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Abstract 

Objective: In this work, we explored one of the largest multi-omics cohorts in Inflammatory 
Bowel Disease (IBD), the Study of a Prospective Adult Research Cohort (SPARC IBD), with 
the goal of identifying predictive biomarkers for Crohn’s Disease (CD) and Ulcerative Colitis 
(UC) and elucidating patient subtypes.  

Design: We analyzed genomics, transcriptomics (gut biopsy samples), and proteomics 
(blood plasma) from hundreds of patients from SPARC IBD. We trained a machine learning 
model that classifies UC vs. CD samples. In parallel, we leveraged multi-omics data 
integration to unveil patient subgroups in each of the two indications independently and 
analyzed the molecular phenotypes of these patient subpopulations. 

Results: The high performance of the model showed that multi-omics signatures are able to 
discriminate between the two indications. The most predictive features of the model, both 
known and novel omics signatures for IBD, can potentially be used as diagnostic 
biomarkers. Patient subgroups analysis in each indication uncovered omics features 
associated with disease severity in UC patients, and with tissue inflammation in CD patients. 
This culminates with the observation of two CD subpopulations characterized by distinct 
inflammation profiles. 

Conclusion: Our work unveiled potential biomarkers to discriminate between CD and UC 
and to stratify each population into well-defined subgroups, offering promising avenues for 
the application of precision medicine strategies.  

1. Introduction 
Inflammatory Bowel Disease (IBD) encompasses Crohn’s Disease (CD) and Ulcerative 
Colitis (UC), both of which are chronic and complex conditions that impact the 
gastrointestinal tract. Characterized by its heterogeneity, IBD presents a spectrum of 
disease manifestations, including variability in disease location within the gastrointestinal 
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tract, disease behaviors, and levels of disease activity among patients (Baumgart and 
Carding, 2007). Despite significant research efforts aimed at unraveling the disease's 
complexity—ranging from identifying genetic variants and environmental factors to analyzing 
the gut microbiome—the pathophysiological mechanisms defining the distinct clinical 
subtypes of IBD remain partially understood. The challenge lies in pinpointing the specific 
molecular pathways that contribute to this heterogeneity and developing targeted treatment 
approaches. 

The emergence of multi-omics technologies has opened new pathways for 
understanding the intricate biological networks at play in IBD (Weersma et al., 2018; Lloyd-
Price et al., 2019; Agrawal et al., 2022). By generating and analyzing genomics, 
transcriptomics, proteomics, and metabolomics data, researchers now can better 
understand the molecular characteristics of IBD (Subramanian et al., 2020). Several projects 
have been initiated to amass patient-level omics data, demonstrating the commitment to this 
comprehensive approach (Sudhakar et al., 2022). Notable examples include the 1000IBD 
project, which has collected genomics, gut microbiome taxonomic profiles, and fecal 
metagenomics from over 1,000 patients (Imhann et al., 2019), and the IBD Database, 
featuring a wide range of omics data from more than 100 patients (Lloyd-Price et al., 2019). 
Additionally, the International Inflammatory Bowel Disease Genetics Consortium (IIBDGC) 
focuses on genetic data from thousands of patients globally. Yet many of these initiatives 
have primarily concentrated on metagenomics and genomics, often overlooking proteomics 
and transcriptomics from blood and biopsies. The recent SPARC IBD cohort aims to bridge 
this gap by enrolling over 3,000 CD and UC patients and incorporating a diverse array of 
omics data, thus paving the way for groundbreaking insights into the disease (Raffals et al., 
2022). 

Leveraging such cohorts, research efforts have focused on identifying biomarker 
signatures for IBD. For instance, Mo and colleagues (2023) used transcriptomics data from 
357 UC patients to cluster them into three subpopulations that correlated with clinical 
responses. Similarly, Janker and colleagues (2023) examined proteomics and metabolomics 
in blood plasma and colon tissue from UC patients, those in remission, and controls, 
revealing upregulation of inflammatory pathways in active UC, which normalize upon 
remission. This analysis utilized mixOmics and Gaussian modeling, though the study's 
impact was limited by its small sample size. In a broader approach, Motwani et al. (2024) 
utilized the SPARC dataset to examine the correlation between non-invasive biomarkers 
(CRP and FCP) and patient-reported outcomes (PROs), discovering that while there is a 
correlation, it varies by disease location and type.  

In this work, we leveraged the largest multi-omics IBD dataset available in pursuit of 
novel, clinically-relevant biomarkers for diagnostics and patient stratification. We used 
machine learning (ML) to empirically determine multiple omics features that distinguish UC 
from CD patients, resulting in potential biomarkers that may aid diagnosis of patients with 
indeterminate colitis. In parallel, we integrated multiple omics layers to identify and 
characterize patient subpopulations based on clinical phenotypes such as disease severity 
and intestinal inflammation. 
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2. Methods 
The results published here are based on data obtained from the IBD Plexus program of the 
Crohn’s & Colitis Foundation. Figure 1 outlines the methodology of this work and the 
structure of the methods section. In the first subsection, we describe the SPARC IBD cohort 
and the three omics modalities used (Figure 1 left). The following two sections outline the 
multi-omics data preparation and processing (Figure 1 center). Finally, in the last two 
subsections, we describe the supervised machine learning classifier and the unsupervised 
method known as Multi-Omics Factor Analysis (MOFA) used in this work (Figure 1 right). 

2.1. SPARC IBD cohort 

The starting point for this research is the Study of a Prospective Adult Research Cohort 
(SPARC IBD), a component of the Crohn’s & Colitis Foundation’s IBD Plexus research 
platform. The SPARC IBD cohort as of April 2024, contained multiple data modalities across 
different timepoints for several thousands of patients with IBD. For the purpose of this work, 
we subset the full cohort to samples of patients characterized with three omics modalities: 
genomics, transcriptomics, and proteomics (Supplementary Figure 1). Table 1 
summarizes the different batches across these three omics modalities for patients with all 
three omics modalities available. We refer to Supplementary Text 1 and (Raffals et al., 
2022) for details on the experimental data preparation. Additionally, Supplementary Table 
2 describes the patient demographics. 

SPARC IBD Cohort Batch Modality Unique patients 

sparc-genotyping Genomics 537 

sparc-genewiz-2021 Transcriptomics 165 

sparc-cd-genewiz Transcriptomics 111 

sparc-genewiz Transcriptomics 117 

sparc-genewiz-2022 Transcriptomics 207 

sparc-olink Proteomics 537 

Table 1. Sample batches in each of the different omics modalities for patients with all three omics modalities 
available.  

2.2. Data processing 

Transcripts without a gene name were dropped. Using PyDESeq2 (Muzellec et al., 2023) we 
normalized each of the batches and multiplied by the size factors (i.e., related to the number 
of reads in the library), thus making the expression values independent from the number of 
reads. We dropped features with zero variance (i.e., same value across all samples). 

We deployed multiple standard approaches to minimize the batch effect observed in the 
transcriptomics data, such as pyComBat (Behdenna et al., 2023) and linear modeling with 
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limma (Ritchie et al., 2015). However, this step alone was unable to successfully minimize 
the batch effect; batch remained the main source of variance for numerous transcriptomics 
features. To mitigate this technical variation, we added an additional step to the batch effect 
correction approach. For each of the features, we calculated the average of the variance for 
each of the batches (henceforth, intra-batch variance) and dropped the features where the 
intra-batch variance was lower than 0.05. We performed batch correction on the remaining 
features using pyComBat. We processed genomics data using VCFtools (Danecek et al., 
2011) by reducing the raw data to biallelic sites with a minor allele frequency of at least 0.05. 
We annotated the data using PyEnsembl, with the Ensembl 110 release of the human 
genome (GRCh38.p14) of the human database (Martin et al., 2023). Proteomics data were 
used as provided without features tagged as low quality (i.e., “QC warning”) and QC 
samples.  

Lastly, we matched all three omics for each patient by collection date with a threshold of 
7 days (details in Supplementary Text 2). After collapsing the metadata, we arrive at a 
total of 1,431 patients with transcriptomics data, 1,563 patients with proteomics data, 1,641 
patients with genomics array information and 1,641 patients with genomics exome 
information. Hereafter, we will refer to the genomics information solely as the genomics 
array information. In the intersection of the three omics types, we have 857 unique patients 
(Supplementary Figure 2). For the following analyses, we exclusively considered samples 
from these patients with all three omics. 

Regarding the features, for each omics type, and after removing the features with null 
variance, we arrived at 166,916 for genomics, 19,442 for transcriptomics and 2,940 for 
proteomics. 

2.3. Building an ML model to classify UC vs. CD 

We trained an XGBoost classifier (Chen and Guestrin, 2016) to predict whether the omics 
data originated from UC or CD patients (CD=703 and UC=320) (Supplementary Figure 3). 
We chose this model as it is considered to be state-of-the-art in generic tabular data as well 
as on similar large biomedical cohorts (Nielsen et al., 2024). Furthermore, while neural 
network architectures could have been used, we preferred XGBoost due its inherent 
interpretability, and its aforementioned consistent high performance in similar data. 

To evaluate the performance of the model, we first performed an 80/20 split on the 
unique patient identifiers, generating independent train and test sets. We normalized the 
train and test data by subtracting the mean and scaling by the variance of the training data. 
We trained the model using a nested 5-fold stratified cross-validation on the training set. 
Specifically, we trained a hyperparameter-optimized model on each of five train-validation 
splits. Parameters for each model were optimized using five-fold cross-validation exclusively 
within the training set of each fold to avoid overfitting. Splits were stratified to equalize the 
relative proportions of UC and CD patients. The hyperparameters used and their ranges are 
shown in Supplementary Table 1. We evaluate the 5 models on the test and validation 
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sets, in order to deliver the performance results by metric and its respective standard 
deviation across the models. The performance evaluation metrics used in this categorical 
prediction setting are: accuracy, F1-score, AUR-ROC, precision, and recall. Finally, we look 
at the most predictive features of the model based on gain, which measures the increase in 
performance brought by a feature in the branches it acts upon. 

2.4. Multi-omics driven clustering 

In order to perform unsupervised patient stratification, we leveraged Multi-Omics Factor 
Analysis (MOFA) (Argelaguet et al. 2018). Our goal when using this technique was 
simultaneously performing integration of multiple omics data sources and types as well as 
identifying sets of descriptors that explain biological and physiological functions. Ultimately, 
we aimed at identifying phenotypic-driven clusters of patient samples that are likely to be 
more responsive to different therapies. 

CD and UC are heterogeneous conditions with multiple subtypes (Selin et al., 2021). To 
account for this, we separately ran MOFA analyses for each diagnosis (CD and UC). 
Considering the specificity of transcriptomics patterns in different tissues (Figueiredo et al., 
2022), which we observe later on in our analyses (subsection 3.1), we focused solely on 
the colon samples for UC and modeled colon samples separately from small intestine 
samples for CD. We independently standardized the omic data features by removing the 
mean and scaling to unit variance prior to modeling. We refer to Supplementary Text 3 for 
more details about MOFA and the parameters used. 

We identify the factors of interest by their relationship to either macroscopic appearance 
(intestinal inflammation based on the biopsy sampled) or disease severity. The factors are a 
result of the weighted contributions of features that are likely to be involved in similar 
biological functions (Argelaguet et al. 2018). From these factors, and for each omics type, 
we retrieve the omics signatures with the highest absolute weights for that factor. On this 
selection of features, we conducted pathway analysis using GSEApy (Fang et al. 2023) with 
the gene sets from GO Biological Process (2023), considering enriched pathways as the 
ones with an adjusted p-value less than 0.01. Pathways were ranked according to the 
combined score returned by EnrichR (Chen et al., 2013).  

3. Results 

3.1. Correcting for batch effect unlocks the power of multi-omics 
data 

We found that the transcriptomics data exhibited a strong batch effect that was the 
predominant source of variation and hindered identifying any biological patterns on the data 
(Figure 2A). After applying ComBat, the batch effect had drastically diminished, from a 
silhouette score of 0.28 on the PCA plot (Figure 2A) to -0.05, after correction (Figure 2D). 
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This is further corroborated by calculating the Mutual Information (MI) scores (Yu et al. 
2023) between the features and the batch. Prior to batch correction, 22.28% of the 
transcriptomics features had MI scores above 0.2; afterwards, this percentage dropped to 
3.55% (Supplementary Figure 4). After correcting the batch effect, the PCA revealed a 
slight association between the samples and tissue (Figure 2E), which is expected given that 
transcription patterns are known to be tissue-specific (Figueiredo et al., 2022), and most of 
the samples in the dataset are derived from colon and small intestine. Lastly, other variables 
such as diagnosis do not show an apparent association in the PCA (Figure 2C and F). 

3.2. Multi-omics signatures can accurately differentiate between 
CD and UC patients 

We explored the differences between UC and CD by training an ML model to classify 
between both diseases using multi-omics data from each sample as an input. The ML 
classifier was able to distinguish between the two indications (Accuracy: 0.77±0.02, 
Precision (CD): 0.77±0.02; Recall (CD): 0.87 ± 0.02; Precision (UC): 0.75±0.02; Recall (UC): 
0.57±0.02; AUC: 0.75 ± 0.02), (Figure 3A and B). These results demonstrate that a multi-
omics classifier can accurately distinguish between the two phenotypes.  

When looking into the most predictive features, we observed a few that stood out from 
the rest (Figure 3C). Particularly for transcriptomics, there are several known genes 
associated with inflammation such as Immunoglobulin Kappa Variable 6D-21 (IGKV6D-21) 
(Hu et al. 2023), GALNT6 (Ding et al. 2023) TBX3 (Khan et al. 2021), NRG4 (Shi et al. 
2022) and USP38 (Gong et al. 2023). The function of these genes varies– IGKV6D-21 has 
been connected with ischemic stroke and IBD, GALNT6 has been shown to intervene in the 
NF-κB/NLRP3/GSDMD and GSDME pathways, both related to IBD, NRG4 was linked to 
endothelial inflammation, and USP38 has been linked to inflammation in the heart. However, 
our results also revealed that a few of them have not yet been clearly linked with IBD or any 
of its two phenotypes (UC and CD) such as RPS26 and TMEM25, suggesting they could be 
novel genes involved in the pathogenesis of these phenotypes. Similarly, FNDC1 has 
previously been linked to IBD with no clear confirmation (Wuensch et al. 2019). 

In the case of proteomics, which is measured in plasma, the top proteins ranked by 
importance are involved in cardiometabolic or inflammatory processes and most of them are 
reported to be linked with IBD. For example, INSL5, together with other anti-inflammatory 
cytokines, was reported to differentiate between UC and CD (Skok et al. 2021). Similarly, 
low levels of EGFR are associated with the risk of developing IBD (Yang et al., 2024). 
Furthermore, we find four other inflammation-related proteins: IL12B (Lee et al., 2016), 
FGF19 (Łukawska et al., 2024), LY96 (Bank et al. 2014), CCL20 (Kaser et al. 2004) and 
BCL2 (Weder et al. 2018), which are associated with disease activity. On the other hand, 
there are other proteins not yet linked with IBD among the top such as ANGPTL3. We do 
not find loci associated with IBD features within the top genomics features.  
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3.3. Identifying molecular profiles that correlate with disease 
severity in Ulcerative Colitis 

In this subsection, we modeled multi-omics UC samples using MOFA. Our goal was to 
leverage this unsupervised technique to pinpoint characteristic molecular profiles that 
correlate with clinical phenotypes such as disease severity (based on endoscopy) and 
macroscopic appearance (i.e., whether the sample is inflamed or not). By exploring these 
multi-omics profiles, we ultimately intend to identify biomarkers that can be used to define 
patient subpopulations. 

By clustering the factors from MOFA, we observed a correlation (R^2) of 0.40 between 
factor 1 and disease severity (Figure 4A and Supplementary Figure 5). The Kendall's Tau 
test further corroborate this, showing a moderate yet significant (p-value = 8*10��) 
correlation of 0.30. This correlation suggests that the features associated with this factor can 
potentially be used to distinguish between patients with severe or moderate disease from 
patients with mild disease or in remission. Thus, we investigated the top 150 features across 
the three omics based on their weights for this factor, since these top features are 
responsible for the variability observed within this factor. To identify the features that 
characterize patients with severe disease, we applied ANOVA to proteomics and 
transcriptomics features and chi-square to genomics (p-value < 0.01), using severe versus 
the rest as groups.  

Among the significant features, we identified several potential biomarkers for disease 
severity across the three omics. Firstly, for genomics, we found that all severe patients have 
the reference allele (0) of TAF6L (chr11_bp62771388) (Figure 4B), while ZNF268 
(chr12_bp133202004) and CEP164 (chr11_bp117403235) severe patients typically have 
the first alternate allele (1) (Supplementary Figure 6). In the case of proteomics, we 
observed that disease severity correlates with IL17A (Figure 4D), EPO, and REG1B 
(Supplementary Figure 6). Similarly, in transcriptomics, we found several examples such 
as EMILIN2 and DL, which exhibit a positive and an inverse correlation with disease 
severity, respectively (Figure 4F and Supplementary Figure 6). Lastly, we investigated the 
enriched pathways of these significant features by running pathway enrichment analysis on 
each omics modality independently. Among the enriched pathways, we found interleukin 
and cytokine signaling pathways for proteomics (Figure 4C) and metabolic pathways as well 
as pathways related to hemostasis and response to pathogens.  

3.4. Investigating the molecular phenotype of inflamed samples 
in Crohn’s disease reveals two subpopulations 

Similar to the previous section on UC, we modeled multi-omics CD samples using MOFA 
aimed at identifying molecular profiles that correlate with clinical phenotypes. As mentioned 
in Methods, we separated colon and small intestine transcriptomics samples, due to the 
strong tissue effect. Here, we exclusively report the findings derived from colon 
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transcriptomics, since we did not find a clear correlation when the multi-omics samples 
comprised small intestine transcriptomics instead.  

First, we began by performing hierarchical clustering across all samples based on all 
factors yielded by MOFA to assess whether any factor was correlating with any variable of 
clinical interest (Figure 5A). While the clusters did not reveal any clear correlation with any 
of the variables of that could introduce undesired bias such as batch, sex, and age, we 
found that factor 3, which is the only factor with relevant contribution for more than one 
omics modality (Supplementary Figure 7), exhibited a clear correlation with macroscopic 
appearance (Figure 5B). For this factor, non inflamed samples exhibit values of factor 3 
close to zero, while the majority of the inflamed samples have either highly positive or highly 
negative factor 3 values, suggesting two distinct inflammation phenotypes. Notably, inflamed 
samples tend to have a higher Simple Endoscopic Score for Crohn's Disease (SES-CD), 
suggesting an increased disease severity (Supplementary Figure 8) (Daperno et al., 2004). 

After revealing the association between factor 3 and macroscopic appearance, we 
explored the distribution of factor 3 values across the three main identified clusters derived 
from the MOFA factors (Figure 5B). Stratifying by the three clusters again suggests two 
subpopulations of inflamed samples, one comprising inflamed samples in cluster 1 and 3 
(both present high negative factor 3 values), and one containing the inflamed samples of 
cluster 2 (positive factor 3 values). Therefore, we subsequently combined the inflamed 
samples of cluster 1 and 3 as they manifest a similar inflammation pattern based on factor 3. 
From this point on, the aggregate of clusters 1 and 3 is referred to as cluster A and cluster 2 
as cluster B (Figure 5C). 

Next, we explored the top 150 features in each omics modality based on the absolute 
weights of factor 3. Our goal here was two-fold, i) identify which of these features can 
distinguish between inflamed and not inflamed samples and thus can be used as 
inflammation markers, and ii) investigate the different molecular signatures between the two 
potential subpopulations identified for inflamed samples. Among the top features in factor 3, 
we found several markers, both up- and down-regulated, in proteomics/transcriptomics that 
differentiate between inflamed and normal such as CXCL9, HLA-DRA, INHBB, SERPINA3, 
and NOS2 (Figure 5D and Supplementary Figure 9). All of these proteomics or 
transcriptomics features have potential use as biomarkers for intestinal inflammation in the 
context of CD.  

Similarly, to identify the features that characterize each of the two subpopulations of 
inflamed samples, we applied ANOVA to the top 150 proteomics and transcriptomics 
features and chi-square for the top genomics ones (p-value < 0.01), using cluster-A-inflamed 
vs rest and cluster-B-inflamed vs rest as groups. This revealed a subset of features 
characterizing the two subpopulations (Figure 5E and F). When investigating the 
transcriptomics features characteristic of cluster B, we found a large majority of these 
transcripts were Human Leukocyte Antigen (HLA) genes (Figure 5G), a set of genes 
responsible for regulation of the immune system and involved in antigen processing and 
presentation (Supplementary Figure 10). Furthermore, we found that one of the transcripts 
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characteristic to cluster B, TSBP1-AS1 (Figure 5F), corresponds to the most occurring 
SNPs highlighted in genomics, as 41 SNPs of this gene appear in the top 150 genomics 
features (Figure 5H). As a reference, there are 361 SNPs for this gene in the total 166,916 
SNPs analyzed. In other words, while the SNPs of this gene represent 0.2% of the 
genomics features, it is over-represented among the top 150 genomics features in factor 3 
with ~27%. The SNPs of this antisense non-coding RNA (ncRNA) are also located in the 
HLA region in chromosome 6, suggesting an association between these SNPs and 
regulation of HLA genes. Cluster A, on the other hand, presented a smaller number of 
characteristic features. One of them is the IL12B in proteomics (Figure 5E), a cytokine that 
acts on T and natural killer cells, and is up-regulated in cluster A.  

Lastly, we investigated the pathways enriched using the characteristic features of the 
two inflamed subpopulations. Among the enriched pathways for proteomics, we found 
several inflammation-related pathways related to the innate immune system for cluster A 
(e.g., natural killer proliferation and activation) (Figure 5I). In the case of transcriptomics 
pathways for cluster B, we observed pathways related to antigen processing and 
presentation, immunoglobulin production and the MHC class. Summarizing, our results 
suggest that the differentiation between these two subpopulations of inflamed samples is 
due to cluster B developing a more robust or heightened adaptive immune response 
characterized by high expression of HLA genes and other inflammation-related pathways.  

4. Conclusion 
In this study, we conducted a multi-omics analysis on samples from a large IBD patient 
cohort aimed at identifying distinct patient subgroups. We first assessed whether a ML 
classifier could accurately distinguish between UC and CD samples, by exclusively training it 
on multi-omics data. The performance of the model indicates that multi-omics can be used 
to accurately predict samples between the two conditions. Furthermore, we leveraged the 
interpretability of the model used to investigate its most predictive omics features. As 
expected, a large proportion of them have been previously reported in the literature and 
associated with either of the indications, thus serving as a control on the method. However, 
others have not yet been linked with IBD and should be investigated further as they might 
play a role in the pathophysiology of the disease and could be used as biomarkers for 
diagnosing patients with indeterminate colitis. 

In parallel, we delved deeper into each IBD subtype —CD and UC— by categorizing 
patients into subgroups using MOFA (Multi-Omics Factor Analysis). This exploration 
unveiled distinct subpopulations within each disease category, offering promising avenues 
for the application of precision medicine strategies. Interestingly, a few omics signatures 
appear to be mainly responsible for said separation. Among these omics, we found 
previously associated markers with IBD such as IL17A, SERPINA3 and CXCL9 as well as 
novel genes such as TSBP1-AS1 and ZNF268. To summarize, our findings lay the 
groundwork for further research into the molecular underpinnings of IBD and highlight the 
potential for tailored therapeutic interventions based on specific omics profiles. 
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Several limitations must be acknowledged in the present study. Firstly, the absence of 
comprehensive omics data for all samples constrained the effective sample size, which 
limited the breadth of our analysis. Secondly, the ML classifier employed demonstrates 
significant accuracy in distinguishing between patient groups based on omics profiles; 
however, the performance is lower for UC. Finally, despite this study representing one of the 
largest patient-level investigations into IBD to date, the sample size could still benefit from 
expansion to enhance the robustness and generalizability of our findings. 

In the future, we envision several potential extensions of our work. First, we aim at 
investigating additional omics modalities beyond the three analyzed to increase the breadth 
of molecular coverage and ultimately uncover new biological insights. To achieve this, 
untargeted LC-MS- and NMR-based metabolomics should be performed to add an extra 
layer of biology. Additionally, we aim at using multiple tissue information concurrently when 
training a classifier (e.g., concatenating multiple transcriptomics samples in patients with this 
information available). Finally, the strategy to address the missing values needs to be 
revisited with a less conservative approach, such that we do not simply use only the 
samples with all omics types available. Overall, we intend to re-assess our findings as 
patients in the SPARC cohort continue to be phenotyped. Additionally, it is necessary to 
confirm these findings in independent cohorts to ensure their generalizability. The 
performance of the ML model would also likely benefit from the aforementioned steps. 

To summarize, our work identified biomarkers that i) can distinguish between CD and 
UC and ii) can distinguish between distinct IBD subpopulations: UC patients with higher 
versus lower disease severity and CD patients with distinct types of inflammation. Our 
findings will have a significant impact on clinical practice as they enable the identification of 
relevant patient subpopulations for which personalized treatment regimes can be developed. 
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Figure 1. Outline of the methodology. The starting point of our work are three types of omics data (proteomics, genomics,
and transcriptomics) generated from samples from IBD patients (i.e., CD and UC). We processed these three omics modalities
to generate a multi-omics dataset. In one venue, we combined the omics data and trained a ML classifier that can accurately
differentiate between samples derived from UC and CD patients. Parallely, we explored the characteristics of different
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subpopulations in each indication (CD and UC) using Multi�Omics Factor Analysis (MOFA). This figure was created by using
BioRender.com. 

Figure 2. First row: PCA of the first two components of the transcriptomics samples, colored by batch (A), tissue (B) and
diagnosis (C). Second row: PCA of the first two components of the transcriptomics samples after correcting for batch effect
using batch variance and pyComBat, colored by batch (D), tissue (E) and diagnosis (F). 
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Figure 3. A) Confusion matrix of the predictions on the test set of one of the five CVs of the model. B) Bar plots with different
performance metrics and the standard deviation of the classifier over the five CVs evaluated on the test set. Performance is
close to 0.8 across all metrics evaluated. C) Top 10 most predictive features in the three omics.  
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Figure 4. A) Distribution of the absolute factor 1 values stratified by disease severity based on endoscopy. The correlation
between factor 1 and disease severity is 0.4 considering mild=1, moderate=2, severe=3 to make disease severity a numeric
variable. B) Distribution of the genotypes (counts and percentage for each row) for TAF6L (chr11_bp62771388) stratified by
disease severity based on endoscopy. 0 corresponds to the reference allele and 1 the first alternate allele. C) Top 10 enriched
pathways using the significant proteomics features (orange). D) Distribution of the expression values for IL17A (proteomics). E)
Top 10 enriched pathways using the significant transcriptomics features (green). F) Distribution of the expression values for
DLD (transcriptomics).  
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Figure 5. A) Hierarchical clustering applied to the factors from MOFA for multi-omics CD samples. Transcriptomics and
proteomics data are derived from colon and plasma, respectively. Clustering on all factors reveals three main clusters. B)
Hierarchical clustering applied exclusively to factor 3 and the reported macroscopic appearance for each sample
(inflamed/normal). Samples with extreme values of factor 3 (dark-red and dark-blue) are likely to be inflamed, while values of
factor 3 closer to zero (light-red, light-blue, and white) are less likely to be inflamed. C) Distribution of the factor 3 values for the
two identified subpopulations (A: cluster 1 and 3, and B: cluster 2) stratified by macroscopic appearance (inflamed/normal). D-
F) Distribution of the expression values for NOS2 (proteomics), IL12B (proteomics), and TSBP1-AS1 (transcriptomics) across
the two subpopulations (A and B), stratified by macroscopic appearance. The three features are an example of an inflammation
marker, cluster A specific marker, and cluster B specific marker, respectively. G) Proportion of HLA genes among the top 150
transcriptomic features in factor 3. H) Most common genes of the top 150 genomics features (SNPs). TSBP1 SNPs correspond
to approximately 30% of the top genomics features. I) Top 5 enriched pathways using the significant proteomics features for
the inflamed cluster A (orange) and significant transcriptomics features for the inflamed cluster B (green). Statistical

significance is measured with Mann-Whitney-Wilcoxon test two-sided (Legend: ∗∗∗∗ = p-value < 0.0001; ∗∗∗ = p-value < 0.001

∗∗ = p-value < 0.01; ∗∗ = p-value < 0.05; ns = non-significant).  
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