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Abstract 

Prevalence estimates of autism spectrum disorder (henceforth autism) in Latin 
America thus far have been limited by a lack of reliable population-level data. We 
analyzed autism school prevalence across 29 Chilean health service regions for 
students aged 6–18 years, standardized by age and sex. We validated these results 
using electronic health records from one of Chile’s largest regional health service, 
the Servicio de Salud Araucania Sur (SSAS). We then projected Bayesian 
prevalences, reporting nationally, and by health service, ethnicity, immigration 
background, and rurality. We found a standardized national school autism 
prevalence of 0.46% (95% CI, 0.46%-0.47%), with boys having six times higher odds 
of autism than girls (OR 6.10 [95%CI: 5.82–6.41]). The sex - and age-adjusted 
clinical prevalence in the SSAS trust was 1.22% (95% CI: 1.16%-1.28%) and the 
projected Bayesian national autism prevalence was 1.31% (95% Credible Interval: 
1.25%-1.38%). Our results indicate a higher autism prevalence than previously 
reported in the south of the Araucania region with observed disparities in prevalence 
across sex, ethnic groups, and health services.  
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1. Main 

Autism spectrum disorder (henceforth autism) is a neurodevelopmental condition 
that affects social interaction and communication and affects 1–2% of the global 
population1,2. Recently, there has been a growing interest in understanding autism 
prevalence, particularly using large research designs such as school registries and 
access to special educational needs (SEN) services from school registry data1,2. 
However, little is known about how this relates to clinical prevalence, and few studies 
have linked national registries to electronic health records3 to study the gap between 
those diagnosed and those receiving support at school4–6. One challenge of studying 
autism prevalence in Latin America and the Caribbean is the lack of reliable data 
sources4,5, reinforced by only 2.3% of global published prevalence studies to date 
being based in this region4,5,7, as well as only one new autism prevalence study 
identified in Latin America, in Ecuador specifically, since 20124. Chile is a high 
income country with a population of 19 million people8 and ranks as one of the 
wealthiest and most socioeconomically unequal Latin American countries9, with 
significant disparities in health outcomes according to socioeconomic status10,11. 
Inequities in access to care, higher unmet needs among those unable to pay, and 
longer waiting times for those using non-private providers, affect autistic people6,12. 
In 2023, to address inequalities in autism diagnosis and screening, Chile legislated a 
new autism law (Law N° 21.545)13  which establishes inclusion, comprehensive care, 
and the need for accurate epidemiological estimates in order for this law to have a 
meaningful effect.  
 
As such, we aimed to examine the prevalence of autism in Chilean school-aged 
children aged 6 to 18 years linking registry data from the Chilean school SEN 
inclusion program (Programa de Integracion Escolar; PIE) to electronic health 
records from one of Chile’s 29 regional health services, the Servicio de Salud 
Araucania Sur (SSAS). Specifically, we (a) investigated the prevalence of autistic 
children in schools using the Chilean PIE, (b) assessed access determinants to 
autism school SEN services in Chile using a two-level mixed effects logistic 
regression model, (c) explored differences and service gaps between school-level 
autism and clinical service prevalence by assessing the difference in prevalence 
estimates between the school registry and clinical records using a probabilistic 
linkage of electronic health records in the SSAS service, (d) estimated the unmet 
need for SEN services based on disparities between clinical diagnosis and school-
level services, and (e) made a national prevalence estimation based on the findings 
of our SSAS clinical record analysis, which were extrapolated to Chile’s remaining 28 
health services using a Bayesian prevalence model. For the Bayesian prevalence 
model, we first constructed baseline national and health service autism prevalence 
rates using only the national school registry dataset, which served as the 
conservative prevalence inputs for the Bayesian prevalence model in order to 
calculate the lower limit of autism prevalence in Chile. We then linked school registry 
data with clinical data to account for potential underestimations in the school registry 
data, which served as a more generous prevalence input for the Bayesian model to 
calculate the upper limit of autism prevalence. Finally, we constructed a uniform prior 
for each respective health service that spanned the full range of possible autism 
prevalences, from the lowest estimates provided by school registry data to the 
highest suggested by linked data. This allowed the Bayesian model to explore all 
plausible values of autism prevalence without bias towards either end of the 
spectrum. This study has important implications for policy and resource allocation 
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related to the education and support of children with autism in Chile and in Latin 
America and the Caribbean more broadly.  
 
 
2. Results 
2.1. Descriptive Statistics and Frequentist Prevalence Estimation using 
School Data 
Our final school dataset consisted of 3,056,306 children aged 6–18 years (boys 
N=1,569,082; 51.34%). A PIE code was recorded for N=339,968 children (11.12%) 
and for 48.41% of the 12,077 Chilean schools participating in the PIE program. A 
total of 14,549 students with autism were identified in the school registry (boys 
N=12,571 [86.40%], girls N= 1,978 [13.60%]). The adjusted prevalence of autism in 
the national sample of schools was 0.46% (95%CI: 0.45–0.47%), with a prevalence 
in boys of 0.79% (95%CI: 0.77–0.80%) and in girls of 0.13% (95%CI: 0.13–0.14%), 
with a boys-to-girls ratio of 6:1. Further demographic details are shown in Table 1. 
 
Table 1. Count and percentage of features' values in the school dataset. 
[INSERT Table 1] 
 
The sample included N=176,302 (5.77%) Mapuche and N=20,946  (0.69%) Aymara 
pupils and N=21,692 students declared to belong to other indigenous groups, which 
were labelled as other due to disclosure risks. We found an adjusted autism school 
prevalence of 0.35% (0.32%-0.38%) for Mapuche pupils, with 0.07% (95% CI: 
0.05%-0.09%) of Mapuche girls and 0.62% (95%CI: 0.57% -0.67%) of Mapuche 
boys (Male-to-Female Ratio, MFR: 8.86:1) being autistic, and 0.65% (95%CI: 0.55% 
-0.80%) for Aymara pupils with a prevalence of 0.17% (95%CI: 0.17%-0.24%) for 
Aymara girls and 1.15% for Aymara boys (MFR: 6.8:1), and 0.47% for all other 
indigenous groups (95% CI: 0.39%-0.63%), with a prevalence for girls of 0.12% 
(95%CI: 0.05%0.19%) and for boys of 0.81% (95%CI: 0.63%–0.98%) for all other 
ethnic indigenous groups (MFR:6.75:1). These rates are lower and higher, 
respectively, than the rates for those not declaring to belong to these groups (0.47% 
(95%CI: 0.46%-0.48%)), with an autism prevalence of 0.13% (95%CI: 0.13%-0.14%) 
for girls and 0.79% (95%CI: 0.78-0.81%) for boys. This contrasts to an MFR in non-
indigenous children of 6.1:1. Immigrant children reported an adjusted autism 
prevalence of 0.19% (95%CI: 0.17%-0.21%). Further details are shown in Table 2. 
 
Autism prevalence varied across Chile’s 29 health services (eTable 1), with the 
highest adjusted prevalence reported in Ñuble (1.29% [95% CI, 1.21%-1.37%]) and 
the lowest in Metropolitano Norte (0.29% [0.26%-0.31%]). Prevalence was also low 
in the Metropolitano health services serving Santiago, Chile’s largest city, which all 
had a prevalence below 0.40%. Autism peaked in the 6–8 age band across all 
services with the exception of Chiloé and Magallanes, where it peaked in the 9–11 
band (eTable 2 in the appendix).  
 
2.2. Analysis of Access to Autism SEN in Schools Using Poisson Regression 
Our two level (school and commune) mixed effects logistic regression model 
assessed determinants of SEN access and shows similar results, with boys having 
six times higher odds of having a diagnosis and of receiving SEN support than girls 
(OR 6.10 [95%CI: 5.82–6.41]). Compared to children aged 5–8 years, all other age 
groups showed lower odds of autism, as did immigrants and Mapuche children. 
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Compared to children who do not pay school fees, all children in school fee 
categories of $10,001 or higher reported lower odds of autism. Children from rural 
areas reported higher odds of autism compared to children from urban regions (1.19 
[95%CI: 1.10–1.30]). Our likelihood-ratio test asserts that our two level mixed effects 
model is an improvement over a simple Poisson regression mode  (χ2 = 9112.46; p < 
0.001). Further details are shown in Table 2. 
 
Table 2. Poisson and hierarchical regression estimates for SEN Access. The 
hierarchical model is nested at the school and commune levels. 
[INSERT Table 2]  
 
2.3. Probabilistic Data Linkage, Unmet SEN Need, and Autism Prevalence 
from the Clinical Validation Sample 
After matching by sex and date of birth, we obtained 293 pairs. Probabilistic 
matching performed using sex, date of birth, commune of residence, and proxies for 
socioeconomic status (SES) with selection of possible matches to create a bijective 
set of matches resulted in 233 matches of unique SSAS school and patient records 
(see Figure 1). Cohen's Kappa for inter-rater reliability on the diagnostic validation 
subsample was 0.97, indicating excellent agreement between electronic health 
record diagnoses and the diagnoses from our independent clinicians. This 
corresponds to 47.65% of school records for students with autism in SSAS having a 
match in SSAS patient records, to 16.93% of patient records having a match in 
SSAS school records, and 17.07% of unique patients having a match in SSAS 
school records. Only one match to an SSAS school record was made for each 
patient who had lived in more than one commune and who, therefore, appeared 
more than once in the patient data. This means that matching was bijective for SSAS 
school records and unique patients. After linking SSAS school and patient data, we 
found 1,132 or 69.9% patients with autism who could not be matched to students in 
the school registry. This represents the unmet need of SSAS students with autism 
who did not access school-based support. Combining these additional cases with the 
488 or 30.1% students who accessed a Differential Special Education Grant 
(Subvención de Educación Especial Diferencial; SEED) for autism resulted in 1,620 
school-aged children with autism in SSAS, which has a total population of  
N=132,242 children aged 6–18 years.  
 
Figure 1. Data Flow of School Registry Data and Clinical Validation Sample 
[INSERT Figure 1] 
 
The updated crude prevalence of autism in SSAS was 1.23% (95%CI: 1.17–1.28%) 
and the updated adjusted prevalence was 1.22% (95%CI: 1.16–1.28%). The 
adjusted SSAS prevalence for girls was 0.47% (95%CI: 0.41–0.53%) and for boys 
was 1.95% (95%CI: 1.84–2.06%). This gave an updated male-to-female ratio of 
4.18:1 after data linkage, which is smaller than the 6:1 ratio in the school data and 
shows concerning differences in access to SEN services in girls. Autism prevalence 
in this clinical sample was highest among children aged 6–8 years and those starting 
primary school, at 1.54% (95%CI: 1.41–1.68%); this decreased with age (Table 3). 
 
Table 3. Adjusted autism prevalence and adjusted updated autism prevalence by 
health service in Chile.  
[INSERT Table 3] 
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2.4. Bayesian Prevalence Analysis  
Bayesian clinical prevalence projections by health service with school level autism 
prevalence prior probability distribution (priors) are shown in Figure 2, representing 
the assumed probability distribution of autism prevalence before considering specific 
evidence from electronic health records. This approach was implemented by the 
selection of four priors that reflected varying levels of knowledge and assumptions 
about autism prevalence from our data: conjugate beta priors based on national and 
health service school data, priors based on linked school registry and clinical data 
offering higher prevalence estimates, and uniform priors to cover the entire plausible 
range of values. The model then iteratively updated these priors with actual data 
inputs to produce posterior distributions, which provided a Bayesian assessment of 
autism prevalence, taking into account both the known and uncertain elements of the 
datasets. The posterior prevalence peaks from the school registry can be considered 
lower bounds for the true autism prevalence in each health service as they are based 
on children diagnosed with autism who receive SEN support in Chilean schools. 
Bayesian prevalence projections were pulled upward toward their priors by our 
approximate delta of unmet need in linked data prior and the uniform prior, and their 
posterior credible intervals (Table 3). This process produced a national Bayesian 
autism prevalence of 1.31% (95% Credible Interval [CrI]: 1.25 -1.38%). This, in turn, 
posits that Chile has 40,113 children aged 6–18 with autism, corresponding to an 
estimated unmet need of 25,903 children lacking SEN access for autism (posited 
count and unmet need are age- and sex-adjusted).  
 
Figure 2. Posterior predictive distributions for autism prevalence using adjusted case 
counts from the school data with a random effect on student’s health service. 
[INSERT Figure 2] 
 
3. Discussion 
There have been significant advances in the field of autism epidemiology in recent 
years, contributing to a deeper understanding of the prevalence, characteristics, and 
determinants of an autism diagnosis. One notable approach to enhancing the 
accuracy and comprehensiveness of epidemiological data is linkage school registries 
and clinical records. To the best of our knowledge, ours is the largest autism 
prevalence study in Latin America and the Caribbean to date, and one of the largest 
to link school registry and clinical records in the world.  
 
This study found an adjusted prevalence rate of 0.46% using school registry data 
and 1.22% using electronic health records data from the SSAS region, with 
considerable gender disparity, showing a male-to-female ratio of 6:1 and 4:18:1. This 
ratio from school registry data is considerably higher than the internationally 
recognised ratio of 4:11,2, and may suggest diagnostic and awareness bias towards 
males in school settings. Using Bayesian prevalence estimation to reinvestigate 
national-level prevalence estimates, we estimated an updated national autism 
prevalence in Chile of 1.31% (95% CrI 1.25%-1.38%). This also showed that only 
30.12% accessed SEN support for autism in the PIE program and that as many as 
25,903 out of 40,113 (64.57% unmet need) school age children with autism in Chile 
do not access the national SEN programme, with boys being 50% more represented 
in the PIE program, further underscoring the need for focused research into the 
factors driving these variations. This unmet need, although considerable, includes 
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students with autism diagnoses at non-subsidised private schools who are ineligible 
for SEED but who may receive other school-based support. It also excludes students 
who receive SEED for another condition, and students who do not need or do not 
want school-based interventions. Furthermore, in light of the new 2023 autism law in 
Chile, it is pertinent to examine how this legislation addresses educational disparities 
faced by individuals with ASD. This legal framework is an attempt to rectify the 
systemic shortfalls that historically contributed to the underrepresentation of 
individuals with ASD in educational settings. It emphasizes the importance of 
optimizing resources to bridge the gap between diagnosed cases and access to 
appropriate interventions by adding a gender dimension that could improve access 
of autistic girls to SEN support at school.  
 
The use of clinical records to validate school registry epidemiological data offers 
several advantages that improve the accuracy of autism prevalence data from school 
registries alone. Linking across a wide range of socio-demographic variables 
enables researchers to perform population-level analyses with large datasets that by 
themselves might present with incomplete information, helping to identify potential 
disparities in access to services and resources. From a methodological perspective, 
our study adds to an emerging body of literature that leverages the ability to link 
large administrative and clinical data to model more accurate burden of disease 
estimates using Bayesian methods20–22, which is particularly suitable for the more 
accurate modeling of burdens of disease with fragmented health information 
systems21. That said, the study had some limitations. The national projections of our 
Bayesian prevalence estimation are based on the assumption that the discrepancy 
between school and clinical records is uniform across all regions in Chile. While this 
is a valid starting point for the purpose of this methodology, we encourage follow-up 
analyses that further examine discrepancies between school and clinical data in 
order to further refine autism prevalence estimates. While our data captures the 
majority of Chilean pupils aged 6 to 18 years, our findings may not be directly 
translatable to other countries in the Latin American and Caribbean region given 
heterogeneity in health and education systems, as well as possible differences in the 
make-up of health inequalities23. Nevertheless, our findings remain particularly 
relevant for the purpose of health system planning in Chile, especially in light of the 
2023 autism law. We suggest that further research should delve into those areas 
where disparities in SEN services might exist, including insurance status, which is a 
crucial variable in measuring access to services and which, in countries such as the 
US, has not been assessed with regard to its impacts on autism prevalence. Efforts 
to explore the relationship between autism prevalence, sex, and unmet need for SEN 
should continue, recognizing the complexities involved in accessing diagnostic 
services and regional variations in health and educational access across Latin 
America and the Caribbean.  
 
4. Methods 
4.1 The Chilean PIE School Registry and Electronic Health Record Data  
The 2021 Chilean school registry, collected by the Ministry of Education, covers 
Chile’s total student population together with schools that participate in the PIE 
program (eMethods 1). The smallest administrative subdivision in Chile is called a 
commune. The country has 346 communes grouped into 56 provinces, which are, in 
turn, grouped into 16 regions. This study followed the Strengthening the Reporting of 
Observational Studies in Epidemiology (STROBE) reporting guidelines and was 
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approved by the Ethics Committee (PRE.2023.021) of the Department of 
Psychology, University of Cambridge and the Servicio de Salud Araucanía Sur Ethics 
Committee (Folio: 315). In May 2023, with access to anonymised registry data 
granted by the Ministry of Education, we obtained anonymised health care contacts 
between 2014 (year of introduction) and 2021 from the electronic health records of 
the SSAS. From secondary care records and mental health community services we 
collated the electronic record data of the health visits of patients aged 6–18 with a 
primary diagnosis of autism for all communes in the SSAS catchment area. Two 
datasets were derived from this: (i) a clinical dataset and (ii) a clinical validation 
subsample, which was a subset of the clinical dataset. The clinical validation 
subsample was taken from the catchment area of Villarrica Hospital, the second-
largest SSAS facility. This subsample was used to evaluate the accuracy of autism 
diagnoses (see Figure 1 ). 
 
The small clinical dataset was understood to include every 6–18 year old patient with 
a primary diagnosis of autism resident in the municipalities of Curarrehue, Loncoche, 
Pucón and Villarica in the SSAS catchment of Chile’s Araucanía region, and 
including patients resident in the municipalities of Cunco, Freire, Gorbea, Nueva 
Imperial, Pitrufquén, Temuco, Teodoro Schmidt, and Toltén. It also included patients 
resident in the municipalities of Algarrobo (Valparaíso San Antonio health service 
catchment, Valparaíso region), Cabo de Hornos (Magallanes health service 
catchment, Magallanes y Antártica Chilena region), Diego de Almagro (Atacama 
health service catchment, Atacama region), Hijuelas (Viña del Mar Quillota health 
service catchment, Valparaíso region), Machalí (Libertador B. O’Higgins health 
service catchment, Libertador B. O’Higgins region), Panguipulli (Valdivia health 
service catchment, Los Ríos region), Pencahue (Maule health service catchment, 
Maule region), Pica (Iquique health service catchment, Tarapacá region), Quinta 
Normal (Metropolitano Occidente health service catchment, Metropolitana de 
Santiago region) and Tocopilla (Antofagasta health service catchment, Antofagasta 
region).  
 
4.2. Operationalising Autism Status From School Registry Data  
The PIE is a school-specific learning program comprising 28 different permanent and 
transitory categories of provision. Diagnoses are made by child and adolescent 
psychiatrists or pediatric neurologists registered in Superintendencia de Salud, 
Chile’s health services regulator. The Chilean school registry shows whether 
students have accessed the PIE through a SEED and whether they require 
adjustments such as specialist schools or small class sizes. The Chilean school 
registry includes only one binary coded SEN category per pupil, based on whether a 
child meets the diagnostic criteria for autism (codes F84.0 to F84.9) from the 
International Statistical Classification of Diseases and Related Health Problems, 
Tenth and Eleventh Revision (ICD-10 and ICD-11).  
 
4.3. Independent Variables and Regional Analysis Units in the School 
Registry 
Using the school registry dataset, we coded our independent variables as follows: (i) 
age in four different three year bands (primary school: 6–8 and 9–11; secondary 
school: 12–14 and 15–18 years), (ii) sex (binarily assigned at birth), (iii)  immigration 
status (yes or no), (iv) monthly school fees converted to US Dollars (Free, $1.15–
$11.50, $11.51–$28.75, $28.76–$57.51, $57.52–$115.01, > $115.02, missing), (v) 
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ethnicity (Mapuche, Aymara, Other, and No native groups), and (vi) rurality (yes or 
no). Chile has 15 regions serviced by 29 health services. We mapped students’ 
addresses to their respective health service catchment area, with missing address 
data imputed using the student’s school's commune. We reported autism school 
prevalence across Chile’s 29 health services as a measure of access to SEN 
services. We then selected the SSAS as our clinical validation catchment area. This 
health service provides primary, secondary, and tertiary health care to 21 communes 
in Cautín province in the Araucanía region (IX) which has a large urban centre in 
Temuco and a sizeable rural population (32.8%), and it is the third most populated 
province in the country after Santiago and Concepción. Its large catchment area 
(N=752,100) represents 4.3% of the total Chilean population (N=17,574,003) 8. 
 
In our clinical validation dataset, we also used a proxy for socioeconomic 
disadvantage based on health service users’ social health insurance status6,24. 
Membership to Chile’s public insurance scheme is used extensively as a proxy for 
income given that (i) it is linked to wage-deducted contributions and (ii) privately 
insured users prefer hospitals in the private health care network and rarely attend 
public clinics24. We further used students’ school fee status as a proxy for socio-
economic status. In Chile, the government operates a voucher system that benefits 
around 93% of primary and secondary students, with the remaining 7% attending 
private institutions that do not receive subsidies. This system finances schools based 
on student attendance. The educational institutions involved can be public—typically 
municipally owned—or private. Private schools, whether they operate for profit or 
not, can receive state support if they allocate at least 15% of their class seats to 
students deemed "vulnerable," which is determined by factors such as family income 
and the educational level of the mother. These schools also gain additional funding 
for each vulnerable student they admit. Students with free schooling were assigned 
low SES as families with low SES are entitled to educational rebates. Students 
paying betyween $1.15-115.02 US Dollars in fees were assigned medium SES and 
students paying more than $115.02 monthly were assigned high SES. Student 
ethnicity was mapped to being a member of the Mapuche Indigenous group, being a 
member of another Chilean Indigenous group, or not being a member of an 
Indigenous group based on recorded ethnicity, which could take at most one value. 
Students with ethnicity recorded as ‘no registry’ were mapped to not being a member 
of an Indigenous group.  
 
4.4. Linking School Registry and Clinical Data 
To assess the unmet need for autism in the school registry and its relationship to 
clinical diagnoses, and to provide corrected national estimates, we used a clinical 
validation sample. To demonstrate the validity of the clinical diagnoses taken from 
the electronic health records, a subset of this clinical sample was manually reviewed 
by a child and adolescent psychiatrist and by a pediatric neurologist, both of whom 
participate in the PIE diagnostic process. Interrater agreement was computed using 
Cohen's Kappa25. If a child’s record indicated that the autism case definition had 
been met, information from the child’s developmental evaluations, PIE plans, and 
other documents (e.g., cognitive or IQ tests) were obtained and records across data 
sources were combined. A child met the autism case definition if they were between 
6 and 18 years old in 2021, lived in the SSAS health service catchment area during 
2021, and had ever received any of the following: a written statement from a 
qualified professional diagnosing autim, a PIE classification of autism, or ICD-10 
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codes F84.0 to F84.9. The remaining records were then matched to the Chilean 
national school registry, using Fellegi-Sunter probabilistic data linkage26, based on 
date of birth, sex, an SES proxy based on insurance status and school fees, and 
commune of residence. We performed a clerical review of machine-generated 
matched pairs based on the calculated individual field-similarity scores for each input 
field, and then reviewed these pairsusing a composite pair-similarity score. The 
candidate with the highest pair-similarity score was chosen as a match. 
 
For data linkage and to maximise comparability with the clinical data, school registry 
data were restricted to students with autism that were living in municipalities in the 
SSAS catchment in 2021. One fabricated empty record was added to the school 
dataset before linkage to allow the algorithm to correctly match on SES. This 
fabricated record was only used during linkage, did not match to any patient records, 
and was removed before matched and unmatched records were compared. This was 
restricted to appointments for individuals resident in commune in the SSAS 
catchment as the data for this catchment area are believed to be complete. It was 
also restricted to patients aged 6–18 years as of 30 June 2021 to maximise 
compatibility with school data. Appointment year was not restricted in order to retain 
more data and thus maximise linkage opportunities, and only patients of female and 
male sex were included. 
 
Sex, date of birth, municipality of residence, autism diagnosis, and the proxies for 
socio-economic status (i.e., monthly school fees and health insurance contributions 
mode) were available to match in both school and clinical datasets. Although only 
students diagnosed with autism are included in the school dataset, the clinical 
dataset comprised primarily patients diagnosed with autism, but also included some 
patients diagnosed with an intellectual disability and some diagnosed with both. The 
autism diagnosis feature was therefore included to encourage matching of school 
records to clinical records for patients with any type autism diagnosis, as well as to 
allow matching to clinical records for patients with only a diagnosis of intellectual 
disability when no suitable patient with autism was present. 
 
All possible pairs of blocked matches were generated and agreement weights were 
calculated for each feature using expectation maximisation. These feature weights 
were then aggregated into a weight for each pair. This linkage method is robust to 
missingness, so observations with missing values were retained. As a similarity 
comparison method, we used exact matching for municipality of residence, autism 
diagnosis, and socio-economic status. There was no value in using a string 
comparison method for municipality of residence as all municipality names were 
already standardised and two municipalities with similarly spelled names did not 
increase the likelihood of a match between those municipalities.  
 
To link the datasets, we applied a comparator cut-off value of 0.99 for municipality of 
residence and autism diagnosis as these are expected to be fairly accurate features. 
We applied a cut-off of 0.60 for socio-economic status as it is a loosely defined 
proxy. These values were chosen iteratively through trial-and-error to ensure the 
algorithm prioritised matching on autism diagnosis above matching on socio-
economic status. Linkage was implemented using R’s RecordLinkage package. This 
included consideration of the average frequencies of categories in each feature and 
estimated error rates were supplied. The default estimated error rate of 0.01 was 
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supplied for the commune of residence and diagnosis with autism features as these 
were expected to be fairly accurate features. An estimated error rate of 0.1 was 
supplied for the socio-economic status feature to reflect that it was a loosely defined 
proxy. Pairs were then selected based on weight to create a 1-1 bipartite matching 
between school records and patients. These matches were examined to ensure a 
patient who lived in multiple municipalities matched to only one school record and to 
assess the plausibility of matches made to patients diagnosed with intellectual 
disability instead of autism. Clinical data were subsequently de-duplicated to a single 
row per patient. In the case of a patient with multiple entries, the matched record for 
municipality was chosen. School data for students aged 6–18 in the SSAS 
catchment area and deduplicated patient-level data for patients aged 6–18 in SSAS 
were combined to form the linked dataset, omitting deduplicated patient records that 
were a match to student records to ensure such individuals were not present twice in 
the linked data.  
 
For the school and clinical datasets, each record was classified as either matched or 
unmatched based on whether it appeared in the bipartite matching. The discrete 
Kolmogorov-Smirnov test was used to compare matched and unmatched records 
within each dataset for each of the matching features, with the exclusion of date of 
birth and autism diagnosis; the former had too many categories to have meaningful 
results and the latter was uniformly true in the school dataset and therefore not 
informative. Missing values in the socio-economic status feature were omitted before 
testing. Permutation tests were then performed for each of the features tested in 
each dataset by permuting the matched status 2000 times and recomputing the 
discrete Kolmogorov-Smirnov test for each permutation. The p-values for the 
Kolmogorov-Smirnov tests on the observed data were then compared to the 
distributions of p-values for the permuted data to determine the significance of the 
observed results. For each patient that had lived in more than one commune and 
therefore appeared more than once in the patient data, only one match to an SSAS 
school record was made, meaning the matching was bijective for SSAS school 
records and unique patients. 
 
Kolmogorov-Smirnov permutation tests found no significant difference in frequency 
of sexes between matched (12.88% female) and unmatched SSAS school records 
(12.16% female). However, we found a strongly significant difference in the 
frequency of sexes between matched (12.88% female) and unmatched patient 
records (21.52% female). This difference was likely due to the difference in male to 
female ratios across the datasets. SSAS school data for students with autism were 
12.47% female, the SSAS patient data were 20.06% female, and matches were 
12.50% females. Permutation testing found that matched (39.91% resident in 
Temuco) and unmatched records (56.08% resident in Temuco) for SSAS school data 
differed significantly by commune; however, there was no significant difference in the 
patient data by commune between matched (40.34% resident in Temuco) and 
unmatched records (40.16% resident in Temuco). This appeared to be driven by the 
matchability of students and patients living in Temuco, the most populous commune.  
 
4.5. Statistical Analyses  
4.5.1. Frequentist analysis of school registry data and determinants of access 
to AUTISM SEN  
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Data were analyzed from 1 May 2023 to  25 October 2023 in R version 4.3.127. Raw 
national prevalence estimates for autism in Chilean schools were directly 
standardized and stratified by age and sex, using the Chilean 2017 census 
projections for 2021 as the standard population to calculate national prevalence 
across the country’s 29 health services2. To assess determinants to autism SEN 
access, adjusted adjusted prevalence ratio estimates were obtained using a Poisson 
regression with robust error variance used to model count data and using autism 
SEN status as the outcome variable2. In each outcome model, we used the same 
independent variables of sex, age band, immigration status, ethnic group, school 
fees, and rurality, and included these in the same adjusted model comparing all 
levels against each other and reporting for missing data. Confidence intervals were 
calculated at the 95% level using chi-squared distributions. To control for multiple 
comparisons, we used a significance level of 2-sided P�<0�.001 for all reported 
outcomes. We then conducted a sensitivity analysis comparing the Poisson 
regression model to a two-level mixed-effects logistic regression model with two 
random intercepts at the school and commune level to calculate odds ratios (ORs) 
for AUTISM SEN access in Chilean schools, adjusting for the same independent 
variables as in the Poisson model, and comparing model fit.  
 
4.5.2. Bayesian prevalence estimates using school, clinical, and linked data 
and unmet need for SEN 
After calculating the prevalence of autism using school data, we used the linked data 
to calculate clinical autism prevalence in the SSAS. The adjusted prevalence delta , 
was calculated as the ratio difference between the adjusted prevalences for the (a) 
SSAS linked data and (b) school registry data. For the purpose of this analysis, we 
assumed this ratio was applicable nationally. This ratio was then extrapolated to the 
country’s other 28 health services using SSAS as prior in a Bayesian random-effects 
health service model to calculate the adjusted prevalence projections. Estimated 
credible intervals were calculated for the projections by finding the maximum band 
around the projection of equal width to the 95% gamma confidence interval for the 
adjusted prevalence of the school data for each health service. Using Bayesian 
prevalence analysis of autism to calculate autism prevalence inference with different 
types of incomplete data allowed plausible national prevalence estimates and 
provided information about the likelihood of these predictions given the observed 
school data. We used the following  
 
Bayesian model: 
 
(1)  yi|(ni, θi) ∼ Binomial(ni, θi) 
in which yi refers to the adjusted count of autism cases in health service i, ni 
represents the number of students in health service i, and θi designates the 
prevalence of autism in health service i. This model is paired with a prior distribution 
of θi that follows: 
 
(2) θi ∼ Beta(a, b) 
 
in which a captures a prior of the autism prevalence rate and b represents the 
corresponding prior of the standard deviation of the autism prevalence rate. When 
combined, the subsequent posterior distribution can be derived to model the autism 
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prevalence rate in health service i given the number of children diagnosed with 
autism in health service i and the total population of health service i: 
 
(3) θi|(yi, ni) ∼ Beta(yi + a, ni − yi + b) 
 
Because we had complete data on autism in the school registry as well as clinical 
records from one regional health service, we used four priors for θi when fitting the 
Bayesian prevalence model to account for data imbalances at two different levels (a) 
national at the (b) health service level and for lower and upper bounds of prevalence 
in (c) schools and in (d) clinical population. To calculate a national prevalence with 
the clinical and school registry information, we had and then a health service 
prevalence rate under the assumptions we obtained from our data linkage. 
 
We used a (i) conjugate beta prior common to all health services as our first prior, 
constructed with the national adjusted autism prevalence from the school registry 
and its standard deviation as the mean and standard deviation of the prior. This prior 
was suitable because the adjusted prevalence in the school data provides a 
plausible lower bound on the prevalence of autism in Chile. This lower bound is a 
general starting point for the prevalence of autism across all health services and acts 
as a plausible lower bound for autism prevalence, providing a conservative estimate 
that informs the initial baseline for all regions before more specific data are 
considered. 
 
We used a (ii) health service-specific conjugate beta prior, developed using the 
health service-specific adjusted autism prevalence estimates from the school registry 
and their respective prior means and standard deviations. This prior was also 
suitable because it extended the previous prior to each of the random effect 
categories and reflected students receiving SEN. On its own, this prior was expected 
to give uninformative posteriors because it effectively duplicated the information in 
the sample data. However, it was suitable as a more specific lower bound on the 
plausible prevalence of autism in each health service.  
 
The third prior was a (iii) conjugate beta prior based on linked data, which is specific 
to each health service, derived using the adjusted prevalence projected from the 
linked data from SSAS electronic health records and their standard deviations from 
their maximal 95% confidence intervals as the prior means and prior standard 
deviations respectively. This prior was suitable as it captured the clinical information 
provided by the linkage and included all students with clinical diagnoses and or with 
autism SEN recorded in the school registry; additionally, it had narrow standard 
deviations which modeled a theoretical upper bound on the prevalence of autism in 
each health service.  
 
Our fourth prior was a (iv) uniform prior specific to each health service, created using 
the adjusted autism prevalences from the school data for each health service as its 
lower bounds, and the projected prevalences ratio from the linked data for each 
health service as its upper bounds. This prior was suitable because it captured the 
information from both the school and linked datasets, without specifying where within 
these bounds the true prevalences were likely to be.  
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Bayesian prevalence modelling was implemented in the Just Another Gibbs Sampler 
(JAGS) language, which uses Markov chain Monte Carlo (MCMC) sampling to 
produce posterior density distributions when given the above priors and adjusted 
prevalence observations28. A burn-in period of 2000 samples was used to ensure 
models converge. Finally, 2000 iterations without thinning were used to model the 
posterior densities while checking for convergence29. 
 
We employed a novel methodological framework to estimate the prevalence of 
autism in Chile, utilizing a combination of school registry and clinical health record 
data. The integration of these datasets through probabilistic data linkage techniques 
allowed for the analysis of both diagnosed cases and access to Special Educational 
Needs (SEN) services. By employing both frequentist and Bayesian statistical 
methods, we calculated direct standardized prevalence rates and adjusted estimates 
that incorporate regional variations and the completeness of data. Specifically, the 
Bayesian approach utilized four distinct types of priors, including conjugate beta 
priors and uniform priors, which facilitated a nuanced estimation of autism 
prevalence across different health services and nationally. These methods not only 
confirmed the validity of the autism diagnoses through clinical validation subsamples 
but also highlighted significant regional disparities in the availability of SEN 
resources. The findings of this study are instrumental for policymakers and 
educational authorities, providing them with detailed insights necessary for targeting 
interventions and improving the educational and health outcomes for children with 
autism throughout Chile. 
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Figure 2. Data Flow of School Data and Clinical Validation Sample 
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Figure 3. Posterior predictive distribution for health service specific uniform priors

 
Figure 3: Posterior predictive distributions for ASD prevalence using adjusted case counts from the 

school 
data with a random effect on student’s health service. Modelling used uniform priors bounded below 

by 
health service specific adjusted ASD prevalence from school data, and bounded above by 
health service specific adjusted updated ASD prevalence from data linkage. Red dashed 

lines show the adjusted sample prevalence 95% gamma confidence intervals and blue dotted lines 
show the 

posterior 95% credible interval. 
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Table 1: Count and percentage of features’ values in the school dataset.  
Count (%) 

Sex Girls 1,487,224 (48.66%) 
Boys 1,569,082 (51.34%) 

Age band 6-8 748,406 (24.49%) 
9-11 767,350 (25.11%) 
12-14 749,693 (24.53%) 
15-18 790,857 (25.88%) 

Health service Aconcagua 46,840 (1.53%) 
Aisén 19,890 (0.65%) 

Antofagasta 119,378 (3.91%) 
Araucanía Norte 36,651 (1.20%) 
Araucanía Sur 132,242 (4.33%) 

Arauco 31,318 (1.02%) 
Arica 44,609 (1.46%) 

Atacama 58,743 (1.92%) 
Biobío 71,411 (2.34%) 
Chiloé 30,908 (1.01%) 

Concepción 109,502 (3.58%) 
Coquimbo 141,152 (4.62%) 

Iquique 69,935 (2.29%) 
Magallanes 28,031 (0.92%) 

Maule 182,352 (5.97%) 
Metropolitano  Central 122,576 (4.01%) 
Metropolitano  Norte 180,230 (5.90%) 

Metropolitano  Occidente 277,282 (9.07%) 
Metropolitano  Oriente 182,798 (5.98%) 

Metropolitano  Sur 200,984 (6.58%) 
Metropolitano  Sur Oriente 236,817 (7.75%) 

O’Higgins 161,335 (5.28%) 
Osorno 40,266 (1.32%) 

Reloncaví 79,767 (2.61%) 
Talcahuano 54,678 (1.79%) 

Valdivia 66,206 (2.17%) 
Valparaíso 78,598 (2.57%) 

Viña del Mar 172,456 (5.64%) 
Ñuble 79,351 (2.60%) 

School fee Free 2,190,359 (71.67%) 
USD$1.15 to $11.50 1,120 (0.04%) 

USD $11.51 to $28.75 36,477 (1.19%) 
USD $11.51 to $28.75 206,952 (6.77%) 

USD $57.52 to $115.01 270,875 (8.86%) 
USD > $115.02 300,521 (9.83%) 

Missing 50,002 (1.64%) 
Ethnicity Mapuche 176,302 (5.77%) 

Aymara 20,946 (0.69%) 
Other native group 21,692 (0.71%) 
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No native group   2,837,366 (92.84%)     
Rurality Rural 238,948 (7.82%) 

Urban 2,817,358 (92.18%) 
Accesses SEN Yes 339,968 (11.12%) 

No 2,716,338 (88.88%) 
ASD Yes 14,549 (0.48%) 

No 3,041,757 (99.52%) 
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Table 2. Poisson and hierarchical regression estimates for SEN Access. The 

hierarchical model is nested at the school and commune levels. 
  Poisson model Hierarchical model 

Variable Level Adjusted Prevalence Ratio 

(95% CI) 

p-value Odds Ratio (95% 

CI) 

p-value 

Sex Girls Reference ·· Reference ·· 

 Boys 6.01 (5.73-6.30) < 0.001 6.10 (5.82-6.41) < 0.001 

Age category 5-8 years Reference ·· Reference ·· 

 9-11 years 0.79 (0.76-0.82) < 0.001 0.77 (0.74-0.81) < 0.001 

 12-14 years 0.58 (0.56-0.61) < 0.001 0.60 (0.57-0.62) < 0.001 

 15-18 years 0.39 (0.37-0.41) < 0.001 0.44 (0.41-0.46) < 0.001 

Immigration 

status 

Non-immigrant Reference ·· Reference ·· 

 Immigrant 0.34 (0.31-0.38) < 0.001 0.26 (0.23-0.29) < 0.001 

Ethnicity Non-native Reference ·· Reference ·· 

 Aymara 1.21 (1.03-1.43) 0.021 1.17 (0.97-1.41) 0.104 

 Mapuche 0.61 (0.56-0.66) < 0.001 0.71 (0.65-0.77) < 0.001 

 Other 0.92 (0.77-1.11) 0.397 0.98 (0.81-1.20) 0.870 

School fees None Reference ·· Reference ·· 

 USD $1.15 to $11.50 1.15 (0.58-2.29) 0.688 0.68 (0.20-2.31) 0.535 

 USD $11.51 to $28.75 0.36 (0.29-0.45) < 0.001 0.29 (0.20-0.42) < 0.001 

 USD $11.51 to $28.75 0.55 (0.50-0.59) < 0.001 0.52 (0.45-0.59) < 0.001 

 USD $57.52 to 

$115.01 

0.67 (0.63-0.72) < 0.001 0.56 (0.50-0.63) < 0.001 

 USD > $115.02 0.08 (0.07-0.09) < 0.001 0.04 (0.03-0.05) < 0.001 

 Missing 0.81 (0.71-0.91) 0.001 0.52 (0.41-0.64) < 0.001 

Rurality Urban Reference ·· Reference ·· 

 Rural 1.07 (1.01-1.13) 0.014 1.19 (1.10-1.30) < 0.001 
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Table 3 : Adjusted prevalence and adjusted updated prevalence of ASD by health service in 
Chile. Adjusted prevalence is from school data only. Adjusted updated prevalence is from linkage 
of school data and patient data. Prevalence for Servicio de Salud Araucanía Sur (SSAS) was 
calculated directly from linkage results. Prevalence for other health services was calculated by 
adding the adjusted prevalence delta to each health service’s adjusted prevalence from the 
school data only. Adjusted prevalence has 95% gamma confidence intervals. The width of the 
adjusted updated prevalence confidence intervals is the maximum of the school data adjusted 
prevalence confidence intervals for each health service, and the adjusted prevalence delta 
confidence interval, except for SSAS which has the 95% gamma confidence intervals found 
earlier. 
 
Health service Adjusted School 

Prevalence (95% CI) 
Adjusted Bayesian Clinical Prevalence 

(Maximal 95% CI) 
Aconcagua 0.43 (0.37, 0.50) 1.28 (1.21, 1.34) 
Aisén 0.75 (0.63, 0.90) 1.60 (1.47, 1.73) 
Antofagasta 0.83 (0.77, 0.88) 1.67 (1.61, 1.74) 
Araucanía Norte 0.30 (0.24, 0.38) 1.15 (1.08, 1.21) 
Araucanía Sur 0.37 (0.34, 0.41) 1.22 (1.16, 1.28) 
Arauco 0.72 (0.62, 0.82) 1.56 (1.46, 1.66) 
Arica 0.61 (0.54, 0.70) 1.46 (1.38, 1.54) 
Atacama 0.31 (0.27, 0.37) 1.16 (1.10, 1.22) 
Biobío 0.42 (0.37, 0.47) 1.27 (1.20, 1.33) 
Chiloé 0.43 (0.36, 0.52) 1.28 (1.20, 1.36) 
Concepción 0.77 (0.72, 0.83) 1.62 (1.56, 1.68) 
Coquimbo 0.40 (0.36, 0.43) 1.24 (1.18, 1.31) 
Iquique 0.43 (0.38, 0.49) 1.28 (1.22, 1.34) 
Magallanes 0.83 (0.72, 0.96) 1.68 (1.56, 1.80) 
Maule 0.30 (0.28, 0.33) 1.15 (1.09, 1.21) 
Metropolitano  Central 0.42 (0.38, 0.46) 1.26 (1.20, 1.33) 
Metropolitano  Norte 0.29 (0.26, 0.31) 1.13 (1.07, 1.20) 
Metropolitano  Occidente 0.34 (0.32, 0.36) 1.19 (1.12, 1.25) 
Metropolitano  Oriente 0.30 (0.27, 0.33) 1.15 (1.08, 1.21) 
Metropolitano  Sur 0.40 (0.37, 0.43) 1.25 (1.18, 1.31) 
Metropolitano  Sur Oriente 0.36 (0.34, 0.39) 1.21 (1.15, 1.27) 
O’Higgins 0.42 (0.39, 0.46) 1.27 (1.21, 1.34) 
Osorno 0.43 (0.37, 0.51) 1.28 (1.21, 1.35) 
Reloncaví 0.42 (0.37, 0.47) 1.26 (1.20, 1.33) 
Talcahuano 0.81 (0.74, 0.90) 1.66 (1.58, 1.74) 
Valdivia 0.30 (0.26, 0.35) 1.15 (1.08, 1.21) 
Valparaíso 0.68 (0.62, 0.74) 1.52 (1.46, 1.59) 
Viña del Mar 0.66 (0.62, 0.70) 1.51 (1.44, 1.57) 
Ñuble 1.29 (1.21, 1.37) 2.13 (2.05, 2.21) 

Age band Crude prevalence  
SSAS (95% CI) 

Adjusted prevalence SSAS (95% CI) 

6-8  1.54 (1.40, 1.67)  1.54 (1.41, 1.68) 

9-11  1.34 (1.21, 1.46)  1.33 (1.21, 1.46) 

12-14  1.08 (0.97, 1.19)  1.08 (0.97, 1.20) 

15-18  0.96 (0.86, 1.07)  0.98 (0.87, 1.11) 

Ethnicity Crude prevalence  
School Registry (95% 

CI) 

Adjusted Bayesian  
Prevalence  (95% ci) 

Mapuche  1.19 (0.37-1.17) 
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Aymara  1.50 (0.68-1.48) 

Other indigenous group  1.34 (0.51, 1.31) 

No indigenous groups 
declared 

 1.32 (0.49-1.30) 
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Figure 1. Map of Chile’s regions and rurality with zoom into the Araucania region
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