Murrey 
B, Myronenko A, Zhao C, Yang D, Nath V, He Y, Xu Z, 
Hatamizadeh A, Myronenko A, Zhu W, Liu Y, Zheng M, Tang 
Y, Yang I, Zephyr M, Hashemian B, Alle S, Darestani MZ, 
Budd C, Modat M, Vercauteren T, Wang G, Li Y, Hu Y, Fu Y, 
Gorman B, Johnson H, Genereaux B, Erdal BS, Gupta V, Diaz-
Pinto A, Dourson A, Maier-Hein L, Jaeger PF, Baumgartner 
M, Kalpathy-Cramer J, Flores M, Kirby J, Cooper LAD, Roth 
HR, Xu D, Bericat D, Floca R, Zhou SK, Shuaib H, Farahani K, 
Maier-Hein KH, Aylward S, Dogra P, Ourselin S, Feng A. 
2022. MONAI: An open-source framework for deep learning 
in healthcare. doi:10.48550/arXiv.2211.02701 

De Guio F, Jouvent E, Biessels GJ, Black SE, Brayne C, Chen C, 
Cordonnier C, De Leeuw FE, Dichgans M, Doubal F, Duering 
M, Dufouil C, Duzel E, Fazekas F, Hachinski V, Ikram MA, Linn 
J, Matthews PM, Mazoyer B, Mok V, Norrving B, O’Brien JT, 
Pantoni L, Ropele S, Sachdev P, Schmidt 

R, Seshadri S, Smith EE, Sposato LA, Stephan B, Swartz RH, 
Tzourio C, van Buchem M, van der Lugt A, van Oostenbrugge 
R, Vernooij MW, Viswanathan A, Werring D, Wollenweber 
F, Wardlaw JM, Chabriat H. 2016. Reproducibility and 
variability of quantitative magnetic resonance imaging 
markers in cerebral small vessel disease. Journal of Cerebral 
Blood Flow & Metabolism 36:1319–1337. 
doi:10.1177/0271678X16647396 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 19, 2024. ; https://doi.org/10.1101/2024.06.20.24309230doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.20.24309230
http://creativecommons.org/licenses/by-nc-nd/4.0/


Gibson et al., 2024   Page 16 

Derry A, Krzywinski M, Altman N. 2023. Convolutional neural 
networks. Nature Methods 20:1269–1270. doi:10.1038/ 
s41592-023-01973-1 

Falk T, Mai D, Bensch R, Çiçek Ö, Abdulkadir A, Marrakchi Y, 
Böhm A, Deubner J, Jäckel Z, Seiwald K, Dovzhenko 
A, Tietz O, Dal Bosco C, Walsh S, Saltukoglu D, Tay TL, Prinz 
M, Palme K, Simons M, Diester I, Brox T, Ronneberger O. 
2019. U-Net: deep learning for cell counting, detection, and 
morphometry. Nat Methods 16:67–70. 
doi:10.1038/s41592-018-0261-2 

Fischl B. 2012. FreeSurfer. Neuroimage 62:774–781. 

Geirhos R, Jacobsen JH, Michaelis C, Zemel R, Brendel W, 
Bethge M, Wichmann. 2020. Shortcut learning in deep 
neural networks. Nature Machine Intelligence 2:665–673. 
doi:10.1038/s42256-020-00257-z 

Gibson E, Gao F, Black SE, Lobaugh NJ. 2010. Automatic 
segmentation of white matter hyperintensities in the 
elderly using FLAIR images at 3T. J Magn ResonImaging 
31:1311–1322. 

Laso P, Cerri S, Sorby-Adams A, Guo J, Mateen F, Goebl P, Wu 
J, Liu P, Li H, Young SI, Billot B, Puonti O, Sze G, Payabavash 
S, DeHavenon A, Sheth KN, Rosen MS, Kirsch J, Strisciuglio 
N, Wolterink JM, Eshaghi A, Barkhof F, Kimberly WT, Iglesias 
JE. 2024. Quantifying white matter hyperintensity and brain 
volumes in heterogeneous clinical and low-field portable 
MRI. doi:10.48550/arXiv.2312.05119 

Maier-Hein L, Reinke A, Godau P, Tizabi MD, Buettner F, 
Christodoulou E, Glocker B, Isensee F, Kleesiek J, Kozubek 
M, Reyes M, Riegler MA, Wiesenfarth M, Kavur AE, Sudre 
CH, Baumgartner M, Eisenmann M, Heckmann-Nötzel D, 
Rädsch T, Acion L, Antonelli M, Arbel T, Bakas S, Benis A, 
Blaschko MB, Cardoso MJ, Cheplygina V, Cimini BA, Collins 
GS, Farahani K, Ferrer L, Galdran A, van Ginneken B, Haase 
R, Hashimoto DA, Hoffman MM, Huisman M, Jannin P, Kahn 
CE, Kainmueller D, Kainz B, Karargyris A, Karthikesalingam 
A, Kofler F, Kopp-Schneider A, Kreshuk A, Kurc T, Landman 
BA, Litjens G, Madani A, Maier-Hein K, Martel AL, Mattson 
P, Meijering E, Menze B, Moons KGM, Müller H, Nichyporuk 
B, Nickel F, Petersen J, Rajpoot N, Rieke N, Saez-Rodriguez 
J, Sánchez CI, Shetty S, van Smeden M, Summers RM, Taha 
AA, Tiulpin A, Tsaftaris SA, Van Calster B, Varoquaux G, Jäger 
PF. 2024. Metrics reloaded: recommendations for image 
analysis validation. Nat Methods 21:195–212. doi:10.1038/ 
s41592-023-02151-z Mattes D, Haynor DR, Vesselle 

H, Lewellen TK, Eubank W. 2003. PET-CT image registration in 
the chest using freeform deformations. IEEE Trans Med 
Imaging 22:120–128. doi:10.1109/ TMI.2003.809072 

Mojiri Forooshani P, Biparva M, Ntiri EE, Ramirez J, Boone L, 
Holmes MF, Adamo S, Gao F, Ozzoude M, Scott CJM, 

Dowlatshahi D, Lawrence-Dewar JM, Kwan D, Lang AE, 
Marcotte K, Leonard C, Rochon E, Heyn C, Bartha R, Strother 
S, Tardif JC, Symons S, Masellis M, Swartz RH, Moody A, 
Black SE, Goubran M. 2022. Deep Bayesian networks for 
uncertainty estimation and adversarial resistance of white 
matter hyperintensity segmentation. Hum Brain Mapp 
43:2089–2108. doi:10.1002/ hbm.25784 

Nagarajan B, Marques R, Aguilar E, Radeva P. 2024. Bayesian 
DivideMix++ for Enhanced Learning with Noisy Labels. 
Neural Networks 172:106122. doi:10.1016/j. 
neunet.2024.106122 

Ntiri EE, Holmes MF, Forooshani PM, Ramirez J, Gao F, 
Ozzoude M, Adamo S, Scott CJM, Dowlatshahi D, Lawrence-
Dewar JM, Kwan D, Lang AE, Symons S, Bartha R, Strother 
S, Tardif JC, Masellis M, Swartz RH, Moody A, Black 

SE, Goubran M. 2021. Improved Segmentation of the 
Intracranial and Ventricular Volumes in Populations with 
Cerebrovascular Lesions and Atrophy Using 3D CNNs. 
Neuroinformatics. doi:10.1007/s12021-021-09510-1 

Pérez-García F, Sparks R, Ourselin S. 2021. TorchIO: A Python 
library for efficient loading, preprocessing, augmentation 
and patch-based sampling of medical images in deep 
learning. Computer Methods and Programs in Biomedicine 
208:106236. doi:10.1016/j.cmpb.2021.106236 

Prins ND, Scheltens P. 2015. White matter hyperintensities, 
cognitive impairment and dementia: an update. Nat Rev 
Neurol 11:157–165. doi:10.1038/nrneurol.2015.10 

Puonti O, Iglesias JE, Van Leemput K. 2016. Fast and sequence-
adaptive whole-brain segmentation using parametric 
Bayesian modeling. Neuroimage 143:235–249. 
doi:10.1016/j.neuroimage.2016.09.011 
NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich 
PA, Gee JC. 2010. N4ITK: improved N3 bias correction. IEEE 
Trans Med Imaging 29:1310–1320. doi:10.1109/ 
TMI.2010.2046908 

Chaudhari P, Davatzikos C. 2023. Bias in machine learning 
models can be significantly mitigated by careful training: 
Evidence from neuroimaging studies. Proc Natl Acad Sci U S 
A 120:e2211613120. doi:10.1073/ pnas.2211613120 

Wardlaw JM, Smith C, Dichgans M. 2019. Small vessel disease: 
mechanisms and clinical implications. The Lancet Neurology 
18:684–696. doi:10.1016/S1474-4422(19)30079- 1 

Wardlaw JM, Smith EE, Biessels GJ, Cordonnier C, Fazekas F, 
Frayne R, Lindley RI, O’Brien JT, Barkhof F, Benavente OR, 
Black SE, Brayne C, Breteler M, Chabriat H, Decarli C, de 
Leeuw FE, Doubal F, Duering M, Fox NC, Greenberg S, 
Hachinski V, Kilimann I, Mok V, Oostenbrugge R van, 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 19, 2024. ; https://doi.org/10.1101/2024.06.20.24309230doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.20.24309230
http://creativecommons.org/licenses/by-nc-nd/4.0/


Gibson et al., 2024   Page 17 

Pantoni L, Speck O, Stephan BCM, Teipel S, Viswanathan A, 
Werring D, Chen C, Smith C, van Buchem M, Norrving B, 
Gorelick PB, Dichgans M, STandards for ReportIng Vascular 
changes on nEuroimaging (STRIVE v1). 2013. Neuroimaging 
standards for research into small vessel disease and its 
contribution to ageing and neurodegeneration. Lancet 
Neurol 12:822–838. doi:10.1016/ S1474-4422(13)70124-8 

Wiltgen T, McGinnis J, Schlaeger S, Kofler F, Voon C, Berthele 
A, Bischl D, Grundl L, Will N, Metz M, Schinz D, Sepp D, 

Prucker P, Schmitz-Koep B, Zimmer C, Menze B, Rueckert D, 
Hemmer B, Kirschke J, Mühlau M, Wiestler B. 2024. LST-AI: 
A deep learning ensemble for accurate MS lesion 
segmentation. NeuroImage: Clinical, 42:103611, doi: 
10.1016/j.nicl.2024.103611. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 19, 2024. ; https://doi.org/10.1101/2024.06.20.24309230doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.20.24309230
http://creativecommons.org/licenses/by-nc-nd/4.0/

