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Abstract 35 

Identifying biomarkers in kidney transplant patients is essential for early detection of rejection, 36 

personalized treatment and improved overall outcomes. It improves our ability to monitor the 37 

health of the transplanted organ and tailor interventions to the specific needs of each patient. 38 

Here we compiled a multicenter, multiomic dataset of the kidney transplant landscape. Using 39 

multi-omics factor analysis (MOFA), we sought to uncover sources of biological variability in 40 

patients' blood, urine and allograft at the epigenetic and transcriptomic levels. MOFA reveals 41 

multicellular immune signatures characterized by distinct monocyte, natural killer and T cell 42 

substates explaining a large proportion of inter-patient variance. We also identified specific 43 

factors that reflect allograft rejection, complement activation or induction treatment. Factor 1 44 

mainly explained the molecular variations in patients’ circulation and discriminated antibody-45 

mediated rejection from T-cell mediated rejection. Factor 2 captured some of the molecular 46 

variation occurring within the allograft and associated with complement/monocytes crosstalk. 47 

Factor 4 captured the impact of ATG induction. These data provide proof-of-concept of 48 

MOFA’s ability to reveal multicellular immune profiles in kidney transplantation, opening up 49 

new directions for mechanistic, biomarker and therapeutic studies. 50 

 51 

52 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 15, 2024. ; https://doi.org/10.1101/2024.07.15.24309961doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.15.24309961


Introduction 53 

 54 

Kidney transplantation is the treatment of choice for patients with end-stage renal 55 

disease, offering a significant improvement in quality of life and a reduction in morbidity and 56 

mortality. However, the long-term success of renal transplantation depends on many factors, 57 

such as immunological compatibility between donor and recipient, optimal management of 58 

immunosuppressive therapies and early detection of any signs of rejection or post-transplant 59 

complications. In kidney transplantation, both immune and non-immune mechanisms 60 

contribute to the progression of histological lesions and scarring of the kidney graft. These 61 

lesions, resulting from complex interactions between immune cells, soluble molecules and 62 

graft architecture, compromise graft function and long-term survival. 63 

 64 

The objectives of the BIOMARGIN study were to discover biomarkers of renal allograft 65 

lesions derived from biopsies, blood and/or urine. To achieve these objectives, the 66 

BIOMARGIN consortium employed an ambitious strategy involving a succession of clinical 67 

studies in 4 hospitals in three European countries for the discovery, confirmation and validation 68 

of biomarkers in which transplant patients provided blood, urine and biopsy samples. Large-69 

scale supervised explorations, also known as "omics", of these biological samples separately 70 

using state-of-the-art analytical technologies led to the discovery of several biomarkers or 71 

insights in kidney transplantation 1–5. 72 

 73 

In addition, recent advances in omics technologies have led to unprecedented efforts 74 

to characterize the molecular changes underlying the pathophysiology of a wide range of 75 

complex human diseases such as coronary syndrome recently6 . The combination of different 76 

omics technologies, called "multi-omics" analyses, has been proposed to decipher the 77 

molecular mechanisms involved in complex diseases. These analyses can be classified into 78 

supervised and unsupervised methods. The aim of supervised methods is to predict one or 79 

more conditions related to a sample, although over-fitting can be an issue. In contrast, 80 
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unsupervised methods explore the data by analyzing correlations between samples in order 81 

to condense the large volume of data into a reduced number of factors which, in turn, could be 82 

associated with clinical features. MOFA2 (Multiple Omics Factor Analysis version 2) is an 83 

unsupervised statistical approach developed to explore and integrate multiple omics data 84 

sources such as genomics, transcriptomics, proteomics and metabolomics7. In the present 85 

report, we used MOFA2 to uncover specific biological signatures associated with kidney 86 

transplant phenotypes and outcomes by identifying complex patterns and relationships 87 

between different molecular variables such as mRNA and miRNA from biopsies, blood and 88 

urine.  89 

 90 

Results 91 

MOFA application on BIOMARGIN datasets 92 

We collected data from blood, biopsy and urine samples of 131 kidney transplant recipients 93 

comprising six data types (also called views): 1 blood-derived epigenome (miRNA expression), 94 

2 blood-derived transcriptomes (mRNA quantified by MicroArray, mRNA quantified by RNA 95 

sequencing), 1 biopsy-derived epigenome (miRNA expression), 1 biopsy-derived 96 

transcriptome (mRNA quantified by MicroArray) and 1 urine-derived selected gene set (mRNA 97 

quantified by RT-qPCR). In blood, a total of 58828 genes were measured by RNAseq, 54675 98 

genes were detected by MicroArray and 758 miRNAs were measured by RT-qPCR. In biopsy, 99 

54613 genes were assessed by MicroArray and 758 miRNAs were measured by RT-qPCR. In 100 

urine, 34 genes were measured by RT-qPCR (Figure 1a). Given these 6 data matrices with 101 

measurements of multiple omics data types across sample sets or partially overlapping sample 102 

sets, MOFA infers an interpretable low-dimensional data representation of factors. These 103 

learned factors capture the main sources of variation between views, facilitating the 104 

unsupervised identification of continuous molecular gradients or discrete sample subgroups 105 

(Figure 1a). In order to integrate the various omics data with MOFA, we constructed 131 106 

multiomics profiles by matching samples in the 6 views. It should be noted that only 26.7% 107 

(N=35) of the 131 samples were profiled with all types of omics data mainly due to the limited 108 
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number of samples with mRNA data for urine (Figure 1b), but such a scenario of missing 109 

values is not uncommon in multidimensional cohort studies and MOFA is designed to cope 110 

with it7.  111 

 112 

As it is recommended to perform a stringent selection of features before creating the MOFA 113 

object, we performed an initial selection of features from the Blood RNA-seq, Blood miRNAs 114 

and Biopsy miRNAs, keeping only the top 25% of genes with the greatest variance (First 115 

features selection). Integrating these features with MOFA resulted in an over-representation 116 

of transcriptome views at the expense of epigenome views (Figure S1a). Secondly, to ensure 117 

that epigenome views were not under-represented when fitting MOFA, we removed weakly 118 

expressed features from transcriptomic views and filtered out the least expressed genes 119 

(Second features selection). This selection resulted in a more balanced representation of 120 

blood-derived miRNAs, but did not improve the representation of biopsy-derived miRNAs (% 121 

explained variance < 5%, Figure S1a). Thirdly, we followed a strategy recommended by the 122 

MOFA authors to adjust the number of transcriptome features, selecting the 5000 genes with 123 

the greatest variability measured by standard deviation but also taking into account all 124 

epigenomic features. We observed that estimating MOFA with a greater number of epigenomic 125 

features led to a significant increase in the percentage of variance explained in the epigenome 126 

and to a more balanced final features selection. (Figure S1a and Figure 1c).  127 

 128 

To obtain a MOFA model with this final features selection, we trained MOFA 100 times. We 129 

chose the MOFA model with the lowest absolute Evidence Lower Bound (ELBO) value to strike 130 

a balance between model complexity and explanatory power (Figure S1b). MOFA identified 8 131 

factors that were largely orthogonal, capturing independent sources of variation. Cumulatively, 132 

the 8 factors explained 38% of the variation in blood-RNAseq data, 61% in blood-MicroArray 133 

data, 27% in blood-epigenome data, 42% in biopsy-transcriptome data, 23% in biopsy-134 

epigenome data and 2.9% in urine data (Figure 1c). Of these, Factor 2 and Factor 3 were 135 

active in most assays (Figure 1d), indicating extensive roles in multiple molecular layers in 136 
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both the transplanted kidney and the circulation. In addition, other factors such as Factor 1 and 137 

Factor 4 were specific to blood-related views. The fact that most of the factors explain the 138 

variance between several views indicates that the data are very highly correlated between 139 

views, and that it is possible to identify common patterns between different omics views. In 140 

contrast, Factor 6, Factor 7 and Factor 8 were mainly active in only one data modality which 141 

diminishes their interest in this multiomics approach (Figure 1d). We next estimated the 142 

correlation between factors and observed correlations R2 below 0.4 indicating that each factor 143 

captures independent and unique sources of variations (Figure S1c). 144 

 145 

MOFA identifies important clinical markers in kidney transplantation  146 

To understand how factors relate to kidney transplant phenotypes, we assessed the 147 

relationship between factor loadings and different kidney transplant outcome parameters 148 

(Figure 1e). Patient characteristics are shown in Supplemental Table 2. Intriguingly, some 149 

factors correlated exclusively with Banff histological lesions or complement activation: Factor 150 

2 was positively correlated with C4d deposition in peritubular capillaries (“C4d positivity”; P 151 

value<0.001) while Factor 5 was associated with C4d positivity (R2<0, P value<0.0001), tubular 152 

atrophy (“ct”; R2>0, P value<0.01), interstitial fibrosis (“ci”; R2>0, P value<0.001) and arteriolar 153 

hyalinosis (“ah”; R2>0, P value<0.01). In contrast, Factor 3 and Factor 8 correlated uniquely 154 

with certain causes of renal failure (interstitial nephritis, R2>0, P value<0.001 and hypertension, 155 

R2<0, P value <0.0001 respectively). Factor 4 was strongly associated with 156 

immunosuppression: it was negatively correlated with ATG induction (P value <0.0001) and 157 

positively correlated with tacrolimus immunosuppression (P value <0.01). In addition, certain 158 

factors were associated with multiple parameters of varying natures. Factor 7 was negatively 159 

associated with diabetes as a cause of renal failure (P value<0.01), creatinine (P 160 

value<0.0001), anti-HLA DSA (P value<0.01), g lesions (P value<0.01) and v lesions (P 161 

value<0.00001). Factor 1 correlated with eGFR (R2<0, Pearson correlation P value<0.01), anti-162 

HLA DSA (R2<0, P value<0.001), transplant glomerulopathy (“cg”; R2<0, P value<0.01) and 163 

total inflammation (“ti”; R2>0, P value<0.01). Lastly, Factor 6 was associated with 164 
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glomerulonephritis as a cause of kidney failure (R2>0, Pearson correlation P value<0.01), 165 

eGFR (R2>0, P value<0.01), erythrocyte titer (R2>0, P value<0.001), leukocyte titer (R2<0, P 166 

value<0.001) and ti (R2>0, P value<0.01). 167 

 168 

Factor 1 discriminates antibody-mediated from T-cell mediated rejection 169 

Factor 1 mainly explained the molecular variations in blood of kidney transplant recipients 170 

(Figure 1d) and was negatively correlated with anti-HLA DSA status. Intriguingly, this blood-171 

related factor was also associated with cg and ti lesions in the graft (Figure 1e). To confirm 172 

these correlations, we assessed the global distribution of Factor 1 loading (Figure 2a), and 173 

then explored the distribution of Factor 1 loading according to cg and ti lesion scores. We 174 

observed a significant decrease in Factor 1 loading in cases with a cg>0 score (Figure 2b), 175 

while Factor 1 loading increased significantly in cases with a ti>1 score (Figure 2c). We also 176 

confirmed the significant decrease in Factor 1 loading in the presence of anti-HLA DSA (Figure 177 

2d, Supplemental Table 3). We also performed univariate logistic regressions and reported 178 

the performance of Factor 1 to discriminate HLA-DSA status and the presence of ti lesions and 179 

cg lesions by (Figure S2a). Given the increase in Factor 1 loading with ti lesions and the 180 

decreases in the presence of HLA-DSA and cg lesions, we tested whether Factor 1 loading 181 

differed between cases with antibody-mediated rejection (AMR) and T-cell mediated rejection 182 

(TCMR). To this end, we stratified patients according to different phenotypes (AMR, TCMR, 183 

Normal and IFTA) and we observed a significant difference between the TCMR and AMR 184 

group suggesting that Factor 1 may discriminate TCMR from AMR (Figure 2e).  185 

Features contributing more than 0.9 of the absolute Factor 1 loading mainly derived from blood 186 

MicroArray data (D= 11, Figure 2f). The other molecules contributing to each view have also 187 

been represented in Figure S2b. The significant contribution of the blood MicroArray data view 188 

to the Factor 1 is reflected in the heatmap, where a clear separation was observed between 189 

blood samples (Figure 2g). In fact, unsupervised clustering of blood samples using these 11 190 

top features resulted in two main clusters: samples with HLA-DSA were preferentially grouped 191 

in Cluster A in which the 11 features were overexpressed (two-tailed Fisher's exact test, P-192 
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value = 0.001). For the grouping of cases according to AMR or TCMR phenotypes, the Fisher 193 

exact test P-values were 0.0562 and 0.1676 respectively. We then used a publicly available 194 

blood RNASeq dataset GSE1206498 (Figure S2c) to validate whether these 11 features in 195 

blood MicroArray and the 3 features contributing more than 0.9 of the absolute Factor 1 loading 196 

in blood RNA-Seq would be differentially expressed in AMR and TCMR. Interestingly, 12/14 197 

features were found increased in AMR in this dataset (Figure S2d), suggesting that Factor 1 198 

could reflect the different immune responses of the two types of rejection in circulating cells. 199 

In order to map at the single-cell level the different renal and/or immune cells that could express 200 

the top features of Factor 1, we reintegrated 46 publicly available scRNA-Seq datasets from 201 

kidney transplant patients, including transcriptomes from both circulating blood cells (PBMC) 202 

and cells derived from kidney biopsies (Figure S3a). We were thus able to obtain 150,876 203 

transcriptomes which passed quality check (Figure S3b) and, using canonical markers 204 

(Figure S3c), to identify 23 clusters corresponding to all renal and circulating cell populations 205 

(Figure S4a).  For further granularity, a subset corresponding only to circulating cells was 206 

selected and 29 clusters were identified and automatically annotated in an unsupervised 207 

manner (Figure S4b). We then formed a signature corresponding to the top features 208 

explaining Factor 1 in the blood and we observed that the top features of Factor 1 were not 209 

centralized in a single immune cell population, but instead scattered across myeloid cells, T, 210 

B and NK lymphocytes, and even granulocytes (Figure S4c).  More specifically, ZNF267 is 211 

preferentially expressed by neutrophils, while MOB1B and TVP23B are derived from basophils 212 

and progenitors. CD69, SUCO, SMIM15 and AGL are expressed by lymphocytes, ABCB10 by 213 

monocytes and DMXL1, CLK1 and RSL24D1 by B lymphocytes and plasmablasts. Factor 1 214 

thus corresponds to a multicellular immune profile that differs between TCMR and AMR in 215 

patients’ blood. 216 

 217 

Factor 2 is associated with complement/monocytes crosstalk 218 

In contrast to Factor 1, Factor 2 captured some of the molecular variation occurring inside the 219 

allograft. Among all the outcomes tested, it was only positively correlated with C4d (Pearson 220 
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correlation, P-value<0.001) (Figure 1e). Of note, C4d deposition in peritubular capillaries is 221 

associated with immune reactions directed against the allograft and are the result of activation 222 

of the complement system. To confirm the correlation between C4d positivity and Factor 2, we 223 

assessed the global distribution of Factor 2 loading (Figure 3a), and then explored the 224 

distribution of Factor 2 loading according to C4d positivity. We observed a significant increase 225 

in Factor 2 loading in cases with C4d positivity (Figure 3b). By stratifying patients according 226 

to Factor 2 median, a trend towards an increase in the number of C4d-positive cases was also 227 

found in patients above the median (Supplemental Table 3). The top features contributing to 228 

the absolute Factor 2 loading mainly derived from biopsy MicroArray data (D= 15, Figure 3c). 229 

The top features deriving from biopsy MicroArray data and explaining Factor 2 clearly 230 

separated the samples into two groups (Figure 3d) in an unsupervised manner. Cases positive 231 

for C4d were grouped showed high expression of the top features LYZ, CALHM6, EVI2A, 232 

CD52, IGSF6, C1QB, EVI2B, BCL2A1, C1QC, C16orf54, CSTA, CXCL9, CTSS, CXCL10 and 233 

TYROBP. Interestingly, two of these features C1QC and C1QB encode the B and C-chains 234 

polypeptide of serum complement subcomponent C1q, which associates with C1r and C1s to 235 

yield the first component of the serum complement system. With regard to other top features 236 

explaining Factor 2 in biopsies, five miRNAs were detected: miR-150, miR-223, miR-1227, 237 

miR-624 and miR-155 (Figure S5a). Among the upregulated miRNAs, our group has 238 

previously reported that miR-155 is preferentially expressed by monocytes4, suggesting that 239 

Factor 2 may capture the infiltration of blood monocytes/macrophages into the allograft and 240 

the overexpression of complement by these cells. In order to validate the association between 241 

these Factor2 top features and C4d deposition in peritubular capillaries in an external dataset, 242 

MicroArray data from biopsies of kidney transplant patients with and without C4d were 243 

analyzed (Figure 3e). Here, the transcriptomes of 23 C4d-negative biopsies were compared 244 

with 16 biopsies showing focal, diffuse or minimal C4d ptc staining (Figure 3f). As shown on 245 

the volcano plot, biopsies positive for C4d showed overexpression of both mRNA transcripts 246 

and miR-150, miR-223 and miR-155 explaining Factor 2. In the scRNA-Seq dataset, we then 247 

formed a signature corresponding to the top features explaining Factor 2 in the kidney and 248 
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observed that this signature was particularly strong in myeloid cells (Figure S5b). Strikingly, 249 

macrophages were the main cell population expressing the top features (Figure S5c) and 250 

more specifically C1QC and C1QB, suggesting that Factor 2 captured the crosstalk between 251 

macrophages and complement activation in the allograft after transplantation.  252 

 253 

Factor 4 captures the impact of induction prophylaxis 254 

Similar to Factor 1, Factor 4 captured some of the molecular variation in blood samples (Figure 255 

1d). Factor 4 was strongly and negatively correlated with ATG induction (Pearson correlation, 256 

P-value<0.00001) and positively correlated with tacrolimus immunosuppression protocol 257 

(Figure 1e). Evaluating the overall distribution of Factor 4 loading (Figure 4a), and then 258 

exploring the distribution of Factor 4 loading according to induction types, we observed that 259 

Factor 4 loading was also reduced in cases that had received ATG as induction compared to 260 

no induction (P-value=0.0023) or other induction therapy (Figure 4b, Supplemental Table 5). 261 

Considering the top 10 features measured by RNAseq in blood in terms of absolute loading, 262 

two clear groups of patients were distinguished in an unsupervised manner: one showing low 263 

IL1R2 expression and without patients who had received ATG (N=0/21, 0%), and a second 264 

with high IL1R2 levels including 15/53 patients who had received ATG as induction (28%). 265 

Interestingly, among the other top features, expressions of TRBC2, BCL11B, CD3G, CD247, 266 

CD3E, STMN3, GIMAP7, FCMR, SRNPN and CCR7 were down-regulated in the group 267 

including ATG-treated patients (Figure 4c-d). The advantage of MOFA is to uncover 268 

transcriptomic profiles across omics types and tissues. Strikingly, one of the most weighted 269 

features explaining Factor 4 in the biopsy is IL1R2 (Figure S6a).  270 

 271 

Querying the scRNA-Seq dataset, we observed that the other major features were principally 272 

expressed by T cells and NK cells (Figure S6b). More specifically, naive T cells 273 

subpopulations as well as regulatory T cells and central CD8 T cells highly expressed Factor 274 

4 top features such as FCMR, CCR7, SNRPN and BCL11B.  FCMR expression was mainly 275 

restricted to B cells subpopulation. In addition, we observed that IL1R2 is predominantly 276 
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expressed by and myeloid dendritic cells and classical monocytes in the blood (Figure S6c), 277 

suggesting a disturbance in the lymphoid/myeloid cell ratio in both patient groups. To validate 278 

these data, we took advantage of a public GSE10040 dataset corresponding to an in vitro 279 

experiment in which PBMCs from healthy volunteers were treated with ATG at 10µg/mL for 280 

24h9. After culture, cells were harvested and mRNA extracted for full transcriptomic analysis 281 

(Figure 4e). We found that ATG treatment induced the differential expression of 4438 genes 282 

(DEGs) comprising 2327 down-regulated genes and 2112 up-regulated genes. By mapping 283 

the top features of Factor 4 among these 4438 DEGs, we observed that IL1R2 is strongly 284 

induced by ATG treatment (fold change (FC) >3.9 and Log10(pvalue) >6.4) but so is CCR7 285 

(FC>0.9, Log10(pvalue) >3.3). In contrast, the other features are mainly down-regulated, such 286 

as SNRPN (FC<-0.7, Log10(pvalue) >3.5), CD3E (FC<-0.3, Log10(pvalue) >1.7), FCMR 287 

(FC<-0. 9, Log10(pvalue) >2.1), BCL11B (FC<-0.5, Log10(pvalue) >1.8), CD247 (FC<-0.3, 288 

Log10(pvalue) >1.3), STMN3 (FC<-0.1, ns) and GIMPAP7 (FC<-0.1, ns). Of note, TRCB2 was 289 

not detected and CD3G was slightly increased (FC>0.1, ns) (Figure 4f). Overall, these results 290 

suggest that ATG treatment induces a strong disruption of the immune system that could be 291 

detected several months after treatment in blood but also in the allograft, leading to a decrease 292 

in the lymphoid compartment in favor of the myeloid compartment. 293 

 294 

Discussion 295 

MOFA2 analysis enables researchers to simultaneously combine and analyze high-296 

throughput data from different biological sources. This method of analysis is proving 297 

particularly valuable in the field of medical research, where it enables us to better understand 298 

the complexity of the molecular and cellular interactions involved in complex disease 299 

processes. By elucidating these mechanisms, clinicians can better target therapies and 300 

improve long-term kidney success. To our knowledge, this is the first time this type of MOFA 301 

analysis has been conducted in the field of kidney transplantation. Integrating the different 302 

omics layers, MOFA2 delimited 8 different factors in an unsupervised manner. As expected, 303 

these factors captured independent transcriptomic profiles across blood and renal allografts.  304 
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Surprisingly, we observed very few associations between histology and the factors. 305 

This indicates that rejection phenotypes (according to the Banff classification), but also 306 

rejection severity and phenotype patterns such as rejectionclass are not the main drivers of 307 

molecular heterogeneity within allografts and in circulation. In fact, only Factor 1 reflects 308 

different profiles between HLA-DSA positive and HLA-DSA negative cases. 309 

Factor 2 was related to the intragraft crosstalk between monocytes/macrophages and 310 

complement. It was associated with C4d deposition independent of rejection status, suggesting 311 

that this crosstalk is not specific to the AMR process. Indeed, Factor 2 was not significantly 312 

correlated with the presence of HLA-DSA, suggesting that this crosstalk between 313 

macrophages and complement might be due to non-HLA antibodies which could be 314 

detrimental in the context of kidney transplantation10–12. In fact, interactions between 315 

monocytes/macrophages and complement factors are multiple and complex, contributing 316 

significantly to the innate immune responses. Infiltrating monocytes and tissue-resident 317 

macrophages can locally synthesize several components of the complement system, including 318 

C1, C2, C3, C4, C5, C6, C7, C8, and C9. In particular, we have previously shown that CD163+ 319 

macrophages are the main immune cells expressing complement-associated genes such as 320 

C1QA, C1QB and C1QC among myeloid cells present in the allograft13. In turn, certain 321 

complement degradation products, such as the C5a fragment via CD88 or C3a via Toll Like 322 

Receptors or C4d via LILRB2 and LILRB314, act as chemokines, attracting monocytes and 323 

macrophages and modulating their production of cytokines such as TGF-b115. It is worth noting 324 

that urinary TGFB1 mRNA was the second most important feature (absolute loading>0.95) 325 

explaining Factor 2, and one could speculate that this urinary detection of TGFB1 mRNA could 326 

be due to podocyte lesions16. At the same time, biopsy-derived miR-155 was also among the 327 

key features explaining Factor 2. Intriguingly, this miRNA was closely linked to podocyte 328 

apoptosis after exposure to TGF-β117. Altogether our results suggest that Factor 2 reflects the 329 

monocytes/macrophages crosstalk with complement within the allograft and that this crosstalk 330 

may be associated with podocyte lesions. 331 

 332 
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Surprisingly, Factor 4 was significantly associated with the type of induction regimen, 333 

suggesting that ATG therapy can affect patients' immune profiles longer term after 334 

transplantation. It is clear that ATG makes patients more susceptible to infections, both in the 335 

short and long term18. This increased sensitivity may persist even after ATG treatment has 336 

been discontinued. ATG induction has also been associated with a higher risk of long-term 337 

malignancies compared with anti-CD25 induction19. The top-weighted genes of Factor 4 338 

suggest an imbalance in the patient’s immune system, with a decrease in the T cell 339 

compartment in favor of the myeloid compartment both in the circulation and in the allograft.  340 

 341 

This study has several limitations. The datasets used in this study are relatively small, which 342 

may limit the ability to capture the full spectrum of variability and complexity present in larger, 343 

more diverse populations. Indeed, our study primarily involves Western European centers with 344 

a predominantly Caucasian population. This demographic constraint may limit the applicability 345 

of our results to other ethnic groups and geographic regions, potentially reducing the overall 346 

generalizability of our conclusions. In addition, the analysis in this study is fully dependent on 347 

the MOFA2 algorithm. While MOFA2 is a powerful tool for integrative analyses, relying 348 

exclusively on this algorithm means that other integrative approaches might yield different 349 

factors and insights. This dependence highlights the need for comparative studies using 350 

alternative methodologies to validate our findings. Although we conducted systematic 351 

validation on external datasets for each factor of insterest, our study lacks in-depth mechanistic 352 

studies to confirm the identified factors with greater certainty.  353 

 354 

In conclusion, MOFA2 analysis represents a major advance in the integration of omics data to 355 

understand kidney transplantation. Our study highlights the significant associations between 356 

factors and clinical parameters. This highlights MOFA as an innovative approach to dissect 357 

multicellular immune profiles with mechanistic and clinical implications in kidney 358 

transplantation. Furthermore, our study, as a globally available resource, provides new targets 359 
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for large-scale MOFA-based experimental studies and biomarker assays, and helps prioritize 360 

new candidate targets for immunomodulatory interventions in kidney transplantation.  361 

 362 

Methods 363 

Patient population and data collection  364 

The present study is part of the Reclassification using OmiCs integration in KidnEy 365 

Transplantation (ROCKET) project, which is based on the BIOMArkers of Renal Graft INjuries 366 

(BIOMARGIN) study (ClinicalTrials.gov number NCT02832661). Patients were included 367 

prospectively in four European transplant centers between June 2011 and March 2017 368 

(University Hospitals Leuven, Belgium; Medizinische Hochschule Hannover, Germany; Centre 369 

Hospitalier Universitaire Limoges, France, and Hôpital Necker Paris, France). In all four clinical 370 

centers, protocol renal allograft biopsies were performed 3, 12 and sometimes 24 months after 371 

transplantation, in accordance with local practice, in addition to clinically indicated biopsies 372 

(biopsies at the time of graft dysfunction). In parallel, blood and urine samples were collected 373 

at the same times. All adult patients who had received a single renal allograft at these 374 

institutions and provided written informed consent for this study were eligible. This consent 375 

adheres to the Declaration of Istanbul. Ethics committee XI #13016, Paris, France for Necker 376 

Hospital gave ethical approval for this work. Ethics committee #S55598, Leuven, Belgium for 377 

Leuven Hospital gave ethical approval for this work. Ethics committee #6475, Hannover, 378 

Germany for Hannover Medical School gave ethical approval for this work. Ethics committee 379 

#DC-2010-1075, Limoges, France for Limoges Hospital gave ethical approval for this work. 380 

Recipients of combined transplantations were excluded. All transplantations were 381 

complement-dependent cytotoxicity cross-match negative. The study protocol was approved 382 

by institutional review boards and national regulatory agencies (where applicable) at each 383 

clinical center. The BIOMARGIN study was divided into three phases. Only data from the first 384 

exploratory phase are used in the present report. In this discovery phase, blood samples were 385 

used for an epigenome analysis (miRNA expression [E-MTAB-9595]5) and two transcriptome 386 

analyses (mRNA quantified by MicroArray [GSE129166]1, and bulk RNA sequencing 387 
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[GSE175718]3). In parallel, biopsy samples were used for an epigenome analysis (miRNA 388 

expression [GSE179772]4) and a transcriptome analysis (mRNA quantified by MicroArray 389 

[GSE147089]2).  With the exception of urinary mRNA, each dataset is publicly available, and 390 

details of RNA extractions and RNA expression analysis are extensively detailed in the 391 

corresponding reports.  392 

 393 

Urinary mRNA quantification  394 

For mRNA quantified in urine, samples were centrifuged for 20 min at 2,000g at 4°C. The cell 395 

pellet was resuspended in 700µL of PBS and centrifuged for 5 min on a tabletop centrifuge at 396 

maximum speed. PBS was discarded and cells were resuspended in 500µL RLT buffer 397 

(Qiagen, Courtaboeuf, France) in a cryotube before being frozen at -80°C. MessengerRNA 398 

was extracted from the pellet using the RNeasy mini kit (Qiagen) and reverse transcribed into 399 

cDNA using TaqMan® reverse transcription reagents (Applied Biosystems). We used in-house 400 

designed oligonucleotide primers and fluorogenic probes to measure mRNA levels of 401 

ribosomal RNA 18S, ACTA2,  ENG, CD14, CD3E, CD46, CFB, CXCL13, CXCL9, CXCL10, 402 

IL2RA, CDH1, FN1, FOXP3, GZMB, GAPDH, HGF, PRF1, PSMB9, PSMB10, SLC12A1, 403 

TGFB1, TLR4 and VIM as detailed in Supplementary Table 1 or commercial assays 404 

(Thermofisher) for CTSS (Hs00175407_m1), GNLY (Hs00246266_m1),  FCGR3A 405 

(Hs00275547_m1), ISG20 (Hs00158122_m1), KLRD1 (Hs00233844_m1), MMP7 406 

(Hs01042796_m1), MMP9 (Hs00957562_m1), NKG2D (Hs00183683_m1), NKG7 407 

(Hs01120688_g1), RUNX3 (Hs00231709_m1), and UPK1A (Hs01086736_m1). PCR analysis 408 

was performed in two steps, a pre-amplification step as described previously20 (Veriti 96-Well 409 

Thermal Cycler, Applied Biosystems) followed by mRNA measurement with a Viia 7 Real-Time 410 

PCR system (Thermofisher). GAPDH was used as housekeeping gene21 for normalization 411 

using the delta Ct method. The normalized expression was log transformed before MOFA 412 

integration. 413 
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Data processing and filtering 414 

Both blood- and biopsy-derived miRNA expressions were determined as previously 415 

described4,5 using two small-nucleolar RNAs for normalization: RNU44 and RNU48. The 416 

normalized expressions were log transformed before MOFA integration. Blood- and biopsy-417 

derived transcriptomes quantified by MicroArray were subjected to Robust Multichip Average 418 

(RMA) normalization as previously described1,2. These datasets were then curated and 419 

annotated using the Biological Interpretation Of Multiomics EXperiments (BIOMEX) workflow22 420 

before MOFA integration. Raw counts corresponding to the blood-derived transcriptome 421 

quantified by bulk RNA sequencing were filtered to exclude weakly expressed genes (with <5 422 

counts in 50% of the samples). After filtration, the data were subjected to normalization by 423 

variance stabilizing transformation (VST) using the R package DamiRseq (2.1.0)23 prior to 424 

MOFA integration. 425 

 426 

Multiple Omics Factor Analysis version 2 427 

To integrate the six datasets, we used the R package MOFA2 (1.8.0). MOFA is an 428 

unsupervised machine learning method that identifies latent factors that capture biological 429 

sources of variability in multi-omics datasets. It should be noted that clinical covariates were 430 

not used to train the model. Data, model and learning options were left default. MOFA was run 431 

with 100 iterations in ‘slow’ convergence mode to ensure model convergence; the final model 432 

converged after 61 iterations. Interpretation of the factors is analogous to that of the principal 433 

components and the relationship between clinical covariates and MOFA factors was analyzed 434 

a posteriori. 435 

 436 

Clinicopathological diagnosis of acute rejection subtypes 437 

Two kidney biopsy cores were obtained using a 14-gauge needle under sonographic guidance. 438 

One biopsy core was fixed in formalin and embedded in paraffin for standard histopathological 439 

assessment. Half of the second biopsy core was used for frozen sections and/or electron 440 

microscopy; the remaining half core was used for epigenome and transcriptome analyses. All 441 
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biopsies were scored according to the internationally standardized Banff 2017 lesion scores24. 442 

The follow-up of anti-HLA antibodies and annotation of donor-specific antibodies (DSA) was 443 

systematically monitored in the histocompatibility laboratory referent of each inclusion center. 444 

A diagnostic label was awarded to each biopsy based on the presence and severity of these 445 

histological lesions and on the DSA status, in concordance with the Banff 2017 classification.  446 

 447 

Single-cell RNA-Sequencing (scRNA-Seq) validation 448 

We reintegrated 46 publicly available scRNA-Seq datasets corresponding to kidney transplant 449 

biopsies or peripheral blood mononuclear cells (PBMCs) from patients presenting allograft 450 

rejection or not, whose raw data were downloaded from various repositories: E-MTAB-11450 451 

25, E-MTAB-12051 26, GSE140989 27, GSE145927 28, GSE171374 29, PRJNA974568 30. Seurat 452 

R package (v5.0.1) was used to read, create and merge all raw counts matrices into a single 453 

object, which was subjected to the following QC parameters: number of features (genes) 454 

between 300 and 10,000 per cell and percent of total counts from mitochondrial genes, as 455 

defined by the prefix « MT- », below 10% for cells from PBMCs datasets, and below 25% for 456 

cells from kidney transplant biopsies datasets. 457 

A total of 151,862 cells and 40,353 genes successfully passed QC. Data were log-normalized, 458 

scaled, the top 2000 variable features as well as the top 50 Principal Component (PC) 459 

dimensions were calculated prior to integration using Reciprocal Principal Component Analysis 460 

(RPCA) method, with GSM4339779 and pbmc5 as references and all other datasets as 461 

queries on a supercomputer (Mésocentre de calcul de Franche-Comté). Uniform Manifold 462 

Approximation and Projection (UMAP) dimensionality reduction was calculated from the top 463 

50 PC dimensions, and a resolution of 0.47 was used for unsupervised clustering. scDblFinder 464 

R package (v1.16.0) was used for doublets discrimination (as defined by clusters composed 465 

of two or more different cells captured in a droplet and sequenced). Kidney-derived clusters 466 

annotation was made using already-described canonical markers25–36. PBMC-derived clusters 467 

automatic annotation was performed using SingleR (v2.4.1) and celldex (v1.12.0) R packages 468 
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and MonacoImmuneData as reference dataset 37. Seurat, scCustomize 38 (v2.0.1) and 469 

RightSeuratTools 39 (v1.0.1) R packages were used for data visualization. 470 

 471 

Whole Transcriptomic external validations 472 

 Various external datasets were used to validate the top features explaining the factors 473 

determined by MOFA.  474 

a) External validation of Factor 1 top-weighted genes  475 

To validate the potential for discrimination between AMR and TCMR patients by the top-476 

weighted Factor-1-related genes, an external blood-derived transcriptomic dataset, 477 

GSE12064940, was used. This dataset includes bulk RNAseq analysis of whole blood cells 478 

isolated from 6 patients with histologically verified AMR and 4 patients with histologically 479 

verified TCMR after kidney transplantation. In brief, the BIOMEX pipeline was used to 480 

determine differentially expressed genes between the two patient groups. 481 

b) External validation of Factor 2 top-weighted genes  482 

To validate the potential for discrimination between C4d negative biopsies and C4d postitive 483 

biopsies by the top-weighted Factor-2-related genes, an external kidney allograft-derived 484 

transcriptomic dataset, E-GEOD-3826241, was used. This dataset includes 92 microarray 485 

datasets corresponding to kidney transplant biopsies from patients divided into seven groups 486 

classified according to their histopathological scores, whose raw data (CEL files) were 487 

downloaded from ArrayExpress (https://www.ebi.ac.uk/biostudies/arrayexpress/). oligo 488 

(1.66.0), hugene10sttranscriptcluster.db (8.8.0), hugene10stprobeset.db (8.8.0) and 489 

pd.hugene.1.0.st.v1 (3.14.1) R packages were used to read raw data and normalize 490 

expression, as well as to convert genes names from Affymetrix HuGene 1.0 st Probe IDs into 491 

ENSEMBL IDs. The expression matrix was subsequently analyzed using the BIOMEX pipeline. 492 

Here we selected only samples of interest corresponding to biopsy transcriptomes showing 493 

minimal, diffuse or focal C4d deposition in the absence of glomerular disease (N=25) or 494 

absence of C4d and glomerular disease (N=17). After PCA analysis, 3 outlier samples were 495 
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excluded (GSM937601, GSM937665, GSM937666) and genes differentially expressed 496 

between the 2 groups were calculated.   497 

c) External validation of Factor 4 top-weighted genes  498 

To validate the differential expression of top-weighted genes of Factor 4 according to ATG 499 

treatment, an external transcriptomic dataset GSE1004042, was used. This dataset includes a 500 

MicroArray analysis of PBMC isolated from healthy volunteers and in vitro treated with or 501 

without ATG (10µg/mL), whose raw data (CEL files) were downloaded from Gene expression 502 

Omnibus (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE10040). affy (1.70.0), 503 

hgu133plus2.db (3.13.0), and limma (3.48.3) R packages were used to read raw data and 504 

normalize expression, as well as to annotate genes into ENSEMBL IDs. The expression matrix 505 

was subsequently analyzed using the BIOMEX pipeline. In brief, the BIOMEX pipeline was 506 

used to determine which genes were differentially expressed between the two experimental 507 

groups. 508 

 509 

Statistical analysis 510 

We report descriptive statistics using mean and standard deviation (or median and interquartile 511 

range for skewed distributions) for continuous variables or numbers, and percentages for 512 

discrete variables, for the full cohort and for the rejection subgroups. We used R Studio 513 

(2023.06.1+524) and GraphPad Prism (v10; GraphPad Software, San Diego, CA, United 514 

States) for statistical analysis and data presentation. The volcano plots were constructed using 515 

the R packages ggplot2 (3.4.1) and ggrepel (0.9.3) and were used to annotate the genes of 516 

interest. 517 

 518 

Data availability 519 

All data presented in this present study are derived from the BIOMARGN study and are already 520 

publicly available, with the exception of urinary gene expression, which can be shared upon 521 

reasonable request. Epigenome analyses were performed using the following datasets: blood-522 

derived miRNA expression E-MTAB-9595 and biopsy-derived miRNA expression GSE179772. 523 
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Blood-derived transcriptome analyses were performed using the following datasets: 524 

MicroArray-quantified mRNA GSE129166 and bulk RNA sequencing GSE175718. Biopsy-525 

derived transcriptome analysis was performed using the following dataset: GSE147089.  526 

Code availability 527 

Code for MOFA2 is available at https://biofam.github.io/MOFA2/. 528 

 529 
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 663 

 664 

Figure 1: Multi-Omics Factor Analysis application on BIOMARGIN datasets identifies important clinical markers in kidney transplantation  665 
(a) Graphical representation of MOFA's matrix decomposition of each view's data into a product composed of a view-specific factor loadings matrix and a shared latent factor 666 
matrix. The number of samples ('N') used for multi-omics factor analysis per data set is indicated. The loading of a given factor can be compared a posteriori between patient 667 
groups. (b) Number of features ("D") in each view. A grey bar indicates that the sample is missing in the given omic view (c) Total percentage of variance explained (R2) per omic 668 
view (d) Percentage of variance explained by each latent factor in the different omic views for the selected MOFA model. (e)  Pearson correlation matrix analysis of the 8 latent 669 
factors and the various clinical parameters indicated. Positive (+) or negative (-) correlations with the loading of each latent factor are indicated, as well as the log10 p-value resulting 670 
from the Pearson correlation tests. Panel a was created using Biorender.com. 671 
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 679 
Figure 2: Factor 1 discriminates antibody-mediated from T-cell mediated rejection 680 
(a-e) Violin plots representing the distribution of latent Factor 1 (a) Global distribution (b) According to Banff cg histological lesions. The difference between groups was assessed 681 
by a two-tailed Mann-Whitney test (c) According to Banff ti histological lesions. The difference between groups was assessed by a two-tailed Mann-Whitney test (d) According to 682 
HLA status. The difference between groups was assessed by a two-tailed Mann-Whitney test (e) According to phenotypes. The difference between groups was assessed by an 683 
ordinary one-way ANOVA test and multiple comparisons using the Tukey’s test. (f) Lollipop graph shows the top-weighted genes derived from the MicroArray blood dataset in latent 684 
Factor 1. (g) Heatmap showing the distribution of the top-weighted genes in the samples. A and B clusters A were determined here in an unsupervised manner. 685 
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 686 
Figure 3: Factor 2 is associated with complement/monocytes crosstalk 687 
(a-b) Violin plots representing the distribution of latent Factor 2 (a) Global distribution (b) According to C4d positivity. The difference between groups was assessed by a two-tailed 688 
Mann-Whitney test (c) Lollipop graph shows the top-weighted genes derived from the MicroArray biopsy dataset in latent Factor 2. (d) Heatmap showing the distribution of the top-689 
weighted genes explaining Factor 2 in the samples. (e-f) An external validation dataset E-GEOD-38262 was used to confirm the increase of the top-weighted features explaining 690 
Factor 2 in C4d positive biopsies. (e) Experimental scheme (f) Volcano plot showing the differentially expressed genes and miRNAs in C4d positive biopsies (N=16) compared to 691 
C4d negative biopsies (N=23). The top-weighted features explaining Factor 2 are indicated. Panel e was created using Biorender.com. 692 
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 695 
Figure 4: Factor 4 captures the impact of induction prophylaxis 696 
(a-b) Violin plots representing the distribution of latent Factor 4 (a) Global distribution (b) According to induction types. The difference between groups was assessed by a two-697 
tailed Mann-Whitney test (c) Lollipop graph shows the top-weighted genes derived from the RNAseq blood dataset in latent Factor 4. (d) Heatmap showing the distribution of the 698 
top-weighted genes of Factor 2 in the samples. (e-f) An external validation dataset GSE10040 was used to confirm the decrease of the top-weighted features explaining Factor 4 699 
in PBMC treated with ATG. e) Experimental scheme f) Volcano plot showing the differentially expressed genes in PBMC treated with ATG (N=3) compared to control (N=3). The 700 
top-weighted features explaining Factor 4 are indicated. Panel e was created using Biorender.com. ATG, anti thymo globulin ; PBMC, peripheral blood mononuclear cells 701 
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