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Abstract

Medication usage is a significant contributor to the inter-individual variability in the gut microbiome. However,

drugs are often used long-term and repeatedly, a notion yet unaccounted for in microbiome studies, which might

lead to underestimating the extent of drug effects. Recently, we and others showed that not only the usage of

antibiotics and antidepressants at the time of sampling but also past consumption is associated with the gut

microbiome. This effect can be “additive” - the more a drug is used, the stronger the effect on the microbiome. Here,

by utilizing electronic health records and the Estonian Microbiome cohort metagenomics dataset (n=2,509), we

systematically evaluate the long-term effects of antibiotics and human-targeted medications on the gut microbiome.

We show that the past usage of medications is associated with the gut microbiome, and for example, the effects of

antibiotics, psycholeptics, antidepressants, proton pump inhibitors, and beta-blockers are detectable several years

after usage. Furthermore, by analyzing a subcohort (n=328) with microbiome measured repeatedly, we show that

similar changes in the gut microbiome occur after treatment initiation, possibly indicating causal effects.

Introduction

The human gut microbiome is acknowledged as an important contributor to our well-being and is considered a novel

therapeutic target for health interventions. The structure and composition of this complex ecosystem reflect our

health status, consumption of drugs, dietary choices, lifestyle, and the environment we live in1–5. As a result, a

significant proportion of research is focusing on figuring out how we can use this information for disease

diagnostics6,7, informing disease risks8,9 and personalization of drug usage10,11. However, recent evidence shows that

past exposures long-preceding the sample collection can affect the gut microbiome, a direction less studied.

We have recently shown that the usage of antibiotics in the past (>6 months ago) can affect the microbiome

composition independent of the antibiotic usage within 6 months of sample collection1,12. Moreover, this effect can

be “additive” - the more drugs used in the past, the stronger the effect on the microbiome composition1,13.

Importantly, we also showed in mice models how this long-term effect of antibiotics usage can disrupt mucus

function, including mucus growth and penetrability, and may increase abdominal fat weight14. In addition to

antibiotics, there are implications for the long-term effect of antidepressants1 and beta-blockers15, and it has been

shown that the longer duration of proton pump inhibitors (PPI) consumption is associated with microbiome diversity

in infants16. Therefore, the long-term effect of drug exposure may have a major influence on our physiology,

highlighting the need to understand the full extent of such effects across diverse drug classes. However, to date, a

systematic evaluation of long-term drug effects on the fecal microbiome has not been carried out.

Here, we take advantage of the possibility of linking the Estonian Microbiome cohort (EstMB) gut metagenomics

data (n=2,509) with the electronic health records, which allows us to evaluate the long-term effects of drug usage

systematically. We analyze the presence of long-term drug effects over a wide range of drug classes, including both

human-targeted drugs (i.e. therapeutic targets of human origin) and antibiotics (i.e. therapeutic targets of bacterial

origin), and assess whether the effects can be additive, as seen for antibiotics usage. Additionally, including a second
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time-point metagenomics data from an EstMb subcohort of 328 individuals allows us to further validate the

long-term effects and study drug initiation effects.

Results

Drug usage in the Estonian Microbiome cohort. The Estonian Microbiome cohort (EstMB) is a population-based

volunteer cohort currently including 2509 subjects (age range: 23–89 years, mean: 50.1 ± 14.93 years) who have

provided blood, buccal swabs, and stool samples. In this study, we focus on the gut microbiome characterized using

shotgun metagenomics sequencing. As part of the nationwide Estonian Biobank (EstBB), EstMB is supported by

linkings to various electronic health records (EHR), and participants have provided data regarding their lifestyle and

dietary preferences via questionnaires. A detailed overview of the EstMB cohort and available data is discussed in

Aasmets & Krigul et al.1. Most importantly, EHR allows us to characterize the participants’ drug usage at the time of

microbiome sampling and analyze the history of drug usage in great detail (Fig. 1a). Additionally, a subcohort of the

EstMB (n=328) has provided a second stool sample after a median follow-up period of 4.4 years. Hereon, we refer

to the first time-point of the microbiome sampling as T1 and the second time-point as T2 (Fig. 1a).

At T1, 433 prescription drugs at the ATC5 level (Anatomical Therapeutic Chemical classification system) were used

by the participants, representing 225 different chemical drug subgroups at the ATC4 level and 126 pharmacological

subgroups at the ATC3 level (Fig. 1b). Moreover, during the 5 years preceding T1, a total of 507 different

medications at the ATC5, i.e. chemical substance level were used (251 at the ATC4 level and 138 at the ATC 3

level), highlighting the wide spectrum of drug usage in the population. At T1, 857 subjects (34.2%) did not use any

prescription drugs, while the ones taking drugs used on average around 3 different medications from diverse drug

classes at the time of microbiome sampling (ATC3 mean = 2.84; ATC4 mean = 2.97; ATC5 mean = 3.02) (Fig. 1c).

In the downstream analyses, we focused on drugs that were used by at least 20 subjects at T1, resulting in 56 drugs

at the ATC3 level, 63 drugs at the ATC4 level and 67 drugs at the ATC5 level. As an example, drugs at the ATC4

level with the most users at T1 include beta-blocking agents (n = 234, 9.3%), proton pump inhibitors (n = 211,

8.4%), and benzodiazepine derivatives (n = 177, 7.1%) (Fig. 1d, Extended Data Table 1), which were all often

used in combination with other drugs (Extended Data Fig. 1). Medications with the highest number of users over

the 5 years include drugs that are commonly prescribed PRN (pro re nata, i.e. as needed), such as proton pump

inhibitors (A02BC), antibiotics (J01) and psycholeptics (N05) (Fig. 1d). For these drugs, a considerable number of

subjects last used the drug years ago, allowing us to study long-term drug effects (Fig. 1d).

By taking advantage of the detailed drug usage data recorded in the EHR, we aimed to analyze the direct effects of

drug usage at the time of sampling (Q1), drug carryover effects induced by past drug usage (Q2), additive effects,

which arise from the different amounts of drug used in the past (Q3), and validate the cross-sectional findings by

analyzing the effects of drug initiation between the two time-points (Q4) (Fig. 1a).
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Figure 1. Drug usage in the EstMB cohort. a - Overview of the EstMB cohort and phenotype data available through the
electronic health records (EHR). We aimed to analyze the direct effects of drug usage at the time of sampling (Q1), carryover
effects induced by past drug usage (Q2), and additive effects, which arise from the differing amounts of drugs used in the past
(Q3). In a subcohort of the EstMB (n=328) that has provided an additional stool sample (T2), we analyzed the alterations in the
microbiome attributable to treatment initiation (Q4). b - total number of different drugs used in the EstMB at different ATC
levels. c - distribution of the number of drugs used by the participants at T1 at different ATC levels. d - the number of drug users
at T1 on ATC4-level; drugs with at least 50 users at T1 are shown. Drugs are ordered according to the number of active drug
users. Antibiotics are highlighted in bold. ATC - Anatomical Therapeutic Chemical classification; Q - study question.

Effects of active drug usage on the gut microbiome composition (Q1). Firstly, we conducted a thorough analysis

to identify drugs and drug classes associated with the gut microbiome at T1. Out of the 186 drugs assessed, 167
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(89.8%) were associated with either alpha diversity, beta diversity, or the abundance of at least one bacterial species

(FDR <= 0.1) (Fig. 2, Extended Data Table 2, Extended Data Table 3). The drug effect on the beta diversity was

evident in 96 of the 186 drugs (PERMANOVA on Aitchison distance; FDR <= 0.1, Fig. 2a, Extended Data Table

2), indicating that drugs, including human-targeted medications, can significantly alter the microbiome on the

compositional scale. For example, at the chemical subgroup level (ATC4), drugs explaining the most inter-individual

variability included beta-blockers (R2 = 0.149%, FDR = 0.0010), macrolides (R2 = 0.142%, FDR = 0.0010), and

biguanides (R2 = 0.116%, FDR = 0.0010) (Fig. 2a, Extended Data Table 2). Most of these drug classes, including

beta-blockers, macrolides, and benzodiazepine derivatives, are also negatively correlated with alpha diversity

metrics, especially with observed richness (Fig. 2b). Additionally, we observe that the more unique drug classes

used at the time of sampling, the lower the microbial alpha diversity (Extended Data Fig. 2a). Altogether, these

observations are concordant with previous research and support the notion of drug usage as a significant factor in

explaining inter-individual microbiome variability5,13,17,18.

We further focused on the associations between drug usage and the presence-absence (PA) and abundance (centered

log-ratio (CLR) transformed) of 530 mOTUs19, which were prevalent in at least 10% of the cohort. To eliminate the

potential carryover effects, we compared the active drug users with the subjects who had not taken the drug of

interest during the 5 years preceding T1. All analyses were adjusted for body mass index (BMI), gender, and age. To

account for the potential confounding by diseases, lifestyle, and usage of other drugs, we conducted a thorough

analysis, as described by Forslund et al.13. Interestingly, we identified only a few drug-bug associations that were

confounded by the presence of a disease, and despite a few exceptions, we did not find significant confounding by

other drugs, although such results have been shown in vitro20 (Extended Data Table 3). In all downstream analyses,

we focused on confidently deconfounded associations. Interestingly, we found the effect directions for microbial

taxa to be highly similar across drug classes, indicating a common signal of drug usage (Fig. 2c, Extended Data

Table 3). This observation was evident in both abundance and presence-absence analyses. For example,

[Clostridium] asparagiforme/lavalense [06317], [Clostridium] clostridioforme/bolteae [03442] and [Clostridium]

citroniae [04828] from the family Lachnospiraceae are positively correlated with the usage of beta-blocking agents,

macrolides, biguanides, and PPIs, among other drugs (Fig. 2c, Extended Data Table 3). As human-targeted drugs

have been shown to inhibit bacterial concentrations similarly to antibiotics in vitro20–22, we next examined whether a

similar observation can be made in vivo. For that, we built machine learning models on the CLR-transformed

microbiome data to predict the usage of various antibiotic subclasses and tested their ability to predict the usage of

other drug classes in unobserved data. Indeed, we observed that, for example, the model aimed to detect the usage of

macrolides (AUC = 0.94 for macrolides) could identify the usage of biguanides (AUC = 0.71) and selective

serotonin reuptake inhibitors (AUC = 0.67), and the model aimed to detect penicillin usage (AUC = 0.75 for

penicillin) can, among others, detect the usage of antidepressants (AUC > 0.58) and various corticosteroids

(Extended Data Fig. 2b, Extended Data Table 4). In contrast, we found several bacterial species, such as Dorea

longicatena [03693] and Eubacterium species [12260], that are significantly associated with antibiotics but not with

host-targeted drugs. Thus, at least partially, the effect of antibiotics and human-targeted drugs overlaps.
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We then compared our results to the previously published population studies5,13 and the most comprehensive in vitro

study22. We observed a moderate overlap with the results from population studies we could compare, especially with

antibiotic and PPI usage (Extended Data Table 5). For example, PPIs have a positive effect on the abundance of

oral microbes Streptococcus parasanguinis and Veillonella parvula in our study, in Vila et al.18, Nagata et al.5 and in

Forslund et al.13. More specifically, PPIs esomeprazole and omeprazole are positively associated with Streptococcus

parasanguinis, and esomeprazole additionally with Veillonella parvula. However, there were also inconsistencies -

among others, for example, we observed positive associations between benzodiazepine derivatives and Dorea

formicigenerans and Ruminococcus torques, whereas Nagata et al.5 observed significant negative effects for the

same comparisons. Therefore, although identifying robust signals in vivo remains a challenge, large

population-based cohorts can provide valuable insights.

We next assessed whether the drugs belonging to the same pharmacological subgroup act similarly in terms of the

effect on the microbiome. We observed several notable examples with varying effects. For example, beta-blockers

metoprolol (R2 = 0.104%; the number of univariate hits, nunivariate = 104) and nebivolol (R2 = 0.069%; nunivariate = 18)

display remarkable differences, indicating that drugs used for a similar condition and belonging to the same

pharmacological and chemical subgroup can have a different impact on the fecal microbiome. A similar discrepancy

can be seen for benzodiazepine derivatives diazepam vs alprazolam and PPIs omeprazole vs

pantoprazole/esomeprazole (Extended Data Tables 2-3). Drug dosage is a likely factor, which can complicate

dissecting the bug-drug associations and be a reason for the differences in effect size for drugs belonging to the same

drug group. For example, we found that the effects of PPI omeprazole on some microbes can be observed only for

higher doses (Extended Data Fig. 2c, Extended Data Table 6). Therefore, well-powered studies that are fit to

analyze the effects of distinct drugs at the chemical substance level (i.e., ATC5) and that include dosage information

are likely to further elucidate the drug-bug associations.
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Figure 2. Active drug usage effects on the microbiome. (a) The interindividual variance of the microbiome explained by
individual drug classes. (b) Partial Pearson correlation between drug classes at the ATC4 level and observed richness and
Shannon diversity index. (c) Partial Pearson correlation between drug classes at the ATC4 level and bacterial species analyzed as
presence/absence and as abundance (centered log-ratio transformed) data. The results of both analyses refer to the same bacteria,
i.e., the same column refers to the same bacterial species in presence-absence and in abundance analyses. Further, only drugs and
microbes with at least 10 confidently deconfounded nominally significant associations (p < 0.05) in two analyses combined are
shown, while drugs are presented in descending order based on the number of associations detected (top 20 drugs shown). The
colored cells indicate nominally significant and confidently deconfounded associations (p < 0.05). * - FDR <= 0.1 and
confidently deconfounded. Antibiotics are highlighted in bold.

Long-term carryover effects on the microbiome composition are independent of recent drug usage (Q2). Next,

we focused on the identified associations with active drug usage and analyzed whether these effects were observable

when the drugs were last used years before the microbiome sampling. For that, we compared the former (>1 year

before T1) drug users with the subjects who had not used the drug in the 5 years preceding T1 (Fig. 3a, Extended
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Data Fig. 3a, Extended Data Table 7). Indeed, we observed potential carryover effects for various drug classes

(78/186, 41.9% of drugs). The effects of past usage at the ATC4 level were most clearly evident for different

antibiotics subclasses but also for human-targeted drugs such as benzodiazepine derivatives, biguanides, proton

pump inhibitors, and antidepressants. As with active drug usage (Fig. 2a), the carryover effects with microbes were

similar across the drug classes (Extended Data Table 7). Remarkably, drug-bug associations for several

broad-spectrum antibiotics, such as macrolides and penicillins in combination, as well as for human-targeted drug

classes, e.g. benzodiazepine derivatives and antidepressants, could be identified even if they were last used more

than 3 years before the microbiome sampling (Fig 3a). Considering the carryover effects of antibiotics, we tried to

pinpoint the duration of the effect of antibiotic usage on the microbiome richness. We observed that the diversity of

antibiotic users does not seem to reach the observed richness of the antibiotic non-users, irrespective of the antibiotic

load and time from the last antibiotic treatment (Fig. 3b).

Figure 3. Long-term drug effects on the gut microbiome. (a) Drug carryover effects. The number of univariate associations
between subjects not taking the drug and subjects having taken the drug more than 1 to 4 years prior to the microbiome sample
collection (CLR-transformed abundance). (b) Long-term effect of antibiotics use on the microbiome. (c) Additive drug effects.
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The proportion of the univariate associations identified with active drug usage according to the model that best describes the
association (CLR-transformed abundance). In addition to active drug usage as a binary trait, active drug usage together with past
drug usage as a binary trait or the amount of drug usage as a continuous trait are considered. (d) Variance explained in the gut
microbiome composition according to different factor groups. The bars indicating the variance explained by factor groups are
further divided into individual factors according to their contribution. Past drug usage indicates drugs used during the 5-years
preceding sample collection at T1. Antibiotics are highlighted in bold.

Long-term drug effects are partly of additive nature (Q3). The detected carryover effects raised a follow-up

question, whether the long-term effects can also accumulate as previously shown for antibiotics1,13. Namely, does the

previous drug usage or the amount of it explain additional variability in the microbiome on top of the active drug

usage? To answer this question, we fit and compared three competing models (M1, M2, M3) with increasing

complexity: M1 includes only active drug usage, M2 includes active and past usage (within the 5 years preceding

T1) as a binary trait, and M3 includes active usage and amount of past usage measured by the number of

prescriptions bought out during the 5 years preceding T1. We observed that for a majority of the drugs, the model

including past usage (M2) was best-fitting for at least some of the drug-bug associations supporting the presence of

long-term drug effects (Fig. 3c, Extended Data Fig. 3b, Extended Data Table 8). Moreover, the model including

the amount of drug used (M3), was best-fitting for several drugs, including human-targeted drugs such as

beta-blockers, benzodiazepine derivatives and glucocorticoids. For example, benzodiazepine derivatives show an

additive effect on Eisenbergiella tayi [03446] and several Clostridiales species (Extended Data Table 8). Of note,

the number of prescriptions for human-targeted drugs with continuous treatment regimes is closely related to drug

adherence - the more prescriptions taken in the past, the better adherence to drug intake. Further, to characterize the

effect of active and long-term drug usage on the overall variability of the fecal microbiome, we carried out a

multivariate analysis of the explained variance. This analysis confirmed that long-term drug usage has a significant

effect on microbiome variability, independent of active drug usage (Fig. 3d, Extended Data Table 9). Moreover, the

long-term effects exceed the effects of active drug usage in terms of variance explained (0.74% and 0.47%,

respectively). Importantly, we observe that such long-term drug usage effects can also confound disease-microbe

associations, highlighting the importance of accounting for past drug usage (Extended Data Fig. 4).

Microbiome measurements from the two time-points confirm long-term drug effects (Q4). Next, we focused on

the microbiome changes between T1 and T2 (median follow-up period 4.4 years) in a subcohort with the

microbiome measured in two time-points (N=328). First, we compared the individuals who initiated drug usage

between T1 and T2 and were active users at T2 with the drug-naive participants (Extended Data Table 10,

Extended Data Table 11). Neither the controls nor drug initiators used the drugs 5 years before T1. Despite a

limited sample size, we identified changes in the microbiome attributable to the use of drugs at T2 for

broad-spectrum antibiotics, such as penicillins and macrolides, and human-targeted drugs, including proton pump

inhibitors, benzodiazepine derivatives, and glucocorticoids (Fig. 4, Extended Data Table 11). We also observed

drug initiation effects for drugs with no effects identified for active usage in the cross-sectional setting (Q1)

(Extended Data Table 11). However, the proportion of nominal hits for the Q4 analysis was significantly higher in

the group that also had an association with active usage in Q1 (20.5% vs 6.4%), indicating that Q1 and Q4 analyses

capture similar signals. Similarly, to study the carryover effects, we compared the drug initiators, who last used the
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drug more than 1 year before T2, with the drug-naive subjects. This allowed us to verify the presence of carryover

effects for macrolides, penicillins and human-targeted drugs such as PPIs and selective serotonin reuptake inhibitors

(Fig. 4, Extended Data Table 11). All of the significant associations shown in Figure 4 were also seen in

cross-sectional analyses (T1) assessing active usage (Q1) and carryover effects (Q2), with one exception: the

carryover effect of macrolides (J01FA) on Bilophila wadsworthia [04300] was not identified. Further, among

penicillins, both the active and past usage of amoxicillin and clavulanic acid (J02CR02) was significantly associated

with changes (T2-T1) in the abundance of Flavonifractor plautii [05238], Oscillibacter sp. [03341] and

Oscillibacter species incertae sedis [13092] - all these associations were also observable in Q1 and Q2. Thus,

analyzing two time-points provides a means for identifying robust drug-microbiome associations. As a last step, we

analyzed the drug discontinuation between the two timepoints. The observed effects with opposite direction

compared to drug initiation further support our findings.

Figure 4. Drug initiation and discontinuation effects. Associations between drug initiation, discontinuation, and changes in the
microbiome between T2 and T1 are shown for macrolides, penicillins and PPIs. Dark blue refers to associations with active drug
usage, light blue refers to associations with drug usage that happened more than 1y before T2, and green refers to associations
with discontinued drug use. Effect size refers to partial Pearson correlation adjusted for BMI, gender and age.
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Discussion

In this study, we carried out the first systematic evaluation of long-term drug usage effects on the fecal microbiome

across various drug classes, including a large number of human-targeted drugs. While the research so far has mostly

been focusing on the effects of drug use at the time of microbiome sampling, our unique dataset allowed us to

demonstrate that the effect on the microbiome can still be seen years after the last usage of a drug. Taking advantage

of the drug prescription data from the electronic health records available in the Estonian Biobank, we characterized

the effects of drugs used within 5 years before microbiome collection. After thoroughly accounting for confounding,

we observed that out of the 186 drugs analyzed, 167 (89.8%) are associated with the microbiome, while 78 of them

(46.7%) display long-term effects. In addition to antibiotics, e.g. macrolides, fluoroquinolones, and different

penicillin classes, several human-targeted drugs such as beta-blockers, benzodiazepine derivatives, glucocorticoids,

PPIs, biguanides, and antidepressants display effects on the microbiome observable years after previous drug intake.

Furthermore, this effect can be additive, i.e. it depends on the amount of drug used in the past (measured by number

of prescriptions for a drug). By using second time-point samples from 328 individuals, we further verified the

long-term effects of antibiotics, such as penicillins in combination and macrolides, as well as human-targeted drugs,

such as PPIs and selective serotonin reuptake inhibitors, displaying a likely causal effect of these medications.

Drug usage has been previously shown to explain a significant proportion of inter-individual variability in the fecal

microbiome composition3,5,17. Moreover, the effect of drug usage has been shown to supersede the effect of disease,

further highlighting the significant impact of drug usage5,13. Our results extend this observation, demonstrating that

past drug usage can explain additional variability independent of active drug usage, suggesting that the effect of drug

usage has been underestimated. Importantly, not only antibiotics but also human-targeted drugs are among the drugs

explaining additional variability. Considering that the drug burden can be highly variable across populations and

specific drugs, e.g. antidepressants, antibiotics, and benzodiazepine derivatives, may exhibit varying prescription

patterns across different countries23–25, drug usage can possibly lead to differences in the microbiome composition

between the populations. For example, it has been shown that per capita antibiotic use correlates with the prevalence

of antimicrobial resistance genes26. As antibiotic resistance mechanisms have also been shown to protect against

human-targeted drugs22, this concurrently may affect the abundance of specific microbes in different populations and

result in an overall shift in the microbiome composition. Also, the drug burden is usually higher in older age groups,

so it can be expected that the microbiome in the older populations is even more affected. Similarly, clinical cohorts

might also have a higher drug burden compared to the general population cohorts from volunteer-based biobanks,

where healthier individuals are usually recruited. Thus, the long-term effects and varying drug burden can induce

differences between cohorts and could consequently confound cross-cohort comparisons when unaccounted for.

Our findings are in agreement with the current notion that several human-targeted drugs seem to act similarly to

antibiotics22. The associations between human-targeted drugs and presence-absence of the bacteria suggest that drug

usage is associated with the probability of observing bacteria in the sample. Given that most of the associations were

negative, human-targeted drugs indeed seem to lower the diversity by eliminating specific bugs. The same holds for

the long-term effects of human-targeted drugs. This can be one of the mechanisms that result in the long-term effects
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we are observing. The long-term effects leave a question of whether the human-targeted drugs might also lead to

detrimental microbiota-mediated physiological effects, as has been shown with the history of antibiotic use14. Given

that human-targeted drugs are often taken continuously throughout life, not for short periods, which is the case for

antibiotics, the physiological effects can be even more profound. Moreover, participants usually consume several

different classes of drugs, and only a few individuals did not take any prescription medications in the 5-year

observational period. Such drug-drug interactions may also be additive, i.e. long-term consumption of multiple

drugs with a similar scope can supersede the detrimental effect of both individual drugs, but this remains to be

studied in larger samples. Further, we identified that several disease-microbiome associations can be confounded by

long-term drug usage. Therefore, disentangling disease-drug effects can be further improved by accounting for

long-term drug usage in addition to active drug usage27 and other host variables28.

Surprisingly, our results showed that benzodiazepine derivatives have an even broader effect on the whole

microbiome composition as well as on the presence and abundance of individual microbial species compared to

several antibiotic classes. Moreover, benzodiazepine derivatives show remarkable carryover effects several years

after their use, which is comparable to effects observed with the broad-spectrum antibiotics classes. The drugs

belonging to benzodiazepine derivatives are well-known anti-anxiety medications that are often misused and have a

high potential for drug abuse29. Concerningly, the use of these drugs has increased over time30,31. In addition, we

observed that at the chemical substance level, alprazolam (ATC5 N05BA12, e.g., Xanax) and diazepam (ATC5

N05BA01, e.g. Valium) affect the microbiome in different scales, with alprazolam showing a broader impact on the

microbiome. This was also previously observed by Nagata et al.5. Taking into account the rising popularity of

benzodiazepines, the noted difference in the effects on the microbiome by alprazolam versus diazepam might be a

valuable input for future therapy decisions and warrants further investigation. Further, the same notion could hold

for other drugs, where drugs assigned for the same health condition can have an unequal magnitude of effects on the

microbiome, and consequently, choosing the drug with less long-term harm on the microbiome might be favored.

In vitro studies have indicated that more than 100 antimicrobials and over 200 human-targeted drugs can inhibit the

growth of gut commensals in isolation, which, however, might be attenuated in a community20–22. Nevertheless, to

date, imitating the complexity of the gut microbiome and the intestinal environment remains a limitation for in vitro

studies. Therefore, population-based cohorts using metagenomics sequencing data in combination with detailed drug

usage characterization are essential to understanding the drug effects on the microbiome. One of the biggest

strengths of our study is the possibility of using electronic health records (EHR) to analyze drug intake. When

compared to self-reported medication data, EHR does not suffer from underreporting the use of some drugs and

allows to characterize long-term drug usage. The Estonian Microbiome Cohort is a population-based volunteer

cohort which allows us to study drug usage in a general population. Thus, when compared to the disease cohorts and

clinical cohorts, the drug burden, general health and polypharmacy are likely to have a smaller impact. Additionally,

the comprehensive statistical approach taken was supplemented by the measurements from a second time-point,

which provided an internal validation of the results. We observed that more than 500 different ATC5-level drugs

have been used within the last 5 years in our sample (N= 2509). However, the sample size for analyzing the effects

of all of these drugs on the gut microbiome is limited. Still, comparing the results from our study to previous
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findings has allowed us to pinpoint several robust drug-bug interactions, such as the case of PPI usage and increase

in the oral microbes, such as S. parasanguinis or Veillonella parvula. Some limitations of our study should be noted

when interpreting the results. Our study focuses only on prescription-based drugs, and thus, the long-term effects of

over-the-counter drugs remain to be studied. Also, we assume that when a prescription is bought out, subjects also

take the drug. Similarly to other volunteer-based biobanks, our cohort suffers from gender imbalance—there are

more females than males, and the cohort participants are likely to be more interested in their health.

In conclusion, our results demonstrate that medications, not limited to antibiotics, have a long-term effect on the

fecal microbiome. Further, we highlight the importance of accounting for the history of drug usage when assessing

disease-microbiome associations. Taken together, our results expand the understanding of drug effects on the

microbiome, and we encourage researchers to focus on the long-term drug effects whenever feasible.

Methods

Estonian microbiome cohort and metadata preprocessing
The Estonian microbiome cohort (EstMB) was established in 2017 when stool, oral, and blood samples were

collected from 2,509 Estonian Biobank (EstBB) participants. A detailed overview of the EstMB, including omics

and phenotypic data availability, is described in Aasmets & Krigul et al. 20221. Out of the 2,509 participants, 328

provided an additional stool sample after a median follow-up period of 4.4 years. We refer to the first time-point of

the microbiome sampling as T1 and the second time-point as T2. All participants of the EstMB cohort gave

informed consent for the data and samples to be used for scientific purposes. The study was approved by the Ethics

Committee of the University of Tartu (No 266-T10) and by the Estonian Committee on Bioethics and Human

Research (Estonian Ministry of Social Affairs) (No 1.1-12/2768).

Here, we rely on the Electronic Health Records (EHR) data, which is available to all the EstBB participants,

including the EstMB participants. The EHR data on the diseases and medications were obtained from the Estonian

Health Insurance Fund, the Estonian Cancer Registry, and the two biggest hospitals in Estonia (University of Tartu

Clinic and North Estonia Medical Centre). The Anatomical Therapeutic Chemical classification (ATC) system was

used to define drug classes, and drugs with at least 20 active users during the first microbiome sampling point were

included. For antibiotics and antiinfectives, active usage was defined as usage within 90 days before the sample

collection. For human-targeted drugs, we assessed the active drug usage according to the amount and time of

purchase. This resulted in 56 drugs at the ATC3 level, 63 drugs at the ATC4 level, and 67 drugs at the ATC5 level

for downstream analysis. When analyzing additive drug effects, the number of prescriptions for past usage is based

on drugs purchased during the 5 years preceding the microbiome sampling, whereby the most recent prescriptions

that indicate active usage are excluded from the count. We assume that when a prescription has been bought out,

subjects have also consumed the drug. The summary of the number of drug users at T1 and the average number of

prescriptions in 5 years per drug are summarized in Extended Data Table 1.

Microbiome sample collection and DNA extraction
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The participants collected a fresh stool sample immediately after defecation with a sterile Pasteur pipette and placed

it inside a polypropylene conical 15 ml tube. The participants delivered the sample to the study centre, where it was

stored at -80°C until DNA extraction. Microbial DNA extraction was performed using the QIAamp DNA Stool Mini

Kit (Qiagen, Germany). Around 200 mg of stool was used as a starting material following the DNA extraction kit

manufacturer’s instructions for the extraction. DNA was quantified from all samples using a Qubit 2.0 Fluorometer

with dsDNA Assay Kit (Thermo Fisher Scientific). NEBNext® Ultra™ DNA Library Prep Kit for Illumina (NEB,

USA) was used for generating sequencing libraries following the manufacturer’s recommendations. Briefly, 1 μg

DNA per sample was used as input material. Index codes were added to attribute sequences to each sample. The

DNA sample was fragmented by sonication to an average size of 350 bp, DNA fragments were end-polished,

A-tailed, and ligated with the full-length adaptor for Illumina sequencing with further PCR amplification. Finally,

PCR products were purified (AMPure XP system), and libraries were analyzed for size distribution using

Agilent2100 Bioanalyzer and quantified using real-time PCR.

Metagenomics data analyses
The shotgun metagenomic paired-end sequencing was performed by Novogene Bioinformatics Technology Co., Ltd.

using Illumina NovaSeq6000 platform, resulting in 4.62 ± 0.44 Gb of data per sample (insert size 350 bp, read

length 2 x 250 bp). First, the reads were trimmed for quality and adapter sequences. The host reads that aligned to

the human genome were removed using SOAP2.21 (parameters: -s 135 -l 30 -v 7 -m 200 -x 400)32. The taxonomic

profiling was done using the mOTUs2.5 tool with default parameters19. In total, 14 213 marker gene-based

operational taxonomic units (mOTUs) were identified. Alpha and beta-diversity analyses were carried out on the

whole identified composition. For univariate analysis, mOTUs, which were detected in at least 10% of the samples,

were used to limit the number of tests carried out, resulting in 530 mOTUs. Filtered mOTU profiles were also used

as predictors for building classification models. We did not rarefy the counts to avoid loss of data.

Statistical analysis

All statistical analyses were done using the R (v. 4.0.1) software.

Diversity analysis. We used observed richness and the Shannon diversity index to assess alpha diversity. Shannon

index was calculated using the vegan package (v2.5-6)33. Associations between observed richness, Shannon index,

and drug usage were analyzed as described in the univariate analysis section. To calculate the between-sample

distances for beta diversity analysis, we used the Euclidean distance on the centered log-ratio (CLR) transformed

microbiome species-level profile34. We tested the associations between drug usage and microbiome composition

with Permutational Analysis of Variance (PERMANOVA35) on the between-sample distances using 10,000

permutations for the p-value calculation (Extended Data Table 2). To carry out PERMANOVA, we used the adonis

function from the vegan package. To apply the CLR transformation, zero-counts were imputed with a pseudocount

equal to half of the minimal non-zero relative abundance value.
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Univariate analysis. To analyze active drug usage effects (Q1 in Fig. 1a), we compared subjects taking a drug at T1

with subjects who had not taken the drug during the 5 years preceding T1. To analyze the effect of human-targeted

drugs, we excluded subjects who had used antibiotics within the 90 days preceding T1. To associate the abundance

of each mOTU with the drug usage, we used linear models adjusted for age, BMI, and gender:

CLR(taxai) ~ age + gender + BMI + I(drug usage), i = 1…530 (1)

We used the same linear regression models for observed richness and Shannon diversity index. We report the partial

Pearson correlation coefficient that is adjusted for age, BMI, and gender as the effect size. Alternatively, to associate

the presence and absence (PA) of each mOTU as a binary trait with the drug usage, we used logistic regression

models adjusted for age, BMI, and gender:

logit(PA(taxai)) ~ age + gender + BMI + I(drug usage), i = 1…530 (2)

where we considered relative abundance value >0 to indicate the presence of a taxa. We accounted for multiple

testing using the Benjamini–Hochberg procedure.

To analyze the carryover effects (Q2 in Fig. 1a), we compared subjects who had last taken the drug more than x

years (x = 1, 2, 3, 4) before T1 with those who had not taken the drug during the 5 years preceding T1. Similarly to

active drug usage, linear and logistic regression models, as in formulas (1) and (2), were used for the analysis. For

carryover analysis and other downstream analyses, we compared the bug-drug pairs where the effect of active drug

usage was identified (analysis Q1, FDR <= 0.1) (Extended Data Table 7).

To analyze additive drug effects (Q3 in Fig. 1a), we compared the fit of three competing models:

M1: CLR(taxa) ~ age + gender + BMI + I(active drug usage) (3)

M2: CLR(taxa) ~ age + gender + BMI + I(active drug usage) + I(past drug usage) (4)

M3: CLR(taxa) ~ age + gender + BMI + I(active drug usage) + #prescriptions (5)

Models are increasing in complexity: Model M1 indicates only the effect of active drug usage, M2 indicates the

effect of active and past usage, and M3 indicates the effect of active drug usage and the amount of drug usage during

the past 5 years as indicated by the number of prescriptions bought out in the past (independent of active usage).

Akaike information criteria (AIC) was used to compare the fit of the models. A more complex model was

considered to be a better fit if the difference in AIC with the simpler model was more than 2 (Extended Data Table

8). Additionally, we performed the same analysis with presence/absence data, where in M1, M2, and M3, instead of

CLR(taxa) is logit(PA(taxa)).

To study the drug initiation effects (Q4 in Fig. 1a), we compared the subjects initiating the drug usage between T1

and T2 with the subjects who did not use the drug between the timepoints or at T2. Additionally, neither the controls
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nor drug initiators used the drugs 5 years before T1. We further divided the drug initiators into drug initiators who

used drugs at T2 and initiators who last used the drug more than a year before T2 to study the active drug usage

effects and carryover drug effects. Drugs with at least 10 initiators or discontinuers were analyzed (Extended Data

Table 10). We used linear models adjusted for age, BMI, and gender to analyze drug initiation-related changes in the

abundances of each mOTU between T1 and T2 (Extended Data Table 11):

(CLRT2(taxai) - CLRT1(taxai)) ~ age + gender + BMI + I(drug initiation) (6)

Additionally, we compared the subjects who were using the drug at T1 but did not use the drug between T2 and T1

with the subjects who hadn’t used the drug at all to study the effects of drug discontinuation (Q4 in Fig. 1a).

To analyze the effect of different drug dosages, we used linear models adjusted for age, BMI, and gender

(Extended Data Table 6):

CLR(taxai) ~ age + gender + BMI + factor(drug dosage), i = 1…530 (7)

A likelihood ratio test was carried out to test the significance of drug dosage in the model.

Deconfounding analysis. We carried out a rigorous post hoc analysis for Q1 and Q2 to identify potential

confounding factors for the bug-drug associations as described by Forslund et al.13. Firstly, we identified naive

associations between bugs and drugs, as described in the previous section. Next, for each covariate considered as a

potential confounder, we fit a pair of nested linear models adjusted for BMI, age, gender, and covariate to assess

whether a) the predictive ability of the drug exceeds the predictive ability of the covariate or b) the predictive ability

of the covariate exceeds the predictive ability of the drug. The association identified in the first step was considered

confounded when, for at least one covariate, the covariate's predictive ability exceeded the drug's predictive ability,

but the opposite was not true. All prevalent diseases, all other drugs, lifestyle, anthropometric, and dietary factors

described in Aasmets & Krigul et al.1 were considered in the analysis as potential confounding factors. The

deconfounding analysis was similarly applied to identify confounders for disease-microbiome interactions. For that,

the number of prescriptions for all of the drugs was considered as potential confounders in addition to the

aforementioned factors to identify disease-microbiome interactions that are confounded by past drug usage. Naive

disease-drug associations were identified using the linear regression model adjusted for gender, BMI, and age at

sampling.

Prediction analysis for antibiotics usage. We fit regularized linear models to predict, based on the

CLR-transformed microbiome data, the active usage of antibiotic subclasses (at ATC4 level with at least 50 users at

T1 (Extended Data Table 1)). We implemented the elastic net models in R using the tidymodels (v0.1.1) and glmnet

(v3.0-2) packages. First, we split the data in a 75:25 ratio to the training and test datasets. The models for each

antibiotic subclass were tuned on the training data using a 4-time repeated 5-fold cross-validation and grid search

with 50 hyperparameter combinations. The initial data split and cross-validation splits were stratified by the drug

usage to address class imbalance. Next, we evaluated whether the models built to detect antibiotic usage could
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identify the usage of other human-targeted drugs. For that, we assessed the models’ ability to predict the usage of

non-antibiotic drugs in the test dataset, using the area under the receiver operating characteristic (AUROC)

(Extended Data Table 4). For the evaluation, we excluded the antibiotic users from the test set. The model building

and evaluation were repeated 5 times on random training-test splits, and the performance estimates were averaged.

Multivariate analysis of variance components. We used a distance-based redundancy analysis to evaluate the

amount of explained variance by each factor and factor group. As factors, we considered prevalent diseases,

anthropometric, lifestyle, and dietary factors as described in Aasmets & Krigul et al.1, as well as active drug usage as

binary traits and past drug usage indicated by the number of prescriptions bought out in the past (independent of

active usage) as continuous traits. We fit the initial model by combining all the factors using the dbrda function from

the vegan package, followed by a forward-selection model fitting procedure using the ordistep function. For each

factor in the selected model, we assessed how much it can explain the community variation, accounting for all other

selected variables (Fig. 3d, Extended Data Table 9). Euclidean distance on the centered log-ratio (CLR)

transformed microbiome species-level profile was used to calculate between-sample distances.

Data availability

The metagenomic data are available upon request. The phenotype data contain sensitive information from electronic

health registers and they are available through the EstBB upon submission at

https://genomics.ut.ee/en/biobank.ee/data-access.

Code availability

The source code for the analyses is available at https://github.com/oliveraasmets17/EstMB_drugUsage.
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Extended Data Tables

1. Extended Data Table 1. Number of drug users

2. Extended Data Table 2. Beta diversity analysis

3. Extended Data Table 3. Univariate analysis, active usage effects

4. Extended Data Table 4. Machine learning analysis

5. Extended Data Table 5. Univariate analysis, literature overlap

6. Extended Data Table 6. Drug dosage analysis

7. Extended Data Table 7. Univariate analysis, carryover effects

8. Extended Data Table 8. Univariate analysis, best fit (AIC)

9. Extended Data Table 9. Multivariate variance partitioning analysis

10. Extended Data Table 10. Number of drug initiators

11. Extended Data Table 11. Univariate analysis, drug initiation

Extended Data Figures

Extended Data Fig. 1. Number of participants using the drugs (ATC4-level) and drug combinations at T1. The number of
participants using a specific drug is shown diagonally, and the number of subjects using the combination of the drugs is shown
off-diagonally.
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Extended Data Fig. 2. Active drug usage. (a) Alpha diversity measures (Observed richness and Shannon diversity) associated
with the number of prescriptions at T1. (b) The performance of machine learning models aimed at detecting antibiotic usage is
applied to detect the usage of the drugs. Values show the model's performance (Area Under the Receiver Operating
Characteristics AUROC) in an independent test set AUROC. (c) Associations between selected individual species
CLR-transformed abundance and PPI omeprazole dosage. Post-hoc t-test p-values are shown for the group comparisons.
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Extended Data Fig. 3. Number of univariate associations with microbiome presence-absence (PA). (a) Drug carryover effects.
The number of univariate associations between subjects not taking the drug and subjects having taken the drug more than 1 to 4
years prior to the microbiome sample collection. (b) Additive drug effects. The proportion of the univariate associations
identified with active drug usage according to the model that best describes the association. In addition to active drug usage as a
binary trait, active drug usage together with past drug usage as a binary trait or the amount of drug usage as a continuous trait are
considered.
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Extended Data Fig 4. Number of univariate associations between the CLR-transformed abundance of bacterial species and

prevalent diseases after deconfounding analysis.
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