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Abstract:  19 

Background: Asthma, a complex respiratory disease, presents with inflammatory symptoms in 20 

the lungs, blood, and other tissues. We investigated the relationship between DNA methylation 21 

and 35 clinical markers of asthma. The Illumina Infinium EPIC v1 methylation array was used to 22 

evaluate 742,442 CpGs in whole blood samples from 319 participants. They were part of the 23 
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Netherlands Twin Register from families with at least one member suffering from severe asthma. 24 

Repeat blood samples were taken after 10 years from 182 of these individuals. Principal 25 

component analysis (PCA) on the clinical markers yielded ten principal components (PCs) that 26 

explained 92.8% of the total variance. We performed epigenome-wide association studies 27 

(EWAS) for each of the ten PCs correcting for familial structure and other covariates. 28 

Results: 221 unique CpGs reached genome-wide significance at timepoint 1 (T1) after 29 

Bonferroni correction. PC7 accounted for the majority of associations (204), which correlated 30 

with loadings of eosinophil counts and immunoglobulin levels. Enrichment analysis via the 31 

EWAS Atlas identified 190 of these CpGs to be previously identified in EWASs of asthma and 32 

asthma-related traits. Proximity assessment to previously identified SNPs associated with asthma 33 

identified 17 unique SNPs within 1 MB of two of the 221 CpGs. EWAS in 182 individuals with 34 

epigenetic data at a second timepoint (T2) identified 49 significant CpGs. EWAS Atlas 35 

enrichment analysis indicated that 4 of the 49 were previously associated with asthma or asthma-36 

related traits. Comparing the estimates of all the significant associations identified across the two 37 

time points (271 in total) yielded a correlation of 0.81. 38 

Conclusion: We identified 270 unique CpGs that were associated with PC scores generated from 39 

35 clinical markers of asthma, either cross-sectionally or 10 years later. A strong correlation was 40 

present between effect sizes at the 2 timepoints. Most associations were identified for PC7, 41 

which captured blood eosinophil counts and immunoglobulin levels and many of these CpGs 42 

have previous associations in earlier studies of asthma and asthma-related traits. The results point 43 

to using this robust DNA methylation profile as a new, stable biomarker for asthma.   44 
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Introduction: 45 

Asthma affects approximately 262 million individuals worldwide and poses a significant 46 

health burden resulting in over 450,000 deaths annually [1, 2]. Often, the challenges associated 47 

with treating and diagnosing asthma stem from the complex nature of the disease [3] due to its 48 

multi-level heterogeneity with various clinical presentations, treatment responses, and disease 49 

trajectories [4]. Clinically, diagnosing asthma is done through the collection of several different 50 

clinical measurements and symptoms including a medical history assessment, a symptom and 51 

physical assessment, lung function tests, bronchial challenge tests, response to bronchodilators, 52 

and allergy testing [5]. These different diagnostic criteria, along with different individual 53 

phenotype characteristics, such as age of onset, have led to the identification of subtypes of 54 

asthma [6-8] and different endotypes with varying molecular underpinnings of the disease [6].  55 

 Several large-scale genomic studies have elucidated associations in multiple immune and 56 

regulatory genes for these endotypes, which may form the basis for polygenic scores [9]. Two of 57 

the largest genome-wide association studies (GWAS) of asthma were performed by Demenais et 58 

al. and Ferreira et al. The GWAS of asthma by Demenais et al. in 2018 included over 140,000 59 

individuals and identified five novel, independent associations and confirmed several others that 60 

had previously been identified [10]. The study performed by Ferreira et al. in 2019, included 61 

over 300,000 individuals, identified 123 single nucleotide polymorphisms (SNPs) significantly 62 

associated with childhood asthma, 56 SNPs associated with adult-onset asthma, and 37 to be 63 

associated with both [11]. Collectively, Ferreira et. al. found 28 novel, independent associations 64 

between the two tested age groups [11]. Many of the associations that have been identified 65 

appear to be strongly linked to immune-related mechanisms [10, 11]. Though significant genetic 66 

associations were identified in both instances, the amount of total variance in relation to asthma 67 
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they explained was limited (3.5-5.1%) [10, 11]. These outcomes reaffirm the notion that asthma, 68 

as a disease, is heavily influenced by environmental stimuli, which has led researchers to explore 69 

additional fields of study such as epigenetics and, more specifically, DNA methylation [12-14].   70 

DNA methylation, as a molecular mechanism in humans, involves the addition of a 71 

methyl group to cytosine nucleotides, often in response to certain environmental queues [15-17]. 72 

The addition and removal of DNA methylation, specifically in regulatory regions of DNA, can 73 

lead to changes in gene expression and downstream cellular and tissue function [16, 17]. This 74 

entanglement with the external environment provides a basis for investigating the association of 75 

DNA methylation and asthma. The first studies of asthma and DNA methylation were conducted 76 

on candidate genes through techniques such as bisulfite pyrosequencing, which yielded moderate 77 

success highlighting CpG sites near IFNy as potential mediators of asthma [18, 19]. The 78 

candidate gene studies were followed by epigenome-wide association studies (EWAS) of asthma 79 

in different age cohorts, asthma subtypes, and tissue types [9], with most studies focusing on 80 

childhood, allergic asthma in whole blood and nasal epithelial samples [12, 13]. Studies of 81 

childhood asthma in nasal epithelial samples have identified several CpGs in both immune 82 

regulatory pathways and pathways of basic cell function [20-22]. Furthermore, a small number 83 

have shown to replicate in EWASs of whole blood, indicating some pan-tissue effects, though 84 

this effect appears to be limited [9]. Studies in adults found CpGs in genes relating to general 85 

inflammation, but the results show more variability in the CpGs that have been identified [23]. 86 

Though the majority of these results point towards immune-mediated pathways, the complete 87 

biological dynamic between these sites and their influence on asthmatic phenotypes has yet to be 88 

investigated [24]. Additionally, little is known regarding which measurable clinical markers 89 
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associated with asthma may be contributing to these significantly associated CpGs, an area we 90 

explore here.  91 

More generally, the continued identification of genetic and epigenetic variants 92 

influencing asthma is valuable for personalized treatment approaches. Here, we examined the 93 

genome-wide, CpG-specific methylation association with 35 different clinical markers of asthma 94 

from whole blood samples measured on the Illumina EPIC v1 methylation array and assessed the 95 

proximity of significantly associated CpGs to SNPs previously associated with asthma. We 96 

included individuals from families enrolled in the Netherlands Twin Register where at least one 97 

member of a nuclear family (consisting of 4 or 5 individuals) was diagnosed with asthma. Blood 98 

samples were collected at two timepoints, with 341 individuals having a sample collected at the 99 

first timepoint in the 1990’s and 233 individuals a second timepoint approximately 10 years later 100 

in the 2000’s [25]. Clinical markers were assessed at timepoint 1, while epigenetic data was 101 

generated on DNA from blood specimens for both timepoint 1 and timepoint 2. 102 

Results: 103 

Clinical marker summary and data reduction. 104 

An initial set of 39 asthma-related clinical markers were measured. Markers that 105 

exhibited no variation between individuals were excluded (4 out of 39). Markers included 106 

measurements of lung function/capacity, skin prick test results measuring the reaction to 107 

common allergens, and others previously shown to be associated with asthma. Table 1 provides 108 

descriptions of the remaining 35 clinical markers. We performed an imputation step via the R 109 

package mice (v3.16.0) to supplement 12 of the 35 markers that had missing values. Distribution 110 

plots of these markers before and after imputation can be found in Supplemental Figure 1. We 111 

then performed principal component analysis on the 35 variables to reduce the data 112 
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dimensionally using the r function robPCA (rospca version 1.0.4), which is specifically suited for 113 

non-normally distributed data [26]. The distributions of the principal component scores can be 114 

found in Supplemental Figure 2.  115 

Marker Description 

alt.alte Alternaria alternata, source: skin prick test  

asp.fum Aspergillus fumigatus, source: skin prick test  

atopy Allergy: positive skin test, and/or increased specific IgE, calculated  

bronch_hyperreactivity1 Bronchial hyperreactivity, source: questionnaire  

bronch_hyperreactivity2 Bronchial hyperreactivity (measured by methacholine threshold test), the cut-off point is at 
a pc20 of 20 mg/ml, source: lung function test  

cand.al Candida albicans, source: skin prick test  

cat Reaction to cat, source: skin prick test  

cats_IgE Specific IgE for cats in E per ml, source: laboratory  

clad.h Cladosporium herbarum, source: skin prick test  

coughing Coughing complaints, source: questionnaire  

dog Reaction to dog, source: skin prick test  

dustmites_IgE Specific IgE for dust mites in E per ml, source: laboratory  

dysp Dyspnea, source: questionnaire  

dyspn Dyspnea at night, source: questionnaire  

eosin_granulocyt Number of eosinophil granulocytes x 10 per L, source: laboratory  

feathers Reaction to feathers (dove, canary, parakeet, parrot), source: skin prick test  

forc_exp_vol Forced expiratory volume for 1 second (L per sec), source: lung function test  

grass_IgE Specific IgE for grasses in E per ml, source: laboratory  

grasses Reaction to specific grasses (perennial rye grass, orchard grass, timothy grass) source: skin 
prick test  

hairs Reaction to hair of other animals (guinea pig, rabbit), source: skin prick test  

horse Reaction to horse, source: skin prick test  

immunoglobulin Immunoglobulin E in E per ml, source: laboratory  

mites1 Reaction to mites, source: skin prick test  

mites2 Reaction to mites in specific places: hay mite, copra mite, flour mite, source: skin prick 
test  

pc10m Pc10 methacholine (10 % decrease relative to baseline of methacholine), calculated  

pc20m Pc20 methacholine (mg/ml), a measure of bronchial hyperreactivity, one of the hallmarks 
of asthma, source: lung function test  

peak_flow Peak flow (L/ sec), source: lung function test  

reversibility Reversibility (better lung function after ventolin), source: lung function test  

skin_reaction_degr Degree of skin test reaction, source: skin prick test  

tiffenau_index Tiffenau Index (FEVI per VC) to measure bronchus obstruction, source: lung function test  

trees1 Reaction to trees: alder, birch, hazel, source: skin prick test  

trees2 Reaction to trees: elder, oak, elm, poplar, source: skin prick test  
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vital_capacity Vital capacity (liters), source: lung function test  

weeds Reaction to weeds: mugwort, plantain, source: skin prick test  

wheezing Wheezing, source: questionnaire  

 116 
Table 1. Descriptions/definitions for each clinical marker that was measured at T1.  117 

PCA investigating the multidimensional structure of the clinical marker data showed the 118 

first principal component to account for 35.27% of the variance. Principal component (PC) 1 was 119 

largely associated with methacholine challenge values, other measurements of lung 120 

capacity/functionality, and lung ailments such as coughing and wheezing. PCs 2, 3, and 4 121 

accounted for 19.54%, 12.46%, and 9.75% of the variance, respectively, and were also mostly 122 

associated with functional lung measurements. PCs 5 and 6 accounted for 8.39% and 6.05% of 123 

the variance, respectively, and showed strong association with the FEV1/FVC ratio, also called 124 

modified Tiffeneau-Pinelli index. PC7 accounted for 4.28% of the variance and showed very 125 

strong associations to eosinophil counts and immunoglobulin levels. PCs 8, 9 and 10 accounted 126 

for 2.20%, 1.22%, and 0.84% of the variance and each associated with a variety of allergen 127 

response measurements (Figure 1). Supplemental Table 1 contains the raw eigen values and 128 

percentage of variance explained for each PC.  129 
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 130 

Figure 1. Heatmap showing correlations between the clinical asthma markers and principal 131 

components generated from the asthma marker data. An explanation of the variables is provided 132 

in Table 1. 133 

Timepoint 1 EWAS via 10 Generated PCs 134 

Epigenome-wide association studies of each of the ten principal components yielded 135 

multiple CpGs that reached genome-wide significance. In total, we identified 222 significantly 136 

associated CpGs (following a Bonferroni correction, a = 0.05 / 742,442). Of the 222, one, 137 

cg07329820, was associated with two PCs (PCs 9 and 10), resulting in a total of 221 unique 138 

CpGs that were significantly associated. Table 2 provides a summary of the covariate frequencies 139 
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for the sample population. Table 3 summarizes the number of CpGs identified in each EWAS and 140 

Supplemental Figure 3 shows the results of each individual EWAS via Manhattan plots. Inflation 141 

values for each EWAS can be found in Supplemental Table 2. A complete list of all the CpGs 142 

significantly associated at T1 can be found in Supplemental Table 3, and complete summary 143 

statistics for each of the EWASs can be found in Supplemental Table 4.  144 

Age 
Mean Min Max 
35.8 13 77 

Smoke Status 
Never Previous Current 
176  60  83  

Sex 
Variable Freq. Percent 
Female 165  51.7% 
Male 154 48.3% 

Medication Usage 
Variable Freq. Percent 

General Lung Medication 48 15.0% 
Betamimetica 37 11.6% 

Inhaled Corticosteroids 26 8.2% 
Table 2. Sample population covariate frequencies.  145 

Timepoint 1 Timepoint 2 
PC Genome-wide Significant CpGs Samples PC Genome-wide Significant CpGs Samples 
PC1 1 319 PC1 5 182 
PC2 4 319 PC2 6 182 
PC3 2 319 PC3 1 182 
PC4 1 319 PC4 0 182 
PC5 2 319 PC5 3 182 
PC6 0 319 PC6 1 182 
PC7 204 315 PC7 8 181 
PC8 1 319 PC8 12 182 
PC9 2 319 PC9 2 182 
PC10 5 319 PC10 11 182 
Total 222 

 
Total 49  
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Table 3. A summary of the genome-wide significant CpGs identified in each EWAS for time 146 

point 1 and timepoint 2. 147 

By far, the largest number of CpGs were associated with PC7 (which mostly captures 148 

variance from eosinophil counts and immunoglobulin levels). These 204 CpGs, largely, are 149 

composed of CpGs with a high average methylation level and almost exclusively show negative 150 

effect sizes, such that higher scores on PC7 correlate with lower methylation levels. The PC10 151 

EWAS identified associations with 5 CpGs, followed by the PC2 EWAS with 4 significantly 152 

associated CpGs. EWASs for PCs 3, 5, and 9 showed significant associations with 2 CpGs. 153 

EWASs for PCs 1, 4, and 8 were significantly associated with 1 CpG, while the EWAS for PC6 154 

was the only association study that did not identify any significantly associated CpGs.  155 

An enrichment analysis via the online EWAS Atlas 156 

(https://ngdc.cncb.ac.cn/ewas/atlas/index, accessed June 11, 2024) for the 221 unique CpGs was 157 

performed. This analysis identified that 71 (32.1%) and 173 (78.3%) of these CpGs had 158 

previously been identified to associate with allergic asthma and fractional exhaled nitric oxide 159 

(FENO), respectively (shown in Figure 2). Further, asthma related phenotypes such as childhood 160 

asthma, allergic sensitization, atopy, serum IgE levels, and others were shown to be previously 161 

associated with CpGs identified in our analysis. In total, 190 of the 221 CpGs (86.0%) were 162 

shown to have a previously identified association with asthma or some asthma marker, leaving 163 

31 novel, unique associations. This enrichment analysis also highlighted significant overlap with 164 

the FoxO signalling pathway (7 CpGs previously associated). Enrichment analysis restricting to 165 

the 204 CpGs associated with PC7 recapitulated these findings (Supplemental Figure 4), 166 

showing that all of the previously associated CpGs were identified via this PC7 EWAS. We then 167 

performed an additional query of the eFORGE online database (https://eforge.altiusinstitute.org/, 168 
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accessed July 2nd, 2024) with the 204 CpGs associated with PC7 to identify overlap with cell-169 

type specific DNA regulatory elements. This identified significant associations with regulatory 170 

elements in multiple tissue sources, with the greatest number of significant findings (31 in total) 171 

associating with various subpopulations of white blood cells (Supplemental Figure 5).  172 

 173 

Figure 2. EWAS atlas enrichment analysis of the 221 unique CpGs identified at TP1 across the 174 

10 EWASs. The plot shows the number of previously identified Differentially Methylated CpGs 175 

(DMC) that are present within the CpGs identified in our analysis. The EWAS Atlas job can be 176 

found via this job ID: ea5abe0e33f28b27ab3948e2ccd4044c.  177 

Analysis of overlap with previously identified SNPs 178 

 An investigation of proximity with the 221 unique significantly associated CpGs was 179 

performed to identify SNPs that have been previously identified by Demenais et al. to associate 180 

with asthma (p< 5 x 10-8, N= 892 SNPs). This assessment was performed by searching for SNPs 181 

within 1 MB upstream and downstream of each CpG. We identified a total of 17 unique SNPs 182 

(1.9% of all asthma-associated SNPs) to reside within 1 MB of a CpG identified at time point 1. 183 
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These 17 unique SNPs involved only two unique CpGs (cg02046836, cg23515090). A summary 184 

of these SNPs within proximity to each CpG is in Supplemental Table 5. Additionally, a query of 185 

the BBMRI methylation Quantitative Trait Loci (mQTL) database with these two CpGs was 186 

performed, which showed that the asthma GWAS SNPs are not mQTLs for cg02046836, 187 

cg23515090, and that these CpGs are also not associated with any other SNPs [27].  188 

Timepoint 2 EWAS  189 

Of the initial 319 individuals who were included at the first timepoint, 182 individuals 190 

had a second whole blood sample collected approximately 10 years later. The DNA from these 191 

blood samples were also profiled on Illumina EPIC v1 methylation arrays (but no detailed 192 

asthma phenotyping was performed at follow-up). We repeated the EWASs for the ten PCs with 193 

DNA methylation data at T2. The EWASs of the ten PCs with DNA methylation data from 194 

samples collected ten years after asthma phenotyping identified 49 unique CpGs at epigenome-195 

wide significance. While none of the CpGs identified at T1 were significant at T2, three CpGs 196 

identified at T2 were within 100 kb of a significant CpG identified at timepoint 1 (Supplemental 197 

Table 8). Furthermore, we assessed the correlation (Pearson’s) of the estimates for all 271 198 

significant associations (222 at T1, 49 at T2) across the two time points, and we identified a 199 

strong correlation (r = 0.82). Table 3 outlines the number of CpGs identified in each time point 2 200 

EWAS and Supplemental Figure 6 contains the Manhattan plots for these EWASs. Supplemental 201 

Table 6 contains all of the 49 significantly associated CpGs identified at T2, and Supplemental 202 

Table 7 states the inflation values for each of these 10 EWASs.  203 
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 204 
Figure 3. EWAS atlas enrichment analysis of the 49 unique CpGs identified at TP2 across the 10 205 

EWASs. The plot shows the number of previously identified Differentially Methylated CpGs 206 

(DMC) that are present within the CpGs identified in our analysis. The EWAS Atlas job can be 207 

found via this job ID: a3e03507f39d7af4c7a82d0b0725308e. 208 

Discussion:  209 

 Asthma is a complex chronic disease that has been shown to be influenced by multiple 210 

factors including genetics and epigenetics. Here, we have identified 221 unique CpGs that 211 

significantly associate with PC scores generated from an advanced, comprehensive panel of 35 212 

clinical markers of asthma. Of these, 190 have previously been identified to associate with 213 

asthma and asthma-related phenotypes, while the other 31 CpGs are novel findings. Further, two 214 

of these CpGs reside within close proximity (1 MB) to 17 SNPs previously identified in a large 215 

GWAS of asthma (source). We then performed a longitudinal assessment using methylation data 216 

from whole blood samples collected approximately 10 years and identified 49 unique 217 
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significantly associated CpGs. Finally, we yielded a correlation of the estimates across the two 218 

timepoints of 0.82 from the 271 (222 T1 + 49 T2) significant associations. 219 

Historically, asthma as a disease has been revealed to be extremely challenging to 220 

identify the root cause of and treat effectively [28]. The disease heterogeneity and mixed 221 

involvement of environmental stimuli and the genome have largely contributed to this difficulty. 222 

To avoid the complications that can come with this, we utilized measured clinical markers of 223 

asthma in young adults and their middle-aged parents from families with a history of asthma 224 

burden where at least one individual within the family had been diagnosed with asthma in some 225 

capacity. For each individual, an extensive number of clinical markers related to asthma were 226 

captured. This comprehensive dataset, while immensely valuable with its depth, is too 227 

overwhelming to glean the valuable nuances through individual assessments of each specific 228 

marker. Additionally, some markers that were collected lacked a normal distribution, which 229 

could reduce their performance in a traditional EWAS. For this reason, we utilized PCA to 230 

simplify the 35 different variables, and their accompanying variance, into 10 PCs with each 231 

successive PC capturing a lesser and different portion of the overall variance within the data set. 232 

This method reduced the total number of variables to investigate from 35 to 10, making 233 

comparisons of it with a rich DNA methylation dataset much more feasible. Additionally, the 234 

PCs maintained a much more normal distribution, making them ideal for EWAS. This method of 235 

phenotype data reduction and handling has been previously implemented in a GWAS of rice 236 

variants, where GWASs were successfully performed using the PC scores from multiple 237 

phenotype variables [29]. To our knowledge, this is the first instance of implementing it for 238 

epigenome-wide association studies.  239 
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Through our EWASs of each of the 10 PCs, we identified 222 CpGs to be significantly 240 

associated with one of the PCs derived from the 35 clinical asthma markers. Of these 222 241 

associations, only a single CpG was found to be replicated across multiple principal components, 242 

leaving 221 unique CpGs to be significantly associated. The single overlapping CPG, 243 

cg07329820, was identified with PCs 9 and 10. These two PCs align with asthma markers that 244 

are very similar (largely allergen response measures), which could explain why they identified 245 

the same CpG.   246 

A breakdown of the identified CpGs from each PC shows some intriguing details. PC7 247 

had the greatest number of CpG associations with 204. While this PC accounts for only 4.3% of 248 

the total clinical marker variance, it almost exclusively represents the variance associated with 249 

blood eosinophil counts and blood immunoglobulin levels. This large number of associations 250 

could be indicative of the eosinophilic inflammatory response typically seen in allergic asthma. 251 

Previous literature has shown that methylation experiments in whole blood may capture more of 252 

the Th2-mediated immune response due to the nature of the cell population, making it the ideal 253 

sample source for identifying this type of association [30-32]. It is critical to note that because 254 

the proportions of cells themselves in a sample can drastically influence the measurement of 255 

methylation, we made sure to incorporate cell proportion estimates as a covariate in our analyses. 256 

Without this inclusion, it could be argued that the findings identified here are only due to 257 

differences in cellular composition. With this correction in mind, it may be the case that the 258 

differential methylation identified here is something global, across multiple immune cell types, 259 

either in response to or to promote the eosinophilic inflammatory pathway. A query of the EWAS 260 

Atlas of these 204 CpGs showed that, almost exclusively, the CpGs we identified have a 261 

previous association with asthma and measurements of asthma (Supplemental Figure 4). In total 262 
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190 of the 204 CpGs were shown to have some form of previous association (93.1%), leaving 14 263 

novel associations. Since the majority of overlap of our findings with previous EWASs of 264 

asthma, asthma phenotypes, and symptoms are captured within this EWAS of PC7, we postulate 265 

that many of the previous findings generated in studies utilizing whole blood samples could be 266 

identifying associations with the underlying influences of increased eosinophil counts/activation 267 

and increased immunoglobulin levels.  268 

An additional investigation into these 204 CpGs via the eFORGE online database 269 

identified multiple significantly associated tissue-specific regulatory elements (Supplemental 270 

Figure 5). The greatest number of associations were from subpopulations of white blood cells in 271 

enhancers and weak transcriptional activators. This is to be expected considering our results were 272 

generated from samples of whole blood. Many of the subpopulations identified here are 273 

lymphocytes, potentially indicating that the methylation profiles of these adaptive immune cells 274 

may be altered due to the changes in eosinophil counts and immunoglobulin levels. The tissue 275 

group with the next largest number of significant associations was the digestive tract, with six 276 

significant associations to various subpopulations of cells. These associations could hint at the 277 

conserved role that all mucosal and epithelial barriers play in pathogen protection and the body’s 278 

response to the external environment.  279 

A KEGG pathway enrichment analysis (conducted via the EWAS Atlas) of the 221 280 

unique CpGs highlighted the FoxO signaling pathway, showing that 7 of the CpGs (all found 281 

within the PC7 EWAS) have been previously identified to associate with this pathway. This 282 

pathway is of particular interest due its significant role in regulating apoptosis, glucose 283 

metabolism, oxidative stress, and longevity, which has led to findings associating its 284 

dysregulation with other illnesses such as Alzheimer’s disease, type 2 diabetes, and cancer [33, 285 
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34]. It has been previously shown that FoxO1 modulates IL-9 generating Th9 cells [35]. Further, 286 

overexpression of IL-9 in the lungs can result eosinophilic inflammatory infiltration and mucus 287 

secretion [35, 36]. Additionally, FoxO3 has been found to be expressed in airway epithelium 288 

playing a critical role in controlling the innate immune response to airway infections [36]. It 289 

could be the case, based on these intertangled findings of DNA methylation with eosinophilic 290 

presence and FoxO signaling, that epigenetic modulation of FoxO signaling plays a role in its 291 

contribution to asthma and airway inflammation.  292 

Principal component 1 identified a single significantly associated CpG, cg18182148. 293 

While this principal component does capture the largest amount of variance (35.3%), the 294 

variance it captures is largely from one specific subset of measurements, most notably those 295 

measuring general lung functionality such as vital capacity, peak flow, forced expiratory volume, 296 

and methacholine challenge response. This is continued with PC2, PC3, and PC4 which were 297 

significantly associated with 4, 2, and 1 CpGs, respectively. These PCs, like PC1, capture a 298 

significant amount of variance from these same lung function measurements. This may indicate 299 

that these measurements of lung function, though important in characterizing symptoms of 300 

asthma, may have limited identifiable associations with DNA methylation. The specific CpG 301 

significantly associated with PC1, cg18182148, is the only CpG of these identified here related 302 

to immune regulation. It has not been previously shown to associate with asthma phenotypes, 303 

though it has been previously identified in studies of various cancers of the prostate, liver, and 304 

colon (via the EWAS Atlas) [37-40]. These associations are likely due to its placement within the 305 

transcription start site (TSS) of GFI-1, a strong oncogenic and hematopoietic regulator. GFI-1 306 

plays a critical role in lymphoid differentiation, which could be the reason for its association here 307 

due to the large influence the immune system can play on lung functionality and, more generally, 308 
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asthma as a whole [41]. While the use of a whole blood sample, as done here, is logical when 309 

investigating an immune-mediated illness such as asthma, an investigation of these lung function 310 

measurements in association with DNA methylation measured via a lung epithelial sample may 311 

highlight additional findings not seen here and provide more information on the local cellular 312 

environment responsible for the specific differences in lung function.  313 

 Principal components 5 and 6 capture variance associated with bronchial hyperreactivity, 314 

coughing, reversibility (of lung function following the administering of ventolin), and Tiffenau 315 

Index. PC5 was significantly associated with 2 CpGs, while PC6 did not have any significant 316 

associations. The two CpGs identified here, cg07454584 and cg18561513, have not been 317 

previously shown to have any associations with asthma or other immune-mediated illnesses (via 318 

the EWAS Atlas). Like the measurements captured in PCs 1-4, these asthma markers, while 319 

important for asthma diagnosis and the understanding of symptoms, may not have large 320 

quantities of associations with DNA methylation measured via whole blood.  321 

 Principal components 8, 9, and 10 contain much of the variance from the numerous 322 

allergen tests included in this study (containing both skin prick test results and serum specific 323 

IgE measurements). These PCs were significantly associated with one, two, and 5 CpGs, 324 

respectively. Of the 8 CpGs identified here, all but one has not been previously shown to 325 

associate with chronic illnesses or immune-mediated diseases. Cg14161241, which was 326 

significantly associated with PC10, is the lone exception with previous associations with obesity 327 

and type 2 diabetes [42]. Like many of the other markers represented via PCs 1-6, the effect on 328 

DNA methylation measurable via a whole blood sample is likely limited with these markers.  329 

 Due to the well-documented genetic contributions to asthma, we next wanted to compare 330 

our findings within the methylome to those previously discovered in the genome via large 331 
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GWASs [10, 43]. Utilizing the findings of Demenais et al., we searched for significantly 332 

associated SNPs within 1 MB of the 221 unique CpGs that we identified. Of the significantly 333 

associated SNPs (p< 5 x 10-8, N= 892 SNPs), we found 17 (1.9%) to be within 1 MB of 2 of the 334 

221 CpGs that we identified (cg02046836, cg23515090). Interestingly, neither of these two 335 

CpGs have been previously identified as an mQTL [27]. The proximity of these SNPs to the 336 

identified CpGs could be caused from multiple factors outside of known standard mQTL 337 

associations. It could be the case that these CpGs do have some genetic influence acting on their 338 

methylation status that has not yet been characterized. Additionally, it is certainly possible that 339 

the SNPs and CpGs being within close proximity to one another is simply a random occurrence, 340 

and their presence and downstream effects are independent of one another. To summarize, we 341 

found limited overlap of our EWAS signal with top loci from a previously performed GWAS of 342 

asthma and that these significant CpGs nearby these GWAS SNPs were not directly affected by 343 

mQTLs, which suggests that our EWAS largely captures independent epigenetic signal at loci 344 

that also harbor small amounts of genetic variants that influence genetic susceptibility to asthma.  345 

Thus far, we have shown significant associations with clinical markers of asthma from a 346 

singular, cross-sectional timepoint that corroborates other previous findings from similar studies. 347 

However, a potential increase in our understanding of asthma may lie in investigating the disease 348 

to some longitudinal capacity. Two previous studies in the Isle of Wight Birth Cohort (IOWBC) 349 

were conducted in 2022, which investigated the association of DNA methylation with asthma 350 

acquisition across adolescence and adulthood [44, 45]. In each of these studies, several CpGs, 351 

with some residing in immune regulatory genes, were identified to be associated with asthma 352 

acquisition [44, 45]. The findings from these two studies highlight promising insight into the 353 

potential longitudinal persistence of DNA methylation signatures associated with asthma, though 354 
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additional studies are needed to investigate this persistence later in life (adulthood), in additional 355 

cohorts, and how they relate to specific measurements of asthma.  356 

 After our initial findings, with the availability of an additional sample collected 357 

significantly later for many of the individuals, we were interested in investigating the 358 

longitudinal persistence of the DNA methylation signature that was identified to associate with 359 

asthma markers at the first timepoint. This analysis was based on the same PC data from the 360 

original 35 clinical markers measured at baseline and DNA methylation at follow-up from a 361 

sample collected ~10 years later. The results from these additional 10 EWASs showed very little 362 

overlap with the findings from the initial assessment. In total, these 10 EWASs identified a total 363 

of 49 significantly associated CpGs (of which none were replicated across multiple PCs). No 364 

CpGs were replicated across the two timepoints, however, when looking within a 100 kb window 365 

of proximity, we found that 3 CpGs identified at timepoint 2 (found via PCs 2, 3, and 7) were 366 

within 100 kb of 4 CpGs identified at T1 (all found via PC7). The low direct overlap between the 367 

two timepoints could be due to the methylation signature associating with asthma diminishing 368 

over time, potentially as individuals’ asthma status and severity changes. A query of the EWAS 369 

Atlas, however, using these 49 CpGs identified at T2 showed that 3 and 1 CpGs have been 370 

previously associated with FENO and allergic sensitization, respectively (Figure 3). This 371 

highlights that there may be some longitudinal persistence of an asthmatic epigenetic signature. 372 

Further, we identified, when comparing the estimates of all 271 significant associations (222 + 373 

49) across the two timepoints, a strong correlation of 0.82 adding to the notion that some long-374 

term persistence of the asthma associated methylation signature may be occurring. This 375 

consistency of the EWAS estimates indicates that replication of specific CpGs could occur with 376 

an increased sample size. Additional studies investigating the long-term lung functionality 377 
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following asthma diagnosis, even in cases of remission, could benefit from investigating DNA 378 

methylation longitudinally in a more nuanced, complete manner.  379 

 Our study does have some limitations that should be considered. First, all individuals 380 

included in this study are of European descent and from the Netherlands. Asthma prevalence can 381 

differ greatly depending on the local environment of the individual and their ethnicity. Including 382 

a diverse population could improve the generality of the findings to other groups of individuals. 383 

Additionally, the results generated from the second time point contained a significantly reduced 384 

number of individuals due to sample availability, which could contribute to the differences 385 

reported. We also did not have clinical marker measurements available from the second 386 

timepoint, which could have shed some insight on the persistence of the asthma symptoms and 387 

severity at that time. Overall, increasing the number of individuals at both timepoints using 388 

multiple individuals from varying backgrounds would be the most optimal strategy and offer the 389 

most comprehensive assessment of asthma.  390 

Conclusion: 391 

 Asthma, along with many other chronic, immune-mediated diseases, is challenging to 392 

diagnose, classify, and treat. Here, we contribute a comprehensive assessment of the relationship 393 

between DNA methylation and a collection of clinical asthma markers. We identified 270 unique, 394 

significant CpGs to be associated with principal component scores based on clinical asthma 395 

markers. The large majority of these CpGs were associated with PC7, which represented 396 

eosinophil counts and blood immunoglobulin levels and 190 were previously associated with 397 

asthma, asthma markers, and other allergic illnesses. We also investigated the proximity of these 398 

221 identified unique CpGs to previously identified SNPs that associate with asthma. We found 399 

17 unique SNPs that were previously identified to be associated with asthma within 1 MB of two 400 
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of the 221 CpGs reported here demonstrating limited proximal overlap with these known genetic 401 

associations. Over approximately 10 years we showed that the correlation of the estimates across 402 

the two timepoints from the 271 significant associations was strong at 0.82, pointing to a 403 

persistent methylation signature associated with asthma. Thus, these results highlight a robust, 404 

persistent epigenetic signal in whole blood associated with asthma and, more specifically, a 405 

selection of clinical asthma markers.  406 

Methods: 407 

Participants 408 

The study participants and the enrollment process have been previously described [46-409 

48]. Participants came from twin families (young adult twins and their parents) from the 410 

Netherlands [48]. To be eligible for the study, at least one member of the family had to report to 411 

have been diagnosed with asthma, indicated by self-report in the Netherlands Twin Register 412 

(NTR) survey 1 or 2, collected in the early 1990s (please see Supplementary Tables 9 and 10). 413 

During a visit to the Vrije Universiteit Medical Center (VUMC), blood samples and over 40 414 

biological and clinical measures of asthma were collected from 425 persons [49]. A complete list 415 

of the clinical markers that were collected can be found in Table 1.  A subset of 233 persons 416 

participated in the NTR Biobank project between 2004 and 2008 in which blood and buccal 417 

samples were collected [25]. DNA was extracted at the time of sample collection or immediately 418 

prior to the assessment of methylation [50]. All samples were simultaneously measured on the 419 

Illumina Infinium EPIC v1 methylation array. In total, 375 of the 425 individuals had a sample 420 

remaining for analysis, and 341 of these had good quality Illumina blood EPIC Array data from 421 

at least the first time point, and 232 individuals had blood Illumina EPIC Array data from two 422 

time points.  423 
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The study was approved by the Central Ethics Committee on Research Involving Human 424 

Subjects of the VU University Medical Centre, Amsterdam, an Institutional Review Board 425 

certified by the U.S. Office of Human Research Protections (IRB number IRB00002991 under 426 

Federal-wide Assurance- FWA00017598; IRB/institute codes, NTR 03-180). 427 

Sample collection and DNA extraction 428 

The procedures of whole blood sample collection have been previously described [25, 46, 429 

51]. The genomic material analyzed in this study have been extracted and assessed for DNA 430 

quantity, quality, purity, and individual identity. The DNA analyzed in this study was extracted 431 

from whole blood samples using the Zymo Quick DNA mini-prep Kit [50]. Genomic material 432 

was quantified via the Invitrogen Qubit Broad-Range Fluorescent Assay, and sample purity was 433 

assessed using standard absorbance metrics via a SpectraMax microplate reader. 434 

Genotyping 435 

The genotyping process has been previously described [47, 52]. Briefly, genotype data 436 

was generated via the Illumina Infinium Global Screening Array. All sample data quality was 437 

assessed vigorously, and the refined genotype data was used to confirm familial relationships and 438 

sample sex. In total, 20 individuals were omitted for analysis due to mismatched familial 439 

identities.  440 

DNA Methylation Assessment 441 

DNA bisulfite conversion was performed utilizing the Zymo EZ-96 DNA Methylation 442 

Kit [53]. DNA methylation was assessed using the Illumina Infinium EPIC v1 DNA Methylation 443 

Array on all samples at the Avera Genetics Laboratory [54]. The samples were fully randomized 444 

across arrays. 445 

DNA Methylation Data Quality Control 446 
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Quality control has been described in detail previously [47]. In brief, DNA methylation 447 

data quality was performed using two bioinformatic tools. First, DNA methylation data was 448 

preliminarily assessed using the Illumina GenomeStudio 1.0 software. Second, methylation data 449 

quality control and normalization were conducted using a pipeline developed by the Biobank-450 

based Integrative Omics Study (BIOS) Consortium in R (version 4.4.0). Sample quality was first 451 

assessed using the R package MethylAid (v1.38.0) to omit any outliers in sample performance 452 

(default thresholds) [55]. Array probe filtering and functional normalization were performed 453 

using the R package DNAmArray (v2.2.0) [56]. The R package omicsPrint (v.1.24.0) was 454 

utilized to identify sample genotypes based on methylation probes to verify sample relationships 455 

gathered from genotype data via the GSA [57]. The functions getSex from DNAmArray and the 456 

R package meffil (v1.3.8) were used to identify and confirm sample sex based on X chromosome 457 

methylation pattern [58]. The following probe filters were applied: Probes were set to missing 458 

(NA) in a sample if they had an intensity value of exactly zero, detection P-value > 0.01, or bead 459 

count < 3. DNAmArray will also remove any probes that show a success rate below 0.95 across 460 

all samples. In total, this filtering process reduced our number of individuals to 341 (from the 461 

original 375). Finally, previous studies performed by Zhou et al. in 2017 identified polymorphic 462 

and cross-reactive probes that are included on Illumina methylation array platforms [59]. 463 

Generally, they recommend an omitting of approximately 100,000 probes on the EPIC 464 

methylation array. This removal process was carried out using the probemasking() function via 465 

DNAmArray. Following these steps, a total of 759,263 methylation sites were included in this 466 

study out of the total 865,859 possible CpGs. Only autosomal methylation sites were considered 467 

for downstream analyses, which left a total of 742,442 CpGs included in the final analyses. 468 
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Finally, we calculated cellular proportions for all samples using the IDOL whole blood reference 469 

library [60]. 470 

Covariates 471 

 Several covariates were utilized in our epigenome-wide association studies. For each 472 

sample at each timepoint, covariate data was collected at the same time. We included age, sex, 473 

array row, sample plate (dummy-coded), smoking status, asthma/lung medication use, and 474 

cellular proportions. For smoking status, individuals were classified into three groups (codes as 0 475 

= Never smoker, 1 = former smoker, 2 = current smoker). Cellular proportions (natural killer 476 

cells, monocytes, B cells, CD4+ T cells, CD8+T cells) for each of the whole blood samples were 477 

estimated via the methylation data from that sample. The usage of specific and general asthma 478 

medications (inhaled corticosteroids (0=no, 1=yes), betamimetica (0=no, 1=yes), general lung 479 

medication (0=no, 1=yes)) was recorded for each participant at the first time point, and all three 480 

medications were included as covariates for the T1 EWAS. The information gathered here was 481 

used at both time points. Due to limited variability in medication use at the second timepoint, 482 

only a single “general lung medication use” variable was used as a covariate for T2. 483 

Methylation Data Annotation 484 

 Genomic annotations were gathered from the EPIC manifest file that is provided by 485 

Illumina (MethylationEPIC_v-1-0_B5.csv): locations of CpG islands, ENCODE DNase I 486 

Hypersensitive sites (DHSs), ENCODE transcription factor binding sites (TFBSs), open 487 

chromatin, FANTOM4 enhancers and FANTOM5 enhancers, etc. Genome build 37 coordinates 488 

were utilized for all the analyses.  489 

Asthma phenotyping 490 
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Of the total list of available clinical markers, exclusions for markers were made if there 491 

was no variation amongst participants. In total, 35 clinical markers were selected to be included 492 

in the principal component analysis. If an individual themselves had more than 6 missing values 493 

they were excluded from the analysis as well, which resulted in removing 4 individuals leaving a 494 

total of 319 to include. 10 of the 35 markers contained missing values following these exclusion 495 

processes. For these missing values, the R package mice (v3.16.0) was utilized to impute the 496 

missing data. The default settings were utilized, 5 imputations per marker, predictive mean 497 

matching (pmm) for continuous traits, logistic regression (logreg) for categorical traits. 498 

Distribution plots for these markers prior to and after imputation can be found in Supplemental 499 

Figure 1.  500 

Principal component analysis 501 

Following imputation, the data was normalized using the scale function in R, which 502 

performs a z-score transformation for each marker. We then performed principal component 503 

analysis (PCA) including 10 principal components (PCs) on our 35 clinical markers that were 504 

included. PCA was performed using the robpca() r function via the R package rospca (v1.0.4), 505 

which is suited for non-normally distributed data [26, 61]. A scree plot of the eigen values for 506 

each of the 10 PCs can be found in Supplemental Figure 7. Outliers for each PC were identified 507 

via the R package ewaff (v0.0.2) using the ewaff.handle.outliers function with the following 508 

settings: method set to iqr, iqr range set to 3. Outliers were found in PCs 7-10. Principal 509 

component 7 contained four outliers, which were removed prior to further analyses (n = 315). 510 

Principal components 8-10 each contained several outliers. Due to the nature of the clinical 511 

marker data and the way the PCA captured the variance, these PCs largely captured variance 512 

from markers recording allergen responses, which resulted in individuals who had strong 513 
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allergen responses having extreme PC scores. Due to the biological significance of these people, 514 

we decided to keep these individuals in the subsequent analyses by dichotomizing the group 515 

based on their outlier status (1 = outliers, 0 = not outlier), rather than excluding them. These new 516 

dichotomized values for PCs 8, 9, and 10 were then used for the downstream analyses.  517 

Frequencies for these PCs can be found in Supplemental Table 11.  518 

EWAS 519 

Ten epigenome-wide association studies (EWAS) were then performed via the PC scores 520 

for each individual for each of these 10 PCs using DNA methylation beta value as the outcome 521 

and the PC scores for each individual as the predictor. Due to the related nature of the samples 522 

utilized here, each EWAS was conducted via the r package gee (v4.13-25) using a generalized 523 

estimating equations (GEE) model that corrected for the correlation structure in families. The 524 

following settings were utilized: Gaussian link function, 100 iterations, and the “exchangeable” 525 

option to correct for the familial structure. Additionally, each EWAS included age, sex, 526 

methylation array row, bisulfite sample plate (dummy-coded), smoking status (codes as 0 = 527 

Never smoker, 1 = former smoker, 2 = current smoker), estimated cellular proportions (natural 528 

killer cells, monocytes, B cells, CD4+ T cells, CD8+T cells), and lung medication status via 529 

questionnaire (inhaled corticosteroids, betamimetica, general lung medication) as covariates. For 530 

each EWAS, a standard Bonferroni correction (a = 0.05 / # of CpGs (742,442)) was applied to 531 

account for multiple testing to identify significantly associated CpGs. 532 

Enrichment analysis was performed in the EWAS Atlas with the EWAS Toolkit, which 533 

compares against previously known associations from previous studies investigating DNA 534 

methylation. We also conducted an enrichment analysis via the online tool eFORGE, which is a 535 

database of known CpG associations to cell-type specific regulatory elements. This analysis was 536 
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performed using the “Consolidated Roadmap Epigenomics – Chromatin – All 15-state marks” 537 

data set and the standard settings. Next, we cross-analyzed our significantly associated CpGs 538 

with significantly associated SNPs (p< 5 x 10-8, N= 892 SNPs) identified by Demenais et al in a 539 

large meta-analysis [10], utilizing leave-one-out GWAS summary statistics without NTR 540 

participants. As has been previously utilized in other studies, a 1 MB range around each CpG 541 

was utilized as a cutoff point to identify SNPs within close proximity [62]. Finally, we 542 

investigated the CpGs that were found to be within close proximity to a known significantly 543 

associated SNP for any previously identified mQTL association by querying the BBMRI mQTL 544 

database (based on a previous study by Bonder et. Al.) [27]. 545 

Of the 319 individuals included in timepoint 1, 182 had a follow-up blood sample with 546 

methylation data available for subsequent analyses at a later time point. For this second 547 

timepoint, an additional 10 EWASs were performed using the same PC scores generated from the 548 

timepoint 1 clinical marker data to assess longitudinal persistence of the DNA methylation 549 

signature associated with these asthma markers. The EWASs were performed with largely the 550 

same models as at timepoint 1 samples (stated above) but utilizing covariate data from time point 551 

2. Due to the reduction of individuals and a lack of unique medication covariate combinations, 552 

asthma medication status was reduced to a Bayesian variable grouping individuals on the basis of 553 

using any one of the three listed medications. This single covariate capturing asthma medication 554 

status was then used for these timepoint 2 EWASs. An additional longitudinal comparison was 555 

made looking for CpGs in timepoint 1 that were within 100 KB (upstream and downstream) of a 556 

CpG identified in timepoint 2. Similar to timepoint 1, following this the timepoint 2 CpGs were 557 

grouped and a query of the EWAS Atlas was performed looking for previously identified 558 

associations.  559 
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Supplementary Tables and Figures: 585 

 586 
PC Eigen Value % Variance Cumulative 

% 
PC1 4.4832 35.27% 35.27% 
PC2 2.4844 19.54% 54.81% 
PC3 1.5834 12.46% 67.26% 
PC4 1.2396 9.75% 77.01% 
PC5 1.0671 8.39% 85.41% 
PC6 0.7696 6.05% 91.46% 
PC7 0.5435 4.28% 95.74% 
PC8 0.2794 2.20% 97.94% 
PC9 0.1555 1.22% 99.16% 
PC10 0.1071 0.84% 100.00% 
Total 12.7125 

  

 587 
Supplementary Table 1. Table showing PC eigen values and % of total variance captured. 588 
 589 

PC Inflation 
PC1 0.999737038 
PC2 0.894699702 
PC3 0.861547269 
PC4 1.034053431 
PC5 1.021476296 
PC6 0.749147555 
PC7 0.805103148 
PC8 1.003658406 
PC9 0.843756081 
PC10 0.848921965 

 590 
Supplementary Table 2. EWAS results for time point 1 with inflation values. 591 
 592 
Supplementary Table 3. Independent attachment with a complete list of significant CpGs for all 593 
10 timepoint 1 EWASs. 594 
 595 
Supplementary Table 4. Independent attachment with complete summary statistics for each of 596 
the 10 EWASs. 597 
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 598 
snp_chr snp_pos ref alt reffrq info rs snp_pval effalt N cpg cpg_chr cpg_mapinfo cpg_estimate cpg_pval 

chr11 76270683 A G 0.645075 1 11:76270683 1.49E-10 0.08471681 67341 cg02046836 11 75550064 -0.01168842 3.16E-11 

chr11 76299194 G T 0.512605 1 11:76299194 2.90E-15 0.1050031 67341 cg02046836 11 75550064 -0.01168842 3.16E-11 

chr11 76301316 C T 0.617355 1 11:76301316 3.23E-12 0.09592278 67341 cg02046836 11 75550064 -0.01168842 3.16E-11 

chr11 76301375 C T 0.617005 1 11:76301375 8.40E-12 0.0961933 67341 cg02046836 11 75550064 -0.01168842 3.16E-11 

chr15 67441997 T C 0.698821 1 15:67441997 3.03E-14 0.1094348 67341 cg23515090 15 68092384 -
0.007250445 

5.83E-09 

chr15 67442596 C T 0.763772 1 15:67442596 8.81E-16 0.117968 67341 cg23515090 15 68092384 -
0.007250445 

5.83E-09 

chr15 67444747 C T 0.505252 1 15:67444747 1.73E-12 -
0.08952885 

67341 cg23515090 15 68092384 -
0.007250445 

5.83E-09 

chr15 67446785 G A 0.503151 1 15:67446785 9.76E-13 -
0.08880695 

67341 cg23515090 15 68092384 -
0.007250445 

5.83E-09 

chr15 67447452 C T 0.503093 1 15:67447452 1.56E-12 -
0.08800783 

67341 cg23515090 15 68092384 -
0.007250445 

5.83E-09 

chr15 67448899 A G 0.697946 1 15:67448899 5.58E-14 0.1036299 67341 cg23515090 15 68092384 -
0.007250445 

5.83E-09 

chr15 67449660 A G 0.697946 1 15:67449660 2.47E-14 0.1034242 67341 cg23515090 15 68092384 -
0.007250445 

5.83E-09 

chr15 67450305 A G 0.762722 1 15:67450305 2.85E-15 0.1157078 67341 cg23515090 15 68092384 -
0.007250445 

5.83E-09 

chr15 67450893 A G 0.697946 1 15:67450893 5.83E-14 0.1035278 67341 cg23515090 15 68092384 -
0.007250445 

5.83E-09 

chr15 67458152 G A 0.700222 1 15:67458152 2.04E-13 0.1004536 67341 cg23515090 15 68092384 -
0.007250445 

5.83E-09 

chr15 67464013 A G 0.720472 1 15:67464013 5.28E-12 0.09549112 67341 cg23515090 15 68092384 -
0.007250445 

5.83E-09 

chr15 67467541 T C 0.510621 1 15:67467541 1.88E-11 -
0.08491053 

67341 cg23515090 15 68092384 -
0.007250445 

5.83E-09 

chr15 67468285 A G 0.740721 1 15:67468285 3.76E-14 0.1190431 67341 cg23515090 15 68092384 -
0.007250445 

5.83E-09 

 599 
Supplementary Table 5. Summary table of the GWAS SNPs identified by Demenais et. al. to 600 
reside within 1 MB of a CpG identified at timepoint 1.  601 
 602 
 603 
Supplementary Table 6. Independent attachment with a complete list of significant CpGs for all 604 
10 timepoint 2 EWASs. 605 
 606 

PC Inflation 
PC1 1.027943459 
PC2 0.979550307 
PC3 0.999929682 
PC4 1.000268796 
PC5 0.775029681 
PC6 0.949333881 
PC7 0.952948417 
PC8 1.004404304 
PC9 0.999975322 
PC10 1.02109527 

 607 
Supplementary Table 7. EWAS results for time point 2 with inflation values. 608 
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 609 
 610 

Genome_Build TP1_IlmnID TP1_CHR TP1_MAPINFO TP1_estimate TP1_pval TP1_PC TP2_IlmnID TP2_CHR TP2_MAPINFO TP2_estimate TP2_pval TP2_PC 

37 cg01043901 13 43061678 -0.0061855 1.23E-08 PC7 cg04217496 13 43119835 0.003371794 4.51E-08 PC7 

37 cg04983687 16 88558223 -0.0269112 1.64E-12 PC7 cg09247061 16 88571844 0.005722604 2.14E-08 PC2 

37 cg08940169 16 88540241 -0.0130795 2.54E-09 PC7 cg09247061 16 88571844 0.005722604 2.14E-08 PC2 

37 cg12077754 2 75089669 -0.0128193 2.36E-08 PC7 cg19359099 2 75060770 -0.000276636 1.97E-09 PC3 

  611 
Supplementary Table 8. The CpGs from timepoint 1 that reside within 100 kb of a CpG 612 
identified at timepoint 2.  613 
 614 
 Survey 1 Survey 2 
No 207 (65.1%) 219 (61.7%) 
Yes 111 (34.9%) 136 (38.3%) 
Total 318 355 
Response Rate (%) 74.8% 83.5% 

 615 
Supplementary Table 9. Questionnaire responses for two surveys asking about asthma status 616 
prior to study enrollment for the initial 425 individuals.  617 
 618 

Asthma Survey 1 and 2 Overlap 
 Survey 2 Total 

no yes 
Survey 1 no 151 21 172 

yes 13 86 99 
Total 164 107 271 

 619 
Supplementary Table 10. Comparison of survey responses from individuals who responded to 620 
both surveys.  621 
 622 

PC Non-outliers Outliers 
PC8 265 54 
PC9 266 53 
PC10 272 47 

 623 
Supplementary Table 11. Frequencies of outliers for principal components 8, 9, and 10. Outlier 624 
status was determined using thresholds of Q1 – (3 x IQR) and Q3 + (3 x IQR). 625 
 626 
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 627 
Supplementary Figure 1. Distribution plots of the imputed clinical markers of asthma prior to 628 
(blue) and after imputation (yellow).  629 
 630 
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 631 
Supplementary Figure 2. Distribution plots of the individual principal component scores for 632 
each PC.  633 
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 634 
Supplementary Figure 3. EWAS results calculated the 10 different sets of PC scores from the 635 
first timepoint. The red line indicates the significance threshold set via a Bonferroni correction. 636 
 637 
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 638 
 639 
Supplementary Figure 4. EWAS atlas enrichment analysis of the 204 CpGs identified at TP1 640 
from PC7. The EWAS Atlas job can be found via this job ID: 641 
2a37ab12d2785eaa0d564e062cff5f96. 642 
 643 

 644 
Supplementary Figure 5. Enrichment results from the eFORGE database (separate PDF 645 
included for better visualization).  646 
 647 

0

2

4

6

8

10

12

DMPs analyzed across samples for erc2−chromatin15state−all Unnamed

Ad
ip

os
e

Ad
re

na
l

Bl
oo

d

Bo
ne

Br
ai

n

Br
ea

st
C

er
vi

x

D
ig

es
tiv

e

ES
−d

er
ive

d

ES
C

En
do

th
el

ia
l

Ep
ith

el
ia

l

H
ea

rt

Ki
dn

ey

Li
ve

r

Lu
ng

M
es

en
ch

ym
al

M
us

cl
e

N
eu

ro
sp

he
re

O
va

ry

Pa
nc

re
as

Pl
ac

en
ta

Sm
oo

th
 M

us
cl

e

Sp
le

en
Th

ym
us

iP
SC

● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

E0
63

 A
di

po
se

 N
uc

le
i

E0
80

 F
et

al
 A

dr
en

al
 G

la
nd

E0
29

 P
rim

ar
y 

m
on

oc
yt

es
 fr

om
 p

er
ip

he
ra

l b
lo

od

E0
30

 P
rim

ar
y 

ne
ut

ro
ph

ils
 fr

om
 p

er
ip

he
ra

l b
lo

od

E0
31

 P
rim

ar
y 

B 
ce

lls
 fr

om
 c

or
d 

bl
oo

d

E0
32

 P
rim

ar
y 

B 
ce

lls
 fr

om
 p

er
ip

he
ra

l b
lo

od

E0
33

 P
rim

ar
y 

T 
ce

lls
 fr

om
 c

or
d 

bl
oo

d

E0
34

 P
rim

ar
y 

T 
ce

lls
 fr

om
 p

er
ip

he
ra

l b
lo

od

E0
35

 P
rim

ar
y 

he
m

at
op

oi
et

ic
 s

te
m

 c
el

ls

E0
36

 P
rim

ar
y 

he
m

at
op

oi
et

ic
 s

te
m

 c
el

ls
 s

ho
rt 

te
rm

 c
ul

tu
re

E0
37

 P
rim

ar
y 

T 
he

lp
er

 m
em

or
y 

ce
lls

 fr
om

 p
er

ip
he

ra
l b

lo
od

 2

E0
38

 P
rim

ar
y 

T 
he

lp
er

 n
ai

ve
 c

el
ls

 fr
om

 p
er

ip
he

ra
l b

lo
od

E0
39

 P
rim

ar
y 

T 
he

lp
er

 n
ai

ve
 c

el
ls

 fr
om

 p
er

ip
he

ra
l b

lo
od

E0
40

 P
rim

ar
y 

T 
he

lp
er

 m
em

or
y 

ce
lls

 fr
om

 p
er

ip
he

ra
l b

lo
od

 1

E0
41

 P
rim

ar
y 

T 
he

lp
er

 c
el

ls
 P

M
A−

I s
tim

ul
at

ed

E0
42

 P
rim

ar
y 

T 
he

lp
er

 1
7 

ce
lls

 P
M

A−
I s

tim
ul

at
ed

E0
43

 P
rim

ar
y 

T 
he

lp
er

 c
el

ls
 fr

om
 p

er
ip

he
ra

l b
lo

od

E0
44

 P
rim

ar
y 

T 
re

gu
la

to
ry

 c
el

ls
 fr

om
 p

er
ip

he
ra

l b
lo

od

E0
45

 P
rim

ar
y 

T 
ce

lls
 e

ffe
ct

or
/m

em
or

y 
en

ric
he

d 
fro

m
 p

er
ip

he
ra

l b
lo

od

E0
46

 P
rim

ar
y 

N
at

ur
al

 K
ille

r c
el

ls
 fr

om
 p

er
ip

he
ra

l b
lo

od

E0
47

 P
rim

ar
y 

T 
C

D
8+

 n
ai

ve
 c

el
ls

 fr
om

 p
er

ip
he

ra
l b

lo
od

E0
48

 P
rim

ar
y 

T 
C

D
8+

 m
em

or
y 

ce
lls

 fr
om

 p
er

ip
he

ra
l b

lo
od

E0
50

 P
rim

ar
y 

he
m

at
op

oi
et

ic
 s

te
m

 c
el

ls
 G
−C

SF
−m

ob
iliz

ed
 F

em
al

e

E0
51

 P
rim

ar
y 

he
m

at
op

oi
et

ic
 s

te
m

 c
el

ls
 G
−C

SF
−m

ob
iliz

ed
 M

al
e

E0
62

 P
rim

ar
y 

m
on

on
uc

le
ar

 c
el

ls
 fr

om
 p

er
ip

he
ra

l b
lo

od

E1
15

 D
nd

41
 T

C
el

l L
eu

ke
m

ia

E1
16

 G
M

12
87

8 
Ly

m
ph

ob
la

st
oi

d

E1
23

 K
56

2 
Le

uk
em

ia

E1
24

 M
on

oc
yt

es
−C

D
14

+ 
RO

01
74

6 
Pr

im
ar

y 
C

el
ls

E1
29

 O
st

eo
bl

as
t P

rim
ar

y 
C

el
ls

E0
67

 B
ra

in
 A

ng
ul

ar
 G

yr
us

E0
68

 B
ra

in
 A

nt
er

io
r C

au
da

te

E0
69

 B
ra

in
 C

in
gu

la
te

 G
yr

us

E0
70

 B
ra

in
 G

er
m

in
al

 M
at

rix

E0
71

 B
ra

in
 H

ip
po

ca
m

pu
s 

M
id

dl
e

E0
72

 B
ra

in
 In

fe
rio

r T
em

po
ra

l L
ob

e

E0
73

 B
ra

in
_D

or
so

la
te

ra
l_

Pr
ef

ro
nt

al
_C

or
te

x

E0
74

 B
ra

in
 S

ub
st

an
tia

 N
ig

ra

E0
81

 F
et

al
 B

ra
in

 M
al

e

E0
82

 F
et

al
 B

ra
in

 F
em

al
e

E1
25

 N
H
−A

 A
st

ro
cy

te
s 

Pr
im

ar
y 

C
el

ls

E1
19

 H
M

EC
 M

am
m

ar
y 

Ep
ith

el
ia

l P
rim

ar
y 

C
el

ls

E1
17

 H
eL

a−
S3

 C
er

vi
ca

l C
ar

ci
no

m
a

E0
75

 C
ol

on
ic

 M
uc

os
a

E0
77

 D
uo

de
nu

m
 M

uc
os

a

E0
79

 E
so

ph
ag

us

E0
84

 F
et

al
 In

te
st

in
e 

La
rg

e

E0
85

 F
et

al
 In

te
st

in
e 

Sm
al

l

E0
92

 F
et

al
 S

to
m

ac
h

E0
94

 G
as

tri
c

E1
01

 R
ec

ta
l M

uc
os

a 
D

on
or

 2
9

E1
02

 R
ec

ta
l M

uc
os

a 
D

on
or

 3
1

E1
06

 S
ig

m
oi

d 
C

ol
on

E1
09

 S
m

al
l I

nt
es

tin
e

E1
10

 S
to

m
ac

h 
M

uc
os

a

E0
04

 H
1 

BM
P4

 D
er

ive
d 

M
es

en
do

de
rm

 C
ul

tu
re

d

E0
05

 H
1 

BM
P4

 D
er

ive
d 

Tr
op

ho
bl

as
t C

ul
tu

re
d

E0
06

 H
1 

D
er

ive
d 

M
es

en
ch

ym
al

 S
te

m
 C

el
ls

E0
07

 H
1 

D
er

ive
d 

N
eu

ro
na

l P
ro

ge
ni

to
r C

ul
tu

re
d

E0
09

 H
9 

D
er

ive
d 

N
eu

ro
na

l P
ro

ge
ni

to
r C

ul
tu

re
d

E0
10

 H
9 

D
er

ive
d 

N
eu

ro
n 

C
ul

tu
re

d

E0
11

 h
ES

C
 D

er
ive

d 
C

D
18

4+
 E

nd
od

er
m

 C
ul

tu
re

d

E0
12

 h
ES

C
 D

er
ive

d 
C

D
56

+ 
Ec

to
de

rm
 C

ul
tu

re
d

E0
13

 h
ES

C
 D

er
ive

d 
C

D
56

+ 
M

es
od

er
m

 C
ul

tu
re

d

E0
01

 E
S−

I3

E0
02

 E
S−

W
A7

E0
03

 H
1

E0
08

 H
9

E0
14

 H
U

ES
48

E0
15

 H
U

ES
6

E0
16

 H
U

ES
64

E0
24

 E
S−

U
C

SF
4

E1
22

 H
U

VE
C

 U
m

bi
lic

al
 V

ei
n 

En
do

th
el

ia
l P

rim
ar

y 
C

el
ls

E0
27

 B
re

as
t M

yo
ep

ith
el

ia
l P

rim
ar

y 
C

el
ls

E0
28

 B
re

as
t v

ar
ia

nt
 H

um
an

 M
am

m
ar

y 
Ep

ith
el

ia
l C

el
ls

 (v
H

M
EC

)

E0
55

 F
or

es
ki

n 
Fi

br
ob

la
st

 P
rim

ar
y 

C
el

ls
 s

ki
n0

1

E0
56

 F
or

es
ki

n 
Fi

br
ob

la
st

 P
rim

ar
y 

C
el

ls
 s

ki
n0

2

E0
57

 F
or

es
ki

n 
Ke

ra
tin

oc
yt

e 
Pr

im
ar

y 
C

el
ls

 s
ki

n0
2

E0
58

 F
or

es
ki

n 
Ke

ra
tin

oc
yt

e 
Pr

im
ar

y 
C

el
ls

 s
ki

n0
3

E0
59

 F
or

es
ki

n 
M

el
an

oc
yt

e 
Pr

im
ar

y 
C

el
ls

 s
ki

n0
1

E0
61

 F
or

es
ki

n 
M

el
an

oc
yt

e 
Pr

im
ar

y 
C

el
ls

 s
ki

n0
3

E1
26

 N
H

D
F−

Ad
 A

du
lt 

D
er

m
al

 F
ib

ro
bl

as
t P

rim
ar

y 
C

el
ls

E1
27

 N
H

EK
−E

pi
de

rm
al

 K
er

at
in

oc
yt

e 
Pr

im
ar

y 
C

el
ls

E0
65

 A
or

ta

E0
83

 F
et

al
 H

ea
rt

E0
95

 L
ef

t V
en

tri
cl

e

E1
04

 R
ig

ht
 A

tri
um

E1
05

 R
ig

ht
 V

en
tri

cl
e

E0
86

 F
et

al
 K

id
ne

y

E0
66

 L
ive

r

E1
18

 H
ep

G
2 

H
ep

at
oc

el
lu

la
r C

ar
ci

no
m

a

E0
17

 IM
R

90
 fe

ta
l l

un
g 

fib
ro

bl
as

ts

E0
88

 F
et

al
 L

un
g

E0
96

 L
un

g

E1
14

 A
54

9 
Et

O
H

 0
.0

2p
ct

 L
un

g 
C

ar
ci

no
m

a

E1
28

 N
H

LF
 L

un
g 

Fi
br

ob
la

st
 P

rim
ar

y 
C

el
ls

E0
23

 M
es

en
ch

ym
al

 S
te

m
 C

el
l D

er
ive

d 
Ad

ip
oc

yt
e 

C
ul

tu
re

d

E0
25

 A
di

po
se

 D
er

ive
d 

M
es

en
ch

ym
al

 S
te

m
 C

el
l C

ul
tu

re
d

E0
26

 B
on

e 
M

ar
ro

w
 D

er
ive

d 
C

ul
tu

re
d 

M
es

en
ch

ym
al

 S
te

m
 C

el
ls

E0
49

 M
es

en
ch

ym
al

 S
te

m
 C

el
l D

er
ive

d 
C

ho
nd

ro
cy

te
 C

ul
tu

re
d

E0
52

 M
us

cl
e 

Sa
te

llit
e 

C
ul

tu
re

d

E0
89

 F
et

al
 M

us
cl

e 
Tr

un
k

E0
90

 F
et

al
 M

us
cl

e 
Le

g

E1
00

 P
so

as
 M

us
cl

e

E1
07

 S
ke

le
ta

l M
us

cl
e 

M
al

e

E1
08

 S
ke

le
ta

l M
us

cl
e 

Fe
m

al
e

E1
20

 H
SM

M
 S

ke
le

ta
l M

us
cl

e 
M

yo
bl

as
ts

E1
21

 H
SM

M
 c

el
l d

er
ive

d 
Sk

el
et

al
 M

us
cl

e 
M

yo
tu

be
s

E0
53

 C
or

te
x 

de
riv

ed
 p

rim
ar

y 
cu

ltu
re

d 
ne

ur
os

ph
er

es

E0
54

 G
an

gl
io

n 
Em

in
en

ce
 d

er
ive

d 
pr

im
ar

y 
cu

ltu
re

d 
ne

ur
os

ph
er

es

E0
97

 O
va

ry

E0
87

 P
an

cr
ea

tic
 Is

le
ts

E0
98

 P
an

cr
ea

s

E0
91

 P
la

ce
nt

a

E0
99

 P
la

ce
nt

a 
Am

ni
on

E0
76

 C
ol

on
 S

m
oo

th
 M

us
cl

e

E0
78

 D
uo

de
nu

m
 S

m
oo

th
 M

us
cl

e

E1
03

 R
ec

ta
l S

m
oo

th
 M

us
cl

e

E1
11

 S
to

m
ac

h 
Sm

oo
th

 M
us

cl
e

E1
13

 S
pl

ee
n

E0
93

 F
et

al
 T

hy
m

us

E1
12

 T
hy

m
us

E0
18

 iP
S−

15
b

E0
19

 iP
S−

18

E0
20

 iP
S−

20
b

E0
21

 iP
S 

D
F 

6.
9

E0
22

 iP
S 

D
F 

19
.1

1

Cell

−l
og

10
 b

in
om

ia
l p
−v

al
ue

● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

● ● ●
● ● ● ● ● ● ● ● ● ● ●

●
●

●
● ● ● ● ● ● ● ● ● ● ●

● ●
● ● ●

● ● ●
●

●
●

● ● ● ● ●
●

●
●

● ● ● ● ● ● ● ● ●
●

● ● ●
●

● ● ● ●
● ●

●

● ● ●

●
●

●

●

●

●
●

● ● ●
●

● ●

●

● ● ●

●

● ● ● ●

●

● ● ● ● ●

●

● ●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

● ●
●

●

●
●

●
●

●

●

●

●

●
●

● ●

●

● ● ● ● ● ● ●
●

●

●

● ● ● ● ●

●

● ● ● ● ● ● ●
● ● ● ●

●
●

●
●

● ● ● ● ● ● ● ●● ● ● ● ● ●
●

● ● ● ● ● ● ● ●

●
●

● ●● ● ●
●

● ●

●

● ● ●
●

●
●

● ● ● ●
●

● ● ● ● ● ● ●

●

● ●

●

●
●

●
●

●

●
● ● ●

●

●

●
●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●
● ●

● ●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

● ●

● ●

● ●

●

●

●

●

●
●

●

● ●
●

● ●

●

●

●
● ●

●

● ● ● ●

● ●
●

●

●
●

●

●
● ● ●

● ●

●

● ●
● ●

●
●

●

●
●

●

●
●

● ●

●

● ● ● ● ● ●
● ●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●
●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

● ● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●
● ●

●

●

●

●
●

● ● ●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

● ●

●
●

●

●

●

●
● ●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

● ●

●

●

●
●

●

●

●

●

● ● ●

●

●
●

●
●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ● ●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
● ●

●

●
●

● ●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ●
● ● ● ● ● ● ●

● ●
● ● ● ●

● ●
●

● ●
● ● ● ●

●

● ● ● ● ●
● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ●
●

● ●
● ●

● ●
●

● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ●
●

● ● ● ● ● ● ● ● ● ● ● ●● ● ● ●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

● ● ●
●

● ● ● ● ● ● ● ●
●

● ● ● ●
● ● ● ● ● ● ●

●

●● ● ● ● ● ● ● ●● ● ● ● ● ●

●
● ● ● ● ● ● ●

●
●

●
● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ●

●

●

●
●

●
●● ● ● ● ● ●

● ●
●

●
● ● ● ●

●

● ●
●

●

● ●
● ●

● ●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

●
●

● ●
●

●
●

●●
●

● ●
●

● ● ●

●
●

● ● ●
●

● ●
● ● ● ● ● ●

●

●
●

●

●

● ● ●
●

● ● ●
● ● ● ● ● ●

●

● ●
●

●
● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●
● ● ●

●

●

● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ●
● ● ● ●

●
●

● ● ●

●

● ● ●

●

● ● ● ● ● ● ●
● ● ●

●

● ● ● ● ● ● ● ● ● ● ●
●

● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

FDR q < 0.01
Active TSS
Flanking Active TSS
Transcr. at gene 5p and 3p
Strong transcription
Weak transcription
Genic enhancers
Enhancers
ZNF genes & repeats
Heterochromatin
Bivalent/Poised TSS
Flanking Bivalent TSS/Enh
Bivalent Enhancer
Repressed PolyComb
Weak Repressed PolyComb
Quiescent/Low

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

FDR q < 0.05
Active TSS
Flanking Active TSS
Transcr. at gene 5p and 3p
Strong transcription
Weak transcription
Genic enhancers
Enhancers
ZNF genes & repeats
Heterochromatin
Bivalent/Poised TSS
Flanking Bivalent TSS/Enh
Bivalent Enhancer
Repressed PolyComb
Weak Repressed PolyComb
Quiescent/Low

●

Other
Non−signif.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

FDR q < 0.01
Active TSS
Flanking Active TSS
Transcr. at gene 5p and 3p
Strong transcription
Weak transcription
Genic enhancers
Enhancers
ZNF genes & repeats
Heterochromatin
Bivalent/Poised TSS
Flanking Bivalent TSS/Enh
Bivalent Enhancer
Repressed PolyComb
Weak Repressed PolyComb
Quiescent/Low

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

FDR q < 0.05
Active TSS
Flanking Active TSS
Transcr. at gene 5p and 3p
Strong transcription
Weak transcription
Genic enhancers
Enhancers
ZNF genes & repeats
Heterochromatin
Bivalent/Poised TSS
Flanking Bivalent TSS/Enh
Bivalent Enhancer
Repressed PolyComb
Weak Repressed PolyComb
Quiescent/Low

●

Other
Non−signif.

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 23, 2024. ; https://doi.org/10.1101/2024.07.22.24310829doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.22.24310829


 37 

 648 
Supplementary Figure 6. EWAS results calculated the 10 different sets of PC scores from the 649 
second timepoint. The red line indicates the significance threshold set via a Bonferroni 650 
correction. 651 
 652 
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 653 
 654 
Supplementary Figure 7. Scree plot showing the raw eigen values for each of the 10 principal 655 
components included. 656 
 657 
 658 
  659 
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