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Abstract 23 

Objective: This study aimed to bridge the gap between the costliness and complexity of 24 

diagnosing Alzheimer’s disease by developing a scoring system with interpretable machine 25 

learning to predict the risk of Alzheimer’s using obtainable variables to promote accessibility 26 

and early detection. 27 

Participants and Methods: We analyzed 713 participants with normal cognition or mild cognitive 28 

impairment from the Alzheimer's Disease Neuroimaging Initiative. We integrated cognitive test 29 

scores from various domains, informant-reported daily functioning, APOE genotype, and 30 

demographics to generate the scorecards using the FasterRisk algorithm. 31 

Results: Various combinations of 5 features were selected to generate ten scorecards with a test 32 

area under the curve ranging from 0.867 to 0.893. The best performance scorecard generated the 33 

following point assignments: age < 76 (-2 points); no APOE ε4 alleles (-3 points); Rey Auditory 34 

Verbal Learning Test <= 36 items (4 points); Logical Memory delayed recall <= 3 items (5 35 

points); and Functional Assessment Questionnaire <= 2 (-5 points). The probable Alzheimer’s 36 

development risk was 4.3% for a score of -10, 31.5% for a score of -3, 50% for a score of -1, 37 

76.3% for a score of 1, and greater than 95% for a score of > 6.  38 

Conclusions: Our findings highlight the potential of these interpretable scorecards to predict the 39 

likelihood of developing Alzheimer’s disease using obtainable information, allowing for 40 

applicability across diverse healthcare environments. While our initial scope centers on 41 

Alzheimer’s disease, the foundation we have established paves the way for similar 42 

methodologies to be applied to other types of dementia. 43 

Keywords: Alzheimer’s disease; Machine learning; Cognition; Apolipoprotein ε4 44 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 3, 2024. ; https://doi.org/10.1101/2024.08.02.24311399doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.02.24311399
http://creativecommons.org/licenses/by-nc-nd/4.0/


Scorecard to Predict Alzheimer’s Disease  
 

3 
 

Introduction 45 

As the prevalence of Alzheimer’s disease (AD) continues to rise, timely and accurate 46 

diagnosis becomes increasingly urgent. The diagnostic process for AD typically includes 47 

neurological evaluations, cognitive and functional assessments, brain imaging, cerebrospinal 48 

fluid analysis, and blood tests. However, this diagnostic approach presents challenges, such as 49 

high financial costs, invasiveness of some procedures, and limited accessibility, particularly in 50 

resource-limited or rural areas. Another significant barrier to timely diagnosis is the initial point 51 

of contact for many patients: their primary care physicians (PCPs). When individuals first notice 52 

memory-related issues, the first healthcare professional they typically go to is their PCP. 53 

However, many PCPs may not possess the specialized expertise required to identify the nuanced 54 

signs and symptoms of early AD or feel confident in delivering a conclusive diagnosis.1, 2 As a 55 

result, patients might experience delays in obtaining appropriate care, or, in some cases, may not 56 

be referred for further evaluation at all. Therefore, the solution lies in bridging this diagnostic 57 

gap at the primary care level by developing an easily administered and interpretable method to 58 

screen for AD risk.  59 

The advancement of machine learning models offers a vast avenue for aiding the 60 

diagnostic process due to their speed, consistency, and data-driven decisions that often excel in 61 

comparison to humans.3 Recent efforts to develop machine learning models to assist clinicians in 62 

identifying early-stage AD, such as Convolutional Neural Networks (CNN) and Gradient 63 

Boosting Machines (GBM), have demonstrated robust accuracy.4,5 However, the use of these 64 

models has raised important issues pertaining to interpretability. To further elucidate this point, a 65 

CNN is a type of neural network that uses image data and employs convolution layers (i.e., 66 

scanning a group of pixels) and pooling layers (i.e., size reduction) to process the image 67 
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efficiently for image classification tasks.6 Meanwhile, A GBM is a type of machine learning 68 

algorithm that combines multiple simple models, typically decision trees, where each new tree 69 

aims to correct the errors made by the previous ones to create a powerful predictive model.7 70 

While CNNs and GBMs allow for accurate image categorization and model prediction, 71 

respectively, the complexity of these methods creates a "black box" effect where it becomes 72 

difficult to understand how a particular decision is made, potentially leading to a lack of trust in 73 

the outputs from clinicians. 74 

Interpretable machine learning models (i.e., white-box approach), on the other hand, do 75 

not suffer from the same issues. Interpretable models aim to provide the “why” of outputs, 76 

offering insights into how specific features contribute to predictions and allowing for transparent 77 

and understandable decision-making processes. This transparency promotes human-computer 78 

interaction, in the case of clinical settings, trust between clinicians and the machine learning 79 

outputs.8 Previous research has yielded reasonable accuracy in predicting the risk of a medical 80 

condition, such as epileptic seizure, using such an approach.9  81 

In this study, we developed risk scores that were presented in a scorecard model to assess 82 

the risk of developing AD. Risk scores are predictive models that have been used in various 83 

fields, including medicine, to aid decision-making processes through basic mathematical 84 

calculation.10–12 We selected the following variables to develop the scorecards due to their 85 

accessibility and comprehensive representation of factors influencing AD: demographic 86 

information, cognitive tests from various domains, daily functioning, and the apolipoprotein ε4 87 

allele (APOE4). Although these variables are well-known for their contribution to AD 88 

development, many PCPs are unsure about the appropriate timing or severity level to seek 89 

further interventions. Therefore, we designed the scorecards to inform clinicians of the probable 90 
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risk of developing AD based on a patient’s presentation. This could help clinicians decide when 91 

to refer patients to specialists or initiate interventions. 92 

The scorecards in this study were constructed using the FasterRisk algorithm, a recent 93 

advancement that significantly improves the creation of high-quality risk scores.13 Traditional 94 

methods, such as rounding logistic regression coefficients or non-data-driven approaches, often 95 

result in suboptimal risk scores that either fail to accurately capture the data's complexity or 96 

require extensive computational resources.  The FasterRisk algorithm is not only 97 

computationally efficient, completing within minutes, but also provides multiple high-quality 98 

risk scores for consideration, enhancing the robustness of the model. 13 This transparency and 99 

efficiency make FasterRisk an ideal choice for developing interpretable models that clinicians 100 

can trust and easily use in primary care settings to improve the timely diagnosis of AD. We 101 

predicted that our framework could generate a scoring system with robust predictive power using 102 

accessible variables. 103 

Materials and methods 104 

Participants 105 

We included data from 713 baseline visits from all the Alzheimer's Disease 106 

Neuroimaging Initiative cohorts (ADNI 1, 2, GO, and 3) as of August 2023. ADNI is a multi-site 107 

study that has collected clinical, biomarker, genetic, and neuroimaging data in the U.S. and 108 

Canada since 2004. ADNI's broader criteria include age 55-90, a minimum of 6 years of 109 

education, consistent medication for the past 4 weeks, Hachinski scale < 4 (to rule out vascular 110 

dementia), and Geriatric Depression Scale < 6; more information can be found www.adni-111 

info.org. We included participants in our analyses who were classified by ADNI as having 112 

normal cognition (NC) or amnestic Mild Cognitive Impairment (aMCI). Participants classified as 113 
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NC were those with no subjective memory complaints, Mini-Mental State Exam (MMSE) scores 114 

of 24-30, Clinical Dementia Rating (CDR) of 0, and a within-normal score on the Wechsler 115 

Memory Scale Logical Memory II during screening. aMCI participants were those with 116 

subjective memory complaints, objective memory deficits indicated by neuropsychological tests, 117 

and a CDR score of 0.5. A request to access the ADNI dataset was approved for this study. 118 

Informed consent was obtained from all participants at the time of study enrollment.  119 

For the present analyses, participants were divided into two groups: stable and 120 

progressive. The stable group consisted of individuals who remained at the same diagnosis level 121 

over time. The progressive group included those who developed AD. Specifically, participants 122 

who progressed from aMCI to AD were placed in the aMCI-AD group. Those who went from 123 

NC to aMCI and then to AD were placed in the NC-AD group. Individuals who progressed to 124 

aMCI from NC were not included in the analysis.  125 

APOE Genotyping 126 

APOE genotyping was performed on DNA samples obtained from subjects' blood, using 127 

an APOE genotyping kit, as described in 128 

http://www.adniinfo.org/Scientists/Pdfs/adniproceduresmanual12.pdf (also see http://www.adni-129 

info.org for detailed information blood sample collection, DNA preparation, and genotyping 130 

methods). APOE ε4 carriers were defined as participants with one or two copies of the APOE ε4 131 

allele. 132 

Neuropsychological Tests and Functioning 133 

We selected a range of neuropsychological tests that tapped into a variety of cognitive 134 

domains, such as attention, executive function, memory (short-term and long-term), verbal 135 

fluency, and global cognition. The selected tests were the Mini-Mental State Examination 136 
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(MMSE), Rey Auditory Verbal Learning Task (RAVLT) learning and immediate, Logical 137 

Memory delayed (LDEL), Category Animal (CATANIMSC), Trail Making Test A (TMT A), 138 

and Trail Making Test B (TMT B). These tests were selected because they were administered 139 

across all ADNI cohorts. Additionally, we included the informant-reported instrumental 140 

activities of daily living measured with the Functional Activities Questionnaire (FAQ). 141 

Data Preprocessing 142 

The final dataset encompasses a comprehensive set of features that play a crucial role in 143 

understanding the factors associated with the progression of the condition under investigation. 144 

The final set of features that we selected for training the FasterRisk machine learning model are 145 

age, sex, education, APOE ε4 carrier status, MMSE, RAVLT immediate, RAVLT learning, 146 

LDEL, CATANIMSC, TMT A, TMT B, and FAQ. These features represent a combination of 147 

demographic information, cognitive assessments, informant-reported daily functioning, and a 148 

genetic marker of AD. 149 

  To prepare the data for analysis, we converted categorical variables into numerical 150 

representations through Scikit-learn Labelencoder. For ‘diagnosis,’ -1 represents a sample 151 

belonging to the stable group, and 1 represents an unstable group sample. For ‘PTGENDER,’ 0 152 

represents female, and 1 represents male. Participants (n = 15; 2.03%) with invalid or missing 153 

values were identified and removed from the dataset. The dataset was further filtered based on 154 

the following conversion rate statistics. To be included in the stable group, the sample had to 155 

contain data indicating this diagnosis for at least 3 years to be classified as aMCI and 5 years for 156 

NC to account for the conversion rate.14,15 This decision was based on previous studies and to 157 

exclude those who converted from normal to aMCI shortly after the initial visit. The next 158 

preprocessing step was applying binarization using the FasterRisk build-in binarization module 159 
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to convert the features from continuous into binary features (Figure 1). This ensures the proper 160 

input data format for the algorithm. All computations were performed on Python version 3.11.9 161 

and data preprocessing was done using Numpy 1.23.5.    162 

FasterRisk Algorithm 163 

The FasterRisk algorithm aims to find high-quality risk scores, which have been the most 164 

popular form of the predictive model used in high-stakes decision-making.13 It provides an 165 

interpretable set of scores that are easily understood, making each decision easier to explain. This 166 

is achieved through a three-step framework: a beam-search-based algorithm for logistic 167 

regression with bounded coefficients (for Step 1), the search algorithm to find pools of diverse, 168 

high-quality continuous solutions (for Step 2), the star ray search technique using multipliers 169 

(Step 3), and a theorem guaranteeing the quality of the star ray search.  170 

The FasterRisk algorithm has a parameter 'k' called sparsity, which refers to the number 171 

of features with non-zero coefficients. In other words, 'k' controls the number of features in the 172 

final scorecard. The beam-search algorithm in FasterRisk operates under the assumption that one 173 

of the best models of size k implicitly contains variables from one of the best models of size k-1. 174 

It begins by selecting the best feature, constrained to a small coefficient box (e.g., [-5, 5]). Then, 175 

it iteratively adds another feature to this set, gradually building up the model. This approach 176 

allows the algorithm to focus on the most promising features without searching the entire space 177 

of possible combinations. The search algorithm in step 2 defines a tolerance gap level and 178 

generates many solutions by replacing one feature with another without affecting its performance 179 

more than the defined tolerance gap. The star ray search extends the coefficients by multiplying 180 

them to find a solution closer to an integer. This model was chosen due to its quality of solutions 181 
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and speed, which is significantly better than RiskSlim, a previous state-of-the-art model for 182 

finding risk scores.16  183 

Selecting Optimal Sparsity 184 

To select the optimal sparsity, a stratified 5-fold cross-validation is employed to find the 185 

best k-value that satisfies a given criterion (Figure 1). A range of k-values is selected, and the 186 

criteria is given to the cross-validation algorithm. The selected k-value range is 1-10, with AUC 187 

as the selection criteria. The cross-validation algorithm works by calculating the mean 188 

performance of the top 10 models for each fold and then averaging those means over the folds. 189 

This is done with all the k-values in the range, giving an estimated performance for each sparsity 190 

selection. The k-value that has the highest performance is selected as the optimal sparsity.    191 

Evaluation Metrics 192 

After finding the optimal sparsity value, the model is trained with the whole training set, 193 

which encompasses 80% of the data, and performance is evaluated on a test set encompassing 194 

the 20% that was left out during the training process (Figure 1). Ten optimal models were 195 

generated, along with their accuracy and area under the curve (AUC) performance on the test set. 196 

The decision to generate ten models stemmed from the need to explore a diverse range of "good" 197 

models, enabling researchers to delve into the interpretable features extracted from the ten 198 

scorecards created. While it is feasible to generate more models, ten was chosen as it allows for 199 

capturing all features present in the scorecards. Higher model counts do not significantly differ in 200 

features but can consume additional resources without commensurate benefits, thus our approach 201 

values parsimony. Importantly, the algorithm often generates different numbers of models to 202 

choose from, but we can always guarantee that 10 models will be generated and available for us 203 

at any given iteration of the experiment. A set of features and their bounds were generated and 204 
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the corresponding points to the right of it. The point is assigned when the criteria for the feature 205 

and its bounds are met. The points would then be added to obtain the final score. The score can 206 

be mapped to a percentage risk using the score-to-risk table generated by the algorithm. The 207 

accuracy metrics were calculated by assigning negative predictions whenever the risk is below 208 

50% and assigning positive predictions whenever the risk is above 50%. The AUCs were 209 

calculated from the area of the Receiver Operating Characteristic curve (ROC curve), which 210 

represents the ability of the model to distinguish between different classes in a binary 211 

classification problem. 212 

Comparison Against Baseline Models 213 

We constructed multiple baseline models using common machine learning algorithms to 214 

compare the performance of our scorecard model. The baseline models are built utilizing 215 

Logistic Regression, Support Vector Classifier (SVC), and Random Forest Classifier, 216 

incorporating all available features from the dataset. These models were chosen to capture 217 

different modeling approaches to account for variation in performances across algorithms, giving 218 

us a broad range of performance values. Evaluation of these models is conducted through a 5-219 

fold cross-validation approach, similar to how we evaluate our interpretable model to ensure fair 220 

comparison. The performance of the baseline models is assessed using the same AUC evaluation 221 

metrics employed for the interpretable model, thereby maintaining consistency across the 222 

evaluation process. 223 

Results 224 

Participant Characteristics 225 

We included data from 713 participants, 200 with NC and 513 with aMCI at ADNI 226 

baseline visit. Over time, 11.5% of the former group and 54.8% of the latter group were 227 
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diagnosed with AD. The overall participant characteristics at baseline were as follows: 44.6% 228 

were female, the average age of 73.4 years, the average educational level was 16.1 years, and 229 

53.9% did not carry the APOE4 gene (Table 1). The average transition for the aMCI-AD and the 230 

NC-AD groups are 2.5 and 7.2 years, respectively. 231 

Differences in Functioning and Cognitive Performance at Baseline Based on Diagnostic 232 

Group 233 

Using t-tests, we observed that the NC-AD group exhibited poorer performance in the 234 

TMT A than those whose condition remained stable (“stable normal”), as indicated in Table 1 (p 235 

< 0.05).  A higher score on the TMT A indicates a longer time to complete the test, which is 236 

indicative of worse performance. When comparing stable aMCI and aMCI-AD, we found that 237 

the aMCI-AD group had significantly lower performance across all cognitive tests included in 238 

the model (p < 0.001). In terms of functioning level measured by the FAQ, those who eventually 239 

progressed to AD showed a higher level of impairment at baseline in relation to their stable 240 

counterparts (p < 0.01). 241 

Alzheimer Prediction Risk Score 242 

Based on the FasterRisk algorithm, a sparsity level of 5 was selected for the most optimal 243 

combination for the generation of the final scorecards to predict AD development. Ten 244 

scorecards were generated with a test AUC range of 0.867 to 0.893. The scorecard with the 245 

highest test AUC (0.893) shown in Table 2 represents age equal to or less than 76.3 (-2 points); 246 

absence of an APOE ε4 allele (-3 points); RAVLT immediate of 36 or less (4 points); LDEL of 3 247 

or less (5 points); and FAQ of 2 or less (-5 points). Positive points indicate an elevated risk of 248 

AD, while negative points suggest a reduced risk. The probable AD development risk was 4.3% 249 

for a total score of -10, 12.5% for a score of -7, 31.5% for a score of -3, 50% for a score of -1, 250 
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76.3% for a score of 1, 87.5% for a score of 3, and greater than 95% for a score of 6, 7, or 9 251 

(Table 2). In sum, younger age, absence of APOE ε4 alleles, higher cognitive performance, and 252 

better daily functioning contributed to reduced AD risk. Other variations of the scorecard can be 253 

found in the Supplementary Figure 1. 254 

Base Model Comparison 255 

 We compared our custom scorecard model with three common machine learning 256 

methods: Logistic Regression, Support Vector Classifier (SVC), and Random Forest Classifier. 257 

The Logistic Regression and SVC had an AUC score of 0.88, while the Random Forest 258 

Classifier had an AUC score of 0.89. These scores demonstrated how well these methods 259 

perform using all available features. Our scorecard model, however, only used five key features 260 

and still did well, with an AUC score of 0.872 and a range of 0.867 to 0.893. Despite the slight 261 

reduction in average AUC to 0.87 when compared to the base ML models, it is important to 262 

highlight the tradeoff made for interpretability and parsimony by utilizing only five features in 263 

our scorecard model. This compromise highlights the significance of our approach, where 264 

maintaining high predictive performance while having a sparse feature set demonstrates the 265 

model's effectiveness and practical applicability in real-world scenarios. 266 

Discussion 267 

Our study presents a novel approach to predicting the risk of developing AD that offers 268 

promising potential to be applied in clinical settings or in primary care by employing a set of 269 

obtainable variables, including demographics, APOE ε4 status, informant-reported daily 270 

functioning, and cognitive performance scores. By utilizing the FasterRisk algorithm, we 271 

generated ten scorecards, each demonstrating high predictive accuracy with AUC scores ranging 272 

from 0.867 to 0.893. This range indicates a strong balance between sensitivity and specificity in 273 
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identifying individuals at risk of developing AD. All scorecards consistently included variables 274 

such as APOE ε4, daily functioning, and memory-related tests, suggesting the significance of 275 

these variables in determining progression to AD. These findings are consistent with existing 276 

knowledge in the literature on AD. 17–19 Age appeared as a significant predictor in six of the 277 

scorecards, while executive function (TMT B) and verbal fluency (CATANIMSC) were 278 

highlighted in fewer scorecards, reflecting the cognitive diversity observed in AD. These 279 

findings suggest that including executive function and verbal fluency in the scorecards could 280 

potentially capture cognitive decline in those who may have a slightly different presentation, 281 

highlighting the heterogeneity of AD.20 282 

Furthermore, a notable observation from our study is that none of the scorecards 283 

identified TMT A, RAVLT learning, and Mini-Mental State Examination (MMSE) as reliable 284 

predictors for the development of AD. These findings could imply that cognitive domains related 285 

to attention and learning ability may not be significantly affected in the early stages of cognitive 286 

decline and that memory is the first domain to decline in individuals who later develop AD.21 287 

While MMSE is widely used in clinical practice for diagnosing dementia, its utility in predicting 288 

progression to AD may be limited. The MMSE primarily assesses global cognitive function and 289 

may lack the sensitivity to detect subtle cognitive changes that precede the onset of AD.22,23 290 

In comparison to established models for AD diagnosis, our developed scorecard has 291 

exhibited promising performance. Fraser et al. demonstrated an accuracy of 82% utilizing only 292 

neuropsychological (NPS) variables with a larger dataset comprising 167 AD samples and 97 293 

healthy controls.24 When examining MCI discrimination, our scorecard, with an accuracy of 294 

80.4% and an AUC of 0.893, remains competitive. Notably, it compares favorably with Ye et 295 

al.'s logistic regression model, which achieved AUCs of 0.77 using only NPS, 0.81 using NPS 296 
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and biological data, and 0.86 using NPS, biological, and imaging data, in the context of 142 MCI 297 

converters and 177 MCI non-converters.25 Lastly, our scorecard has a better AUC compared to 298 

an interpretable model from an existing study that achieved an AUC of 0.86.26 While 299 

acknowledging the nuanced differences in sample sizes, features, and methodologies across 300 

studies, our findings suggest the potential utility and efficacy of our scorecard in contributing to 301 

the field of AD diagnosis.  302 

Despite not attaining the highest AUC in comparison to baseline models, a notable 303 

advantage of our scorecard lies in its interpretability. While some high-performing models may 304 

exhibit superior discrimination metrics, their complexity often renders them opaque in terms of 305 

feature contributions. In contrast, our scorecard's interpretability provides clinicians with a clear 306 

explanation of the specific neuropsychological and biological features influencing its predictions. 307 

This transparency promotes human-computer interaction, in this case, trust between clinicians 308 

and the machine learning outputs.8 Furthermore, these scorecards offer flexibility in their 309 

implementation, which allows clinicians to incorporate their knowledge of expertise into the 310 

scorecards when predicting the risk of AD development. For example, in our scorecard (Figure 311 

1), being younger than 76 years old would decrease the total points by 2. However, a 75-year-old 312 

patient is not significantly younger than 76 years old. In this case, the clinician can incorporate 313 

their judgement and assign a 0 to the age feature, indicating that being 75 years old does not 314 

decrease the risk of AD development. The balance between performance, interpretability, and 315 

flexibility positions our scorecard as a promising tool for practical clinical application, where 316 

understanding the rationale behind predictions is paramount for effective and informed decision 317 

support.  318 
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There are some limitations in our study. The scorecards generated in this study are only 319 

applicable to one type of dementia – Alzheimer’s. Future work incorporating individuals who 320 

develop other types of dementia may result in different results or patterns of the scorecards. For 321 

example, a scorecard consisting of individuals with Frontotemporal Dementia (FTD) may 322 

highlight neuropsychiatric symptoms and a language feature in the card instead of memory, as 323 

seen in our study.27,28 This future development would also better inform primary care physicians 324 

which further tests to refer their patients to confirm their diagnosis, which will cut down some 325 

costs compared to sending the patients to all tests/procedures. Additionally, the demographic 326 

composition of the ADNI sample, predominantly White and highly educated individuals, 327 

highlights the need for further validation in more diverse populations to ensure the 328 

generalizability of our findings. Regarding the accessibility of the tests that were included in our 329 

scorecard, APOE genotyping is primarily used in research settings and is currently not included 330 

as a routine test in healthcare settings. Changes in healthcare policy are necessary to disseminate 331 

and implement the scorecard in clinical settings. 332 

Our study lays the groundwork for a more accessible and population-wide approach to 333 

screening for Alzheimer’s disease. As the field advances, the integration of emerging and readily 334 

available biomarkers, such as blood plasma tests, holds promise for enhancing the predictive 335 

accuracy of our scorecards. Recent advancements in blood plasma biomarkers for AD, such as 336 

the measurement of amyloid-beta and tau proteins, offer a non-invasive and cost-effective 337 

method for early detection, showing promising results in correlating with traditional 338 

neuroimaging and cerebrospinal fluid markers.29,30 Moving forward, our next objective is to 339 

validate these scorecards using an independent dataset to assess their stability and 340 

generalizability across diverse populations. Additionally, we aim to collaborate with primary 341 
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care physicians to collect both qualitative and quantitative data on the feasibility and potential 342 

impact of implementing these scorecards in routine clinical practice. This collaboration will 343 

provide valuable insights into the practical challenges and opportunities for integrating our tool 344 

into the healthcare system. 345 

Conclusion 346 

Our study generated a robust scoring system for predicting the likelihood of developing 347 

Alzheimer’s disease using accessible and cost-efficient variables through interpretable machine 348 

learning. This framework's interpretability may aid primary care physicians in providing early 349 

detection to their patients, including those residing in resource-constrained areas.  350 

 351 

 352 

 353 

 354 

 355 

 356 

 357 

  358 
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Table 1. Table of demographic and cognition data by diagnostic group 466 
Participants 

characteristics  
Stable normal 

(n = 177) 
NC-AD  
(n = 23)  

Stable aMCI  
(n = 232)  

aMCI-AD 
(n= 281)  

Age (years)  73.1 (6)* 75.9 (4)* 72.4 (7.5)** 74.3 (6.9)** 
Education (years)  16.6 (2.6) 16 (2.8) 16 (2.8) 15.8 (2.8) 
   n (%) n (%) n (%) n (%) 
Female 96 (54.2%) 13 (56.5%) 94 (40.5%) 115 (40.9%) 
APOE e4 non-
carriers 

135 (76.3%) 12 (52.2 %) 142 (61.2 %) 95 (33.8%) 

 M (SD) M (SD) M (SD) M (SD) 
FAQ  0.1 (0.4)** 0.7 (2.8)** 1.5 (2.8)*** 5.2 (4.9)*** 
Cognition     
MMSE 29.1 (1.1) 29.5 (0.6) 28 (1.7)*** 27 (1.8)*** 

LDEL 13.7 (3) 13 (4.2) 7 (3)*** 3.6 (3.1)*** 
TMT A 32.2 (9.7)* 37 (14.9)* 37.9 (16.1)*** 46.9 (24.4)*** 
TMT B 76.4 (35.9) 89.5 (36.2) 95.5 (48.8)*** 139 (75.1)*** 
RAVLT immediate 47.1 (9.6) 44.3 (9.5) 37.8 (10.5)*** 28.8 (7.4)*** 
RAVLT learning 6.4 (2.2) 6 (2.6) 4.8 (2.5)*** 3 (2.2)*** 

  CATANIMSC 21.2 (5.1) 19.9 (5.3) 18.3 (5.1)*** 15.6 (4.8)*** 

NC-AD = Normal cognition to Alzheimer’s; aMCI = amnestic mild cognitive impairment; 
APOE e4 = Apolipoprotein e4 allele; FAQ=Functional Activities Questionnaire; MMSE = 
Mini-Mental State Examination; LDEL = Logical Memory delayed recall; TMT = Trail Making 
Test; RAVLT = Rey Auditory Verbal Learning Test; CATANIMSC = Category Fluency 
(Animals); M = mean. SD = standard deviation. 
 
Differences between stable normal vs. NC-AD or stable aMCI vs. aMCI-AD, * p < 0.05, 
**p<0.01, ***p<0.001   
FAQ and Cognition adjusted for age, education, and APOE4. 
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Table 2. Scorecard with the highest AUC and Risk Score to assess AD development probability  468 

Variables Points  

1. Age <= 76.3 
2. APOE4 <= 0 
3. RAVLT immediate <= 36 
4. LDEL <= 3 
5. FAQ <= 2 

-2 points 
-3 points 
4 points 
5 points 
-5 points 

       … 
  +   … 
  +   … 
  +   … 
  +   

 SCORE   = 

APOE4 = Apolipoprotein e4 allele; RAVLT = Rey Auditory Verbal Learning; LDEL = Logical 469 
Memory delayed recall; Test; FAQ=Functional Activities Questionnaire 470 
 471 

Score -10 -5 -3 -2 0 1 3 5 7 9 

Risk (%) 4.3 23.7 40.4 50.0 68.5 76.3 87.5 93.8 97.1 98.6 
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Figure 1. Pipeline of conducting FasterRisk algorithm to generate the CAFE scorecard and its 473 

clinical application. 474 
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ACC = accuracy; AUC = area under the curve; APOE e4 = Apolipoprotein e4 allele; RAVLT = 485 

Rey Auditory Verbal Learning Test; LDEL = Logical Memory delayed recall; FAQ=Functional 486 

Activities Questionnaire  487 
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Figure 2. Frequency of selected features in the 10 scorecards 488 
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APOE e4 = Apolipoprotein e4 allele; RAVLT = Rey Auditory Verbal Learning Test; LDEL = 500 
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