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Abstract 

Asthma is a chronic respiratory disease characterized by wheezing and difficulty breathing, 

which disproportionally affects 4.7 million children in the U.S. Currently, there is a lack of 

asthma predictive models for youth with good performance. This study aims to build machine 

learning models to better predict asthma development in youth using easily accessible national 

survey data. We analyzed cross-sectional combined 2021 and 2022 National Health Interview 

Survey (NHIS) data from 9,716 youth subjects with their corresponding parent information. We 

built several machine learning models with various sampling techniques (under- or over-

sampling) for asthma prediction in youth, including XGBoost, Neural Networks, Random Forest, 

Support Vector Machine (SVM), and Logistic Regression. We examined the associations of 

potential risk factors identified from both Random Forest and Least Absolute Shrinkage and 

Selection Operator (LASSO) with asthma in youth. Between the different sampling techniques, 
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undersampling the major class (subjects without asthma) yielded the best results in terms of the 

area under the curve (AUC) and F1 scores for the different predictive models. The Logistic 

Regression performed the best with the under-sampled data, yielding an AUC score of 0.7654 

and an F1 score of 0.3452. In addition, we have identified additional important factors associated 

with asthma development in youth, such as low family poverty ratio and parents ever had asthma. 

This study successfully built machine learning models to predict asthma development in youth 

with good model performance. This will be important for early screening and detection of 

asthma in youth. 

 

Introduction 

Asthma is a chronic lung disease portrayed by deadly asthma attacks that result in wheezing, 

breathlessness, and chest tightness (1). In 2013, around $5.92 billion was spent on pediatric 

asthma in the U.S. (2). Currently, the only protective measures to combat asthma and asthma 

attacks are medications and avoidance of triggers (3, 4). The American Lung Association 

identified several factors that may cause asthma, such as family history, occupational exposure, 

and smoking (5). Furthermore, studies have shown that 80% of asthma cases arise during the 

first six years of a person’s life (6). Due to the lack of a cure, it is crucial that asthma 

development in youth can be predicted and detected early so that prevention and early 

intervention may take place. 

The recent development of artificial intelligence techniques (especially machine learning and 

deep learning), as well as the data availability of detailed patient information, empowers the 

prediction and risk assessment of various chronic diseases. For example, machine learning has 
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been employed in predicting cardiovascular diseases (7-9). While many machine learning 

models have been successfully built for predicting asthma exacerbations among asthmatic 

patients (10-16), fewer studies have been conducted on predicting asthma risk using various 

datasets especially publicly available data, such as the 2019 Michigan BRFSS data and a small 

dataset of 202 children from Ibn Sina Hospital Center in Morocco (7, 8). However, the dataset 

was either too small, limited to a specific region, or relied heavily on clinical factors, which may 

limit model performance and implementation (8). This is evident by the relatively poor model 

performance in the 2019 Michigan BRFFS data, which employs two sampling techniques, 

Synthetic Minority Over-Sampling Technique (SMOTE) and Random Over-Sampling Examples 

(ROSE), resulting in the highest AUC score of 0.63 with the logistic regression. These predictive 

models' performance could be improved by using a larger dataset and employing more advanced 

data processing and machine learning techniques. 

This study aims to build predictive models for asthma development in youth using the combined 

National Health Interview Survey (NHIS) 2021 and 2022 survey data, which ensures a large 

sample size. Furthermore, we employed different sampling techniques, including oversampling, 

undersampling, and both, to address the class imbalance issue (most survey subjects had no 

asthma). Two complementary methods, Least Absolute Shrinkage and Selection Operator 

(LASSO) and random forest models, were used to identify factors associated with asthma 

development in youth. Finally, different machine learning models, such as logistic regression and 

neural networks, were used for predicting asthma development in youth, and their model 

performances were compared. 

 

Methods 
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Data source 

This study used the combined cross-sectional 2021 and 2022 NHIS children and adults data (9). 

The NHIS is a data collection program for the National Center for Health Statistics (NCHS), a 

part of the Centers for Disease Control and Prevention (CDC). The NHIS is a household 

interview survey that involves face-to-face interviews followed by telephone interviews 

throughout the year. The NHIS collects data about the health of the noninstitutionalized civilian 

population of all ages in the United States. The purpose of the NHIS is to monitor the health of 

the United States population by categorizing health trends by demographic and socioeconomic 

circumstances. The NHIS 2021 and 2022 children and adults data are publicly available from the 

CDC website (9). 

 

Data pre-processing 

The outcome variable of this study is asthma, which is based on the question, “Has a doctor or 

other health professional EVER told you that you had asthma?” If the answer is “Yes,” the 

subject is considered to have asthma. If the answer is “No,” the subject is regarded as having no 

asthma. 

As shown in Appendix Figure 1, we merged the youth survey data with their linked parent data 

by matching the unique child’s household ID with their respective parents, which was conducted 

for both 2021 and 2022 NHIS data, respectively. The merged 2021 NHIS dataset has 7,070 youth 

subjects, while the 2022 NHIS dataset has 6,261 youth subjects with their corresponding parent 

information. We combined the 2021 and 2022 NHIS data to increase the sample size to form the 

final dataset with 13,331 youth subjects. 
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To get the data ready for the machine learning models, we employed several preprocessing or 

cleaning steps (Appendix Figure 2). According to the codebook for adult and youth NHIS data, 

we first selected relevant variables potentially related to asthma development according to 

previous literature (10-14) and excluded irrelevant variables in the subsequent analysis. For 

example, questions specific to the survey design or a specific population not related to asthma, 

such as cancer patients, were not included in the analysis. After the irrelevant variables were 

removed, we removed all variables with only one level (constant variables) or variables only 

focused on a subgroup of age (such as age 5-17) because this study focuses on youth aged 0-17. 

To avoid potential multicollinearity problems, we examined the multicollinearity issues using the 

variance inflation factor (VIF) values. We removed highly correlated variables with VIF values 

larger than 2. Once this step was completed, we deleted all records with missing values for the 

remaining variables and responses such as “don’t know,” “refused,” or “not ascertained.” The 

final dataset contains 9,716 youth subjects with their corresponding parent information, which 

we used for subsequent analysis. 

 

Feature/variable selection 

To identify important features for predicting asthma in youth, we employed two complementary 

machine learning models (LASSO and Random Forest) for feature selection (Appendix Figure 2). 

LASSO selects important features by first establishing a penalized regression model where the 

dependent variable is equal to the sum of the independent variables multiplied by the estimated 

coefficients and the error term. LASSO essentially finds the coefficient values (while shrinking 

them toward zero) that minimize the sum of the squared differences between predicted and actual 

values (15). This process makes LASSO useful for removing irrelevant features (16). Random 
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forest can be used for both classification and regression (17). The random forest model evaluates 

the variables based on the aggregated outputs from individual decision tree models to select the 

most relevant features (17). Each model generated a list of the most significant variables or 

features for asthma prediction. We used the mean of feature importance values for all variables 

as the cutoff to select the variables/features. There were 34 variables selected from LASSO, 13 

of which were also chosen by Random Forest. To maximize the model performance, we utilized 

the union (34 variables) of two variable lists for machine learning models. However, to 

understand how these variables contribute to asthma prediction in youth, we took the intersection 

(13 variables) of the two lists to minimize the false positive. 

 

Class imbalance 

Considering that the proportion of youth subjects with asthma in the dataset is relatively small, 

the class label for asthma in our dataset is unbalanced, with most subjects having no asthma, 

which can significantly influence the model performance of predictive models. To deal with the 

class imbalance, after splitting the data into training and test datasets with a ratio of 7 to 3, we 

applied different sampling techniques to balance the class labels in the training dataset. The 

sampling techniques include SMOTE-Tomek (both oversampling and undersampling), 

undersampling, and oversampling (SMOTE) (18). The undersampling technique will randomly 

select some samples from the major class (subjects without asthma) so that the number of 

subjects with asthma is similar to those without asthma. As an oversampling technique, SMOTE 

will create additional synthetic records for subjects with asthma so that the numbers of subjects 

with and without asthma are similar. SMOTE-Tomek is a sampling technique employing both 
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oversampling and undersampling (19). This combination of over and undersampling helps 

balance the cons of only performing under or oversampling.  

 

Building machine-learning models 

In this study, we used multiple machine-learning models such as random forest, XGBoost, neural 

networks, support vector machine with a linear kernel, and logistic regression to predict asthma 

development in youth (Appendix Figure 3).   

Random Forest 

Random forest is a machine-learning modeling technique that can be used in both classification 

and regression (17). A typical random forest model is composed of numerous decision trees, 

each of which classifies data points into different class labels depending on their features. 

Eventually, the random forest model takes the output of each decision tree model and chooses 

the best output. This model is good for large datasets such as the NHIS dataset and has high 

precision (20). 

XGBoost 

Similar to the tree-based random forest model, Extreme Gradient Boosting is a gradient-boosted 

decision tree (21). However, instead of outputting the average of each decision tree output in the 

random forest, XGBoost outputs the weighted average of each decision tree output. XGBoost is 

characterized by a combination of weak decision tree models to create a strong combined model. 

An advantage of XGBoost is that it reduces bias and underfitting (21). 

Feedforward Neural Networks 
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A perceptron is a machine learning algorithm that has many nodes whose output is an input for 

another node (22). Within each node, the neural network takes the sum of the product of the 

weight and value for each input, adds a bias value, and passes it over to an activation function. 

The resultant value is then passed to nodes in the next layer in the network. The high 

computational power and accuracy of feedforward neural networks make it desirable for this 

study (23). 

Support Vector Machine 

Support vector machine (SVM) is mainly used for classification but can also be used for 

regression analysis (24). SVM involves the creation of a hyperplane or line that the model uses 

to distinguish between different groups of data points. After the SVM is run, the model outputs a 

number either greater than 1 or less than –1, with each scenario classifying the data point as a 

group. SVM is typically used for small datasets due to its high accuracy and long run times (25). 

In this study, the linear kernel was used. 

Logistic Regression 

A logistic regression model uses the sigmoid function to convert the data to a probability and 

assigns the data to groups based on the probabilities (26). The logistic regression typically 

outputs the likelihood of a data point belonging to a particular group, making it good for 

predictions in the case of asthma. 

 

The predictive models were trained on the training dataset with no sampling, oversampling, 

undersampling, and combination of oversampling and undersampling. We measured the model 
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performance on the test dataset using the F1 score, area under the curve (AUC), precision, 

accuracy, and sensitivity. 

 

Statistical analysis 

To measure the association of independent variables with asthma development in youth, we 

selected the variables in the intersection of the two variable lists identified from LASSO and 

Random Forest. We conducted two types of statistical analysis, namely a Chi-square test for 

categorical variables and a two-sample t-test for numerical variables, to determine if the 

variables were significantly associated with asthma development in youth. 

 

Results 

Feature selection 

After data pre-processing and initial variable selection, the 2021 and 2022 combined NHIS 

datasets contained 9,716 youth subjects with 39 variables. Among 9,716 youth subjects, 1,043 

subjects (10.7%) have reported asthma, and 8,673 subjects (89.3%) do not have reported asthma. 

Two different but complementary feature selection models were employed to identify important 

variables that might be associated with asthma development in youth: LASSO and Random 

Forest. As shown in Appendix Table 1, using LASSO, 34 variables were identified to be 

important for asthma prediction, such as age, gender, and whether adults ever had asthma. 

Through Random Forest, 13 variables were identified, such as age, gender, and family poverty 

ratio, which are also included in the variable list from LASSO (Appendix Table 1). To maximize 
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the predictive ability of machine learning models and minimize the false negatives, we took the 

union of selected variables from two lists, which resulted in 34 variables in total. 

 

Predictive models for asthma development in youth 

Table 1 summarizes the performances of the five predictive models, including random forest, 

XGBoost, neural networks, logistic regression, and support vector machine (SVM) with the 

linear kernel. Trained with the original unbalanced data without any sampling techniques, 

XGBoost showed the best model performance with AUC and F1 scores of 0.6796 and 0.2022. In 

contrast, while it has the highest accuracy, SVM (linear) had no precision and sensitivity, 

especially the F1 score, indicative of poor model performance. The low F1 score for the models 

may be due to the class imbalance issue, leading to predicting every subject as not having asthma. 

We applied the undersampling technique to address the class imbalance issue (only 10.3% of 

subjects with asthma) in the dataset, which randomly selected the same number of samples from 

the major class (subjects without asthma) as the minor class (subjects with asthma). As shown in 

Table 1, all machine learning models trained on the balanced dataset with undersampling 

performed much better than those trained on the original data, as evidenced by the model 

performance measures, specifically the F1 score (the most appropriate model performance 

measure for class imbalance). For example, while the AUC and F1 scores for the neural 

networks model trained on original data are 0.5449 and 0.1735, the model performance was 

significantly increased when the model was trained on the under-sampled dataset, with the AUC 

and F1 score of 0.6640 and 0.3430. In addition, trained on the balanced dataset, the logistic 
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regression (AUC = 0.7654 and F1 = 0.3452) and support vector machine (AUC = 0.7589 and F1 

= 0.3374) performed well based on their AUC and F1 scores. 

To deal with the class imbalance, another sampling technique, oversampling, was applied to 

oversample the minority group (subjects with asthma). Based on the F1 score and AUC value, as 

shown in Table 1, the oversampling technique improved the model performance compared to the 

models trained on the original dataset. For example, the AUC and F1 scores for the neural 

networks model are 0.5874 and 0.2618. However, the performance of the models trained on the 

oversampled dataset was poorer than that of those trained on the under-sampled dataset. By 

comparison, the support vector machine model performed the best among the five models trained 

on the oversampling dataset, with an F1 score of 0.3065 and an AUC of 0.6997. 

The combination of both oversampling and undersampling using SMOTE-Tomek technique was 

applied to the training dataset to balance potential issues with either oversampling alone or 

undersampling alone. As shown in Table 1, while the model performance for all models is better 

than the models trained on the original dataset, the F1 scores are similar to models trained on the 

oversampling dataset but poorer than models trained on the undersampling dataset. For example, 

the F1 score for the neural networks model trained on SMOTE-Tomek dataset is 0.2616. 

Out of all the sampling techniques and models, the models trained on the undersampling of the 

major class yielded the best model performance. In addition, logistic regression and support 

vector machine were the two models with the best model performance based on the AUC and F1 

scores. 

 

Potential risk factors for asthma development in youth 
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While it is important to predict the risk of asthma development in youth using machine learning 

models, it is equally important to identify factors that might contribute to asthma development, 

which can be valuable for early prevention. Using Random Forest and LASSO, we identified two 

lists of variables that might be the potential risk factors for asthma development. To test how 

these candidate variables are associated with asthma development, we selected the intersection of 

variables between two lists to avoid possible false positives and tested for their effects on asthma 

development. As shown in Table 2, as indicated by the significant P-value (P < .001), the 

occurrence of asthma is highly correlated with sex, age, the child’s health status, number of times 

the child visited urgent care in the past twelve months, number of times the child visited the 

emergency room in the past twelve months, if the child took prescription medication in the past 

twelve months, received a flu vaccine in the past twelve months, the asthma status of the child’s 

parents, the poverty level of the child’s family, and the symptoms of COVID-19. Based on the 

data shown in Table 2, males are more likely to develop asthma, children around age 11 are more 

likely to develop asthma than children around age 9, children with fair to poor health are more 

prone to asthma, children who visited the emergency room or urgent care more than 3 times are 

likely to have asthma, children whose parents had asthma are more likely to have asthma. 

 

Discussion 

This study utilizes the data from the 2021 and 2022 youth and parent National Health Interview 

Survey to build machine-learning models to predict asthma development in youth. The NHIS 

includes questions ranging from pediatric to demographic and socioeconomic information. We 

linked the youth survey data with their parent survey data to account for the contribution of 
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parents' information to asthma development in youth. We applied several sampling techniques to 

deal with the class imbalance issue (most subjects without asthma), including oversampling, 

undersampling, and both. We built five different machine learning models to predict asthma 

development in youth. By comparison, predictive models trained on the dataset with the 

undersampling of the majority class yielded the best model performance overall. Undersampling 

outperformed no sampling and oversampling by balancing the training dataset without causing 

overfitting or creating synthetic data points that may not represent real-world scenarios. Among 

the models tested, the logistic regression and neural networks models were the best-performing 

models for predicting asthma development in youth, based on the AUC score and especially the 

F1 score. In addition, we found that several factors are significantly associated with asthma 

development in youth, such as age, gender, and family poverty ratio. 

In this study, by employing different sampling techniques to address the class imbalance issue, 

we have successfully built multiple machine learning models to predict asthma development in 

youth aged 0 to 17 with good model performance. One previous study used machine learning to 

predict asthma amongst children aged 7 months to 12 years at a Morocco hospital, which 

achieved high performances with F1 scores around 0.80 (8). However, prenatal, perinatal, 

postnatal, and environmental factors cannot directly apply to the US population and children 

aged 13 to 17, which might limit its generalization. A recent study used Canadian Healthy Infant 

Longitudinal Development birth cohort data to predict pediatric asthma (27). The dataset was 

focused on children up to 4 years of age and included family medical history, clinical data, and 

environmental factors for young children. They used machine-learning models with 1,484 

children and 132 variables and achieved great model performance with an AUC of 0.99 when 

predicting asthma in children at age 4 (27). However, their model cannot apply to children aged 
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5 to 17. Further, their data heavily relied on pediatric and prenatal clinical data extracted from 

patient health records and some environmental factors, which are difficult to obtain in real life, 

especially for those with low socioeconomic status. The dataset used in our study is national 

survey data containing basic demographics on youth aged 0 to 17, which is easily accessible, 

making it more practical.  

In another asthma study conducted on the 2019 Michigan Behavioral Risk Factor Surveillance 

System (BRFSS) data, the group employed similar pre-processing techniques and used SMOTE 

and ROSE to deal with the class imbalance in the data (7). That study also employed similar 

machine-learning models on their dataset, yielding decent performance and identifying many risk 

factors. However, their dataset focuses on adults in Michigan rather than youth in the United 

States. Furthermore, the performance of the models in the Michigan study had the highest AUC 

score of 0.629 and F1 score of 0.287. In our study, the best model has an AUC score of 0.7632 

and an F1 score of 0.3416. Therefore, the predictive models in our study performed much better 

in predicting asthma development in youth, which might be due to the improved pre-processing 

techniques and a more encompassing data source in this study. Some of the significant variables 

identified in the Michigan study were also identified in our study, such as flu vaccine and income. 

While the Michigan study showed that females have a higher risk for asthma development in 

adults, our study showed that males have a higher risk for asthma development in youth. 

Besides building predictive models for asthma development in youth, another aim of this study is 

to identify potential risk factors for asthma development in youth, which might help with early 

asthma detection and prevention. Our study has identified several well-known risk factors for 

asthma development in youth, such as the presence of asthma in the parent, gender, 

socioeconomic status, and maternal smoking (28-31). It is well-known that family history is one 
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of the major causes of asthma (5, 28). This could be due to the shared environment between the 

parents and child that may influence the development of asthma (32). Our study also found that 

boys are at a higher risk for asthma development than girls, which is also consistent with 

previous studies (29, 30). The increased risk for asthma development in boys might be due to the 

increased allergic inflammation and serum IgE levels in boys, as well as the smaller airway 

diameter relative to lung volumes in boys than girls (29, 30). Children living in families with 

lower socioeconomic status have a higher risk of asthma (31). Additionally, maternal smoking 

was another factor identified that could influence asthma development in both the mother and, to 

a greater degree, the child (32).  

An interesting finding was that more people with asthma took a flu shot in the past 12 months 

than those who did not. As the Michigan BRFSS study mentioned, this could be due to children 

with asthma being more prone to receiving the flu shot, as their parents may be aware of the 

dangers that arise if a child with asthma gets the flu (7). Another interesting finding is the 

association of severe COVID-19 symptoms with asthma in youth. Currently, there are mixed 

results on the association of COVID-19 with asthma. A recent nationwide population-based 

cohort study with approximately 50 million people in South Korea showed that COVID-19 was 

associated with an increased risk of asthma onset (33). A retrospective cohort study on 27,423 

children in Children’s Hospital of Philadelphia Care Network ages 1-16 from March 1, 2020, to 

February 28, 2021, showed that the COVID-19 diagnosis has no significant impact on asthma 

onset (34). However, that study did not examine whether severe symptoms of COVID-19 could 

impact asthma onset in children. Using national survey data, our study is the first to provide the 

association between severe COVID-19 symptoms and asthma risks in U.S. youth. 
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This study has several limitations. First, the NHIS does not contain every factor potentially 

associated with asthma, as its purpose is to get a general health overview of the public. This 

prevents us from identifying more significant variables associated with asthma development in 

youth. In addition, including those variables might lead to better model performance. Second, 

undersampling could have removed many records, which might negatively influence the model 

performance. Third, although the predictive models have relatively better model performance 

than previous studies, the models need to be further improved, for example, by including more 

variables. Fourth, the potential risk factors for asthma development in youth identified in this 

study must be further validated by longitudinal studies. Lastly, the hyperparameters for machine 

learning models could be better optimized in future studies, which might potentially improve the 

model’s performance. 

Using the combined national survey data and applying different sampling techniques, this study 

successfully built several machine-learning models for predicting asthma development in youth, 

which will be very valuable for early screening and detection. The identification of additional 

potential risk factors (such as general health status and having received flu vaccine in the past 12 

months) could aid in the early detection and prevention of asthma development among youth. 
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Table 1. Model performance measures of machine learning models for asthma with 
different sampling techniques. 

 Sampling 
Technique Predictive Model  AUC score  Precision  Sensitivity  Accuracy  F1 Score 

No sampling Random Forest  0.7460  0.4706  0.0252  0.8906  0.0478   

XGBoost  0.6796  0.3358  0.1447  0.8755  0.2022   

Neural Network  0.5449 0.3711  0.1132  0.8823  0.1735   
Logistic 
Regression  0.7689  0.4082  0.0629  0.8878  0.1090   

SVM (linear)  0.7503  0.0000  0.0000  0.8909  0.0000   
Undersampling Random Forest  0.7461  0.2157  0.6384 0.7074  0.3225   

XGBoost  0.7067  0.1922  0.6384  0.6679 0.2955   

Neural Network  0.6640 0.2602  0.5031 0.7897  0.3430   
Logistic 
Regression  0.7654  0.2325 0.6698  0.7228 0.3452   

SVM (linear)  0.7589  0.2273  0.6541  0.7197  0.3374   
Oversampling Random Forest  0.7483  0.4032  0.0786  0.8868  0.1316  

XGBoost  0.6838  0.3893  0.1604 0.8810  0.2272   

Neural Network  0.5874 0.2459 0.2799 0.8278  0.2618   
Logistic 
Regression  0.6316  0.2315 0.4434 0.7787  0.3042   

SVM (linear)  0.6997  0.2398  0.4245  0.7904  0.3065   
SMOTE-TOMEK Random Forest  0.7492  0.4333  0.0818  0.8882  0.1376   

XGBoost  0.6738 0.3261 0.1415  0.8744  0.1974  

Neural Network  0.5835 0.2890 0.2390  0.8528  0.2616  
Logistic 
Regression  0.6949 0.2331  0.4434  0.7801  0.3055   

SVM (linear)  0.6996 0.2394  0.4245  0.7901  0.3061   
 

Table 2. Summary statistics on the variables identified by both LASSO and Random Forest. 

Variable  

Asthma   No Asthma   Chi-
square  

P-
value  (n = 1043)  (n = 8673)  

Sex  33 <.001  

Male  616 (12.5%) 4301 (87.5%) 

Female  427 (8.9%) 4372 (91.1%) 

Age (mean ± SD)  11.3 ± 4.1 9.5 ± 4.7 <.001 

General Health Status  420.9  <.001  
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Variable  Asthma   No Asthma   Chi-
square  

P-
value  

Excellent  416 (6.6%) 5880 (93.4%) 

Very Good  327 (14.8%) 1882 (85.2%) 

Good  233 (23%) 780 (77%) 

Fair  60 (34.9%) 112 (65.1%) 

Poor  7 (26.9%) 19 (73.1%) 
Number of times visited urgent care in past 
12 months  36.2  <.001  

0 times  711 (9.8%) 6538 (90.2%) 

1 time  172 (12.3%) 1230 (87.7%) 

2 times  91 (13.7%) 575 (86.3%) 

3 times  30 (15.2%) 167 (84.8%) 

4 times  21 (17.8%) 97 (82.2%) 

5+ times  18 (21.4%) 66 (78.6%) 
Number of times visited emergency room in 
past 12 months  79.9  <.001  

0 times  824 (9.8%) 7612 (90.2%) 

1 time  144 (15.8%) 770 (84.2%) 

2 times  48 (17.4%) 228 (82.6%) 

3 times  14 (30.4%) 32 (69.6%) 

4+ times  13 (29.5%) 31 (70.5%) 
Took prescription medicine in the past 12 
months  440.2  <.001  

Yes  635 (20.3%) 2490 (79.7%) 

No  408 (6.2%) 6183 (93.8%) 

Received flu vaccine in past 12 months  7.05  .008  

Yes  538 (11.6%) 4092 (88.4%) 

No  505 (9.9%) 4581 (90.1%) 

Parent ever had asthma  142.2  <.001  

Yes  272 (20.1%) 1083 (79.9%) 

No  771 (9.2%) 7590 (90.8%) 

Family poverty ratio (mean ± SD)  3.5 ± 2.7 3.9 ± 2.9 <.001 

Symptoms of COVID-19 31.5 <.001 

No COVID-19 777 (10.2%) 6877 (89.8%) 

No Symptoms with COVID-19 50 (12.8%) 342 (87.2%) 

Mild Symptoms with COVID-19 134 (11.2%) 1061 (88.8%) 

Moderate Symptoms with COVID-19 63 (15.8%) 336 (84.2%) 

Severe Symptoms with COVID-19 19 (25.0%) 57 (75.0%) 

Parent ever smoked a cigar 0.02 0.88 

Yes  293 (10.6 %) 2461 (89.4%) 
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Variable  Asthma   No Asthma   Chi-
square  

P-
value  

No  750 (10.8 %) 6212 (89.2%) 

Urban-rural classification  1.67  0.64  

Large central metro  299 (10.2%) 2646 (89.8%) 

Large fringe metro  277 (11.1%) 2216 (88.9%) 

Medium and small metro  320 (10.8%) 2640 (89.2%) 

nonmetropolitan  147 (11.2%) 1171 (88.8%) 

Household region  2.48  0.48  

Northeast  151 (10.3%) 1315 (89.7%) 

Midwest  204 (10%) 1832 (90%) 

South  408 (11.3%) 3211 (88.7%) 

West  280 (10.8%) 2315 (89.2%) 
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