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ABSTRACT

Electrocardiogram (ECG) provides a non-invasive method for identifying cardiac issues, particularly arrhythmias or irregular1

heartbeats. In recent years, the fields of artificial intelligence and machine learning have made significant inroads into vari-2

ous healthcare applications, including the development of arrhythmia classifiers using deep learning techniques. However,3

a persistent challenge in this domain is the limited availability of large, well-annotated ECG datasets, which are crucial for4

building and evaluating robust machine learning models. To address this limitation, we propose a novel deep transfer learn-5

ing framework designed to perform effectively on small training datasets. Our approach involves fine-tuning ResNet-18, a6

general-purpose image classifier, using the MIT-BIH arrhythmia dataset. This method aims to leverage the power of transfer7

learning to overcome the constraints of limited data availability. Furthermore, this paper conducts a critical examination of8

existing deep learning models in the field of ECG analysis. Our investigation reveals that many of these models suffer from9

methodological flaws, particularly in terms of data leakage. This issue potentially leads to overly optimistic performance10

estimates and raises concerns about the reliability and generalizability of these models in real-world clinical applications.11

By addressing these challenges, our work contributes to the advancement of more robust and reliable ECG analysis tech-12

niques, potentially improving the accuracy and applicability of automated arrhythmia detection in clinical settings.13

INTRODUCTION14

Electrocardiogram (ECG) serves as a crucial non-invasive tool for detecting cardiac abnormalities, particularly arrhythmias or irregu-15

lar heartbeats. While arrhythmias can occur in healthy individuals, they may also indicate serious cardiac conditions. The traditional16

method of manually analyzing ECG signals for arrhythmia detection is not only time-consuming but also prone to errors1,2 . Recent17

advancements in deep learning have revolutionized automatic ECG-based arrhythmia diagnosis1–14 . However, these methods typ-18

ically require substantial amounts of training data. Given the scarcity of well-annotated ECG data for arrhythmia detection9 , trans-19

fer learning techniques utilizing pre-trained image classifiers have gained traction.5 showed that transfer learning is effective when20

dataset is small. Recent studies have explored transfer learning approaches with the MIT-BIH dataset for developing arrhythmia di-21

agnosis models1 . The MIT-BIH arrhythmia database remains the most widely used resource for developing and evaluating ECG-22

based arrhythmia models3,7 .23

ECG analysis typically involves four main steps: ECG signal preprocessing and noise attenuation, heartbeat segmentation, feature24

extraction, and learning/classification2 . While the first three steps have been extensively studied in the literature10–15 , this section25

provides a brief overview of selected methods due to space constraints. For ECG signal preprocessing, researchers have proposed26

various techniques. Sayadi et al. developed a modified extended Kalman filter structure, which serves the dual purpose of denoising27

and compressing ECG signals10 . In the realm of heartbeat segmentation, Li et al. presented a wavelet transform-based algorithm28

that has shown promise in detecting QRS complexes, even in the presence of high P or T waves and significant noise or drift11 . Fea-29

ture extraction methods have also seen significant development. Lin et al. proposed an automatic heartbeat classification system30

that utilizes normalized RR intervals and morphological features derived from wavelet transform and linear prediction modeling15 .31

Machine learning models have been widely adopted for arrhythmia classification2,3,6,8,9,14–16 . These range from support vector ma-32

chines with reduced features derived by linear discriminant analysis6 to Hidden Markov Models (HMMs) that combine temporal33

information and statistical knowledge of ECG signals16 . More recently, Hannun et al. developed an end-to-end deep learning ap-34

proach which directly processes raw ECG signals to produce classifications without the need for feature engineering or selection9 .35

Mousavi and Afghah explored sequence-to-sequence deep learning methods to automatically extract temporal and statistical fea-36

tures from ECG signals17 .37
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We propose a novel end-to-end ECG classification framework that leverages transfer learning. Our approach employs the Fourier38

Transform (FT) to convert 1D ECG signals into 2D time-frequency domain data, enabling the use of pre-trained 2D CNNmodels39

such as VGGs and ResNets. The key contributions of our work are:40

1. Development of an end-to-end ECG classification framework that harnesses the power of existing pre-trained 2D CNNmodels.41

2. Exposition of unreliable and biased model evaluation practices in current ECG classification literature using deep learning meth-42

ods.43

MATERIALS AND METHODS44

Dataset45

This study develops the model on the MIT-BIH Arrhythmia dataset7 . The dataset includes 48 half-hour excerpts of two-channel am-46

bulatory ECG recordings collected from 47 patients at 360 Hz. The dataset was annotated at heartbeat level by two or more car-47

diologists independently. 14 original heartbeat types are consolidated into 5 groups. Table 1 shows the heartbeat distribution by48

classes of the raw data, intra-patient split, and inter-patient split. The dataset can be divided into training and testing sets using two49

distinct approaches: the inter-patient paradigm and the intra-patient paradigm. The intra-patient approach involves randomly se-50

lecting heartbeat samples to create the training and testing datasets. This method, however, presents a significant limitation: heart-51

beat samples from the same patient may appear in both the training and testing sets. Consequently, the testing data could inad-52

vertently influence the model’s training process, potentially leading to overfitting and inflated performance metrics. We posit that53

this intra-patient data split paradigm can yield unreliable and potentially misleading results. The performance of models devel-54

oped using this approach may not generalize well to new, unseen patients in real-world clinical scenarios. As such, we strongly ad-55

vise against the use of the intra-patient approach in ECG classification studies4,18 . Furthermore, we recommend that models pre-56

viously developed and evaluated using the intra-patient split paradigm should be critically reassessed. Their reported performance57

metrics should be interpreted with caution, and these models should undergo rigorous re-evaluation using more appropriate data58

splitting techniques before being considered for clinical decision-making applications. In light of these concerns, we advocate for59

the adoption of the inter-patient paradigm as the standard approach for developing and evaluating ECG classification models. This60

method ensures a more robust and clinically relevant assessment of model performance, better reflecting the real-world scenario61

where models must generalize to new, unseen patients.62

Table 1: Heartbeat distribution by classes of the raw data, intra-patient split, and inter-patient split

Set N S V F Q Total

Full MIT-BIH set 90,631 2,781 7,236 803 8,043 109,494

Intra-patient split
Training (80% split) 72,471 2,223 5,789 642 6,431 87,756
Testing (20% split) 18,118 556 1,447 161 1,608 21,890

Inter-patient split
Training 45,866 944 3,788 415 8 51,021
Testing 44,259 1,837 3,221 388 7 49,712

Methodology63

In our proposed approach, we use pretrained 2D CNNmodels (ResNet18) which requires the input data to be in the format of 2D64

images. Therefore, Fourier Transform (FT) is used to obtain 2D time-frequency spectrograms of the digitized 1D ECG recordings for65

capturing the frequency variations14,19 . The 2D time-frequency spectrograms for each point in the signal is computed by14 :66

FTx[n] = X(x, ω) =
∞∑

n=−∞
x[n]w[n−m]e−jωn (1)

Where x[n] is the signal which is sampled at 360 Hz and w[n−m] is the moving window (e.g., Hanning window or Gaussian window).67

We utilized ResNet18 to classify ECG recordings into four classes. The input data dimensions were adjusted for compatibility with68

ResNet18. A fully connected layer at the end of ResNet18 was modified to predict the four classes. To classify Arrhythmia, the pre-69
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trained ResNet18 network was fine-tuned using the preprocessed training dataset from the inter-patient split paradigm. The re-70

trained ResNet18 was then evaluated using the test dataset. The training parameters for the transfer learning-based model are as71

follows: Adam optimizer, batch size of 500, training for up to 20 epochs, and a learning rate of 0.0001. The evaluation metrics are72

precision, recall, and accuracy.73

RESULTS74

Table 2 shows that the proposed ResNet18model with data augmentation achieves the best overall accuracy, the best recall in the75

normal (N) class, and the best precisions in the arrhythmia (S, V, F) classes.76

Table 2: Performance comparison of deep learning models with inter-patient split paradigm. The metrics reported are overall accuracy, precision
(Pre), and recall (Rec). Note that the first model was not tested using inter-patient split paradigm in the original paper. The results obtained here
are from our re-implementations. The best scores are bold-faced in each column.

Accuracy (%) N (n=44,259) S (n=1,837) V (n=3,221) F (n=388) Q (n=7)
Pre/Rec Pre/Rec Pre/Rec Pre/Rec Pre/Rec

87.8 90.3/91.1 45.1/59.0 71.2/74.4 65.3/70.9 83.3/90.9

DISCUSSION & CONCLUSION77

We propose an end-to-end ECG classification framework using 2D CNN classifiers. By transforming the 1D ECG waveforms into 2D78

frequency-time spectrograms using Fourier Transform, this framework allows for the integration of general-purpose pre-trained79

2D CNNmodels (e.g., VGG-16, EfficientNet, etc.) for arrhythmia detection. To build robust and unbiased arrhythmia classifiers, we80

highly recommend practitioners to follow the correct practice of splitting the training and testing data to avoid any possible infor-81

mation leakage. Moreover, we call for more transparency in data preprocessing andmodel development, along with the establish-82

ment of a standard for model evaluation. This approach will enable the research community to reproduce and verify results effec-83

tively.84
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