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The genetic liability to a complex phenotype is calculated as the sum
of genotypes, weighted by effect size estimates derived from sum-
mary statistics of genome-wide association study (GWAS) data. Due
to different allele frequencies (AF) and linkage disequilibrium (LD)
patterns across populations, polygenic risk scores (PRS) that were de-
veloped on one population drop drastically in predictive performance
when transferred to another. One of the major factors contributing to
AF and LD heterogeneity is genetic drift, which acts strongly during
population bottlenecks and is influenced by the dominance of certain
alleles. In particular, since the causal variants on empirical data are
typically not known, the presence of population specific LD-patterns
will strongly affect transferability of PRS models. In this work, we
therefore conducted demographic simulations to investigate the in-
fluence of the dominance coefficient on the transferability of PRS
among European, African and Asian populations. By modifying the
length and size of the bottleneck leading to the split of Eurasian and
African populations, we gain a deeper understanding of the underly-
ing dynamics. Finally, we illustrate that PRS models that are adapted
to the underlying dominance coefficient can substantially increase
their prediction performance in out-of-target populations.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

polygenic risk scores | transferability | population genetics | genetic drift |Wright-Fisher

simulations

Many common diseases are governed by polygenic inheritance1

and are therefore influenced by many genetic variants with2

small effect sizes. Thousands of genomic loci contributing to disease3

risks have been identified in large genome wide association studies4

(GWAS) and scoring approaches have been developed to estimate an5

individual’s liability for a certain disorder (1, 2). With GWAS com-6

prising many thousands of cases and controls, the precision of these7

models increased tremendously and groups of individuals with several-8

fold increased risk, which is comparable to monogenic variants with9

high effect size, can be identified (3, 4). Most of these models were10

trained and tested predominantly on individuals of European ethnicity,11

and achieved lower predictive power for individuals of other ethnic-12

ities. This issue was further examined by Bitarello and Mathieson,13

who observed that for a trait with high narrow-sense heritability (h2),14

such as height, the predictive performance of the polygenic risk scores15

decreases linearly with the proportion of non-European ethnicity in16

the genome (5, 6). In addition to the effects of genetic drift, selection17

also affects the distribution of deleterious variants. As GWAS and18

PRS calculations mostly assume additive selection, the effect of domi-19

nance may be overseen in the results and consequently could influence20

the accuracy of the risk prediction (7). Heyne et al. considered mono-21

and biallelic variants for Mendelian and common diseases and found22

that 13 out of 20 recessive associations would have been missed by23

an additive model (8). For complex diseases, Guindo-Martínez et24

al. determined that 21% of the associations would have been missed25

if restricted to the additive model (7). In our work we studied the26

effect of genetic drift as well as the dominance coefficients on the27

transferability of PRS models by simulating population genetic data. 28

We applied a demographic model that is based on the allele frequency 29

distributions from the 1000 genomes project and that can be used to 30

simulate populations that went through a bottleneck and re-expanded 31

(“Out of Africa”) (9). For the different selection patterns we simulated 32

multiple sets of pathogenic variants that differed in their dominance 33

coefficient. On these data we tested the transferability of PRS models 34

for different genetic architectures that are already available in standard 35

association analysis software. 36

1. Modeling of Populations and PRS 37

A. Historic population model. Demographic histories of three dif- 38

ferent populations were simulated with parameter settings as previ- 39

ously described (9). By this means, we generated populations with 40

site frequency spectra representative of African (AFR), European 41

(EUR) and Asian (EAS, East Asian) populations. The genomic data 42

was generated with the evolutionary simulation framework SLiM 43

version 3.7 (10) and based on an implementation described in the 44

SLiM manual (11). The simulation starts with an ancestral popula- 45

tion, which we will refer to as the “African” population (AFR), of 46

7,310 individuals and remains in this state for 73,104 generations. 47

During this period of time, an equilibrium state of genetic diversity 48

is established through mutation and selection. In mutation-selection 49

balance, key parameters such as the site frequency spectrum or the 50

expected number of sequence differences between two chromosomes 51

do not change anymore from one generation to another. Mutation- 52

selection balance is reached after approximately 25,000 generations 53

(SI Appendix, Fig. S1a) (12). After a timespan of 73,104 genera- 54
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Table 1. Parameter settings for the scenarios of the simplified model:
nb= bottleneck size, lb = bottleneck length, r = exponential reproduc-
tion rate, n f inal = final size of population

Scenario nb lb r n f inal

Baseline 2,000 1,000 0.002449559 20,000
lb down 2,000 500 0.002449559 20,000
lb up 2,000 2,000 0.002449559 20,000
nb down 1,000 1,000 0.002449559 10,000
nb up 4,000 1,000 0.002449559 40,000

tions, the ancestral population experiences its first event, an expansion55

to 14,474 individuals. In generation 76,968, a bottleneck event oc-56

curs, and a second population, which we refer to as the “Eurasian”57

population, of 1,861 individuals forms, whose population size re-58

mains constant for 1,116 generations. Eurasian individuals then split59

into an “European” population (EUR) of 1,032 individuals and an60

“Asian” population for which only the expansion of the East Asian61

(EAS) with initially 554 individuals is further studied. Both popu-62

lations undergo exponential growth at differing rates (rEUR= 0.003863

and rEAS = 0.0048, n = nb · exp(rt) with n being the current popula-64

tion size, nb the population size before the exponential growth, and65

t the number of generations that have passed since the beginning of66

exponential growth) before reaching population sizes of 36,727 for67

EUR and 50,472 for EAS populations in generation 79,025 (Figure68

1A). Migration was not included to receive only individuals with69

unambiguous ethnicity. A principal component analysis (PCA) with70

PLINK 2.0 for the samples of all three populations confirmed distinct71

clusters (Figure 1B, Davies Bouldin index 0.21) (13). Furthermore,72

the simulated individuals of EUR and EAS are closer to each other73

than AFR, indicating their more recent split (Figure 1B).74

B. Simplified demographic model. Since we are interested in75

studying the effect of the bottleneck parameters, we used a simplified76

model that results in the same sizes of the populations before and77

after the bottleneck (Figure 1C). The demography of the simplified78

scenarios is the following: we start with an “African” population of nb79

individuals who remain in this state for 73,104 generations to establish80

a mutation-selection balance. After 73,104 generations, the African81

population expands to nfinal individuals (equal to the population sizes82

reached by EUR and EAS populations after exponential growth). The83

bottleneck event occurs in generation 76,968, forming a “Eurasian”84

population of nb individuals. Its population size remains constant for85

lb generations. Following that, the Eurasian population duplicates86

to create an “Asian” population and a “European” population both87

with sizes nb. The two populations then undergo exponential growth88

for 940 generations, this time with the same exponential growth rate89

r. Finally, they reach population sizes n f inal. In the results section,90

if parameters are not otherwise specified, in the baseline scenario91

the parameters are set to nb = 2,000, lb = 1,000, and r = 0.00245,92

n f inal = 20, 000. For the other scenarios, exactly one of the parameters93

was changed: the bottleneck size nb (initial Eurasian population) or the94

bottleneck length lb (number of generations the Eurasian population95

remained constant) were either halved or doubled (see Table 1).96

C. Simulation of genomic data. In our simulations, a diploid97

genome consisted of a single autosome of 100 Megabases which98

is representative of a human chromosome (14, 15). Since variants on99

different chromosomes are typically in linkage equilibrium, adding100

more chromosomes would not affect the dynamics of our simulations.101

Non-coding sections alternated with 1,000 coding sections (“genes”)102

Fig. 1. (A) Development of population sizes. Shown are the simulated population sizes
(in individuals) over time in generations (25 years per generation) for the first model.
The simulation starts with the ancestral African population (red) and experiences
a bottleneck event, which yields the Eurasian bottleneck population (blue). The
Eurasian population splits into European (green) and Asian (orange) populations
which undergo exponential growth. (B) The first two principal components for the final
three populations with a dominance coefficient of h = 0.5, simulating additive selection.
Visible is a smaller distance between EUR and EAS indicating closer relatedness. (C)
Development of population sizes for the simplified model with variable bottleneck size
nb and length lb.
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of uniformly distributed lengths between 500 and 10,000 base pairs103

(bp). The coding sections had a combined length of 5,412,984 bp104

corresponding to 5% which is representative of a gene dense chromo-105

some (16). To examine dominance effects, separate simulations were106

performed using dominance coefficients of h = {0.05, 0.5, 0.8} (17),107

representing an almost recessive scenario, additive selection, and in-108

complete dominance, respectively. The majority of variants were109

neutral with a fixed selection coefficient s = 0 and occurred on the110

whole genome. Deleterious variants with h = {0.05, 0.5, 0.8} and111

a fixed s = −0.001 (17) could only occur in the coding sections.112

Coding sections contained neutral and deleterious variants in a ra-113

tio of 8:1. The mutation rate was 1.2 × 10−8 per bp per generation,114

and the recombination rate was 1 × 10−8 (18, 19). Each population115

was divided equally into male and female individuals. The fitness116

of an individual as a function of genomic background was used as117

a quantitative phenotype (20). The total fitness w of an individual118

was computed by multiplying the contributions of each variant in its119

respective genotype, that is (1 + s) for homozygous and (1 + hs) for120

heterozygous:121

w = (1 + s)i(1 + hs) j,122

with i: number of homozygotes, j: number of heterozygotes. The123

genomic variations of each population were saved as VCF files. Al-124

though the genomic architecture in our simulations is similar to e.g.125

the human chromosome 15, it has to be noted that variants and recom-126

binations occur randomly in AFR, EUR, EAS and, therefore, only127

their site frequency spectra are comparable to real ethnicities such128

as e.g. YRI (Yoruba in Ibadan, Nigeria), CEU (Utah residents with129

Northern and Western European ancestry), and CHB (Han Chinese in130

Beijing, China) (21).131

D. Polygenic risk score analysis and transferability. For the132

PRS modeling the data of each population was split into training133

(80%) and test (20%) data sets by 100-fold repeated random subsam-134

pling. For the simulations of the simplified scenarios that were used135

to study the effect of genetic drift in detail, we performed the analysis136

for 50 different seeds. PRS modeling was conducted with the same137

ratio of training to test data with 10-fold repeated random subsam-138

pling. For both population models, genome-wide association studies139

were conducted with PLINK 2.0 and executed for the training sets,140

including the covariates (sex, historic model only: first ten principal141

components of the genotype matrix). A minor allele frequency filter142

of 0.01 was applied (2). The additive model was utilized as default143

if not otherwise specified. Here, the genotypes are coded as 0/1/2,144

counting zero, one or two occurrences of the effective allele. For145

recessive and dominant models, genotypes can be encoded as 0/0/1146

and 0/1/1, respectively. PRS computation on the EUR population147

was performed with PRSice-2, using the standard C+T method (22).148

As summary statistics, the GWAS of the EUR training samples were149

used and the p-value threshold was optimized for the corresponding150

test sets. Clumping was executed with default settings: a clumping151

distance of 250 kb and an R2 threshold of 0.1.152

After that, linear scoring was performed on the test sets with153

PLINK 2.0 using the obtained effect sizes. Linear models were fitted154

to the training data of the European populations in R regarding the155

fitness as phenotype and including sex, PCs and the PRS as covariates156

( f itness ∼ 1 + sex + PC1 + PC2 + PC3 + PC4 + PC5 + PC6 +157

PC7+PC8+PC9+PC10+PRS ) in the historic demographic model.158

Including principal components in PRS modeling had no effect on the159

performance in the historic model (SI Appendix, Fig. S2) and was160

omitted in the further analysis in order to reduce computational costs161

of the simplified scenarios. Therefore, the simplified model included162

Fig. 2. Transferability of the PRS model to different ethnicities. The original PRS
model was trained on simulation data of the EUR population. R2 was computed for all
three different populations (EUR (green), AFR (red), EAS (orange)). Shown are the
R2 of the 100 subsamples for each dominance coefficient h (h = 0.05 for a model with
recessive variants, h = 0.5 for additive variants, and h = 0.8 for dominant variants).
R2 drops substantially when applied to another population. The transferability of the
model to EAS is higher than for AFR due to a longer shared demographic history
(split up after bottleneck). All differences are significant (SI Appendix, Table S7).

sex and PRS as covariates ( f itness ∼ 1+ sex+ PRS ). The coefficient 163

of determination R2 was calculated as the squared correlation of 164

observed and predicted phenotype on the test data. For the simplified 165

model, the resulting PRS performance measure was averaged over 166

the test folds for each seed. Linear scoring was also used to apply 167

the effect sizes of the European population to the other populations, 168

that is EAS and AFR. Finally, for the two out-of-target populations 169

separately, the R2 was computed to quantify the transferability of the 170

models. 171

2. Results 172

A. Transferability of the PRS models to different ethnicities. 173

The original PRS model was trained and tested on simulation data 174

of the European population. The resulting PRS were also applied to 175

two populations of different ethnicities, EAS, and AFR (Figure 2). As 176

expected, the application of the computed European effect sizes on 177

individuals of the same ethnicity and variants with additive effects 178

(h = 0.5) resulted in the highest median R2 of 0.56. For variants 179

with dominant effect (h = 0.8), the R2 was lower with a median 180

value of around 0.51. The predictive performance was lowest for 181

recessive variants (h = 0.05) and a median R2 of 0.37 was achieved. 182

We then applied the European PRS model on simulation data of 183

AFR and EAS individuals. For additive and dominant variants, the 184

European PRS model hardly achieved any predictive value for AFR 185

(R2 around 0.001). The scenario for recessive variants showed a 186

slightly higher predictive performance with a median R2 of 0.013. 187

Regarding the transfer of European effect sizes to EAS individuals, 188

median R2 values between 0.10 and 0.21 were reached, showing the 189

highest predictive performance for individuals with recessive variants. 190

After the split from the African population, the Eurasian bottleneck 191

population was maintained for 1,116 generations before its separation, 192

resulting in genetically closer individuals. This can explain the higher 193

predictive performance for the Asian population compared to the 194

African population. All differences in medians between populations 195

and dominance coefficients were significant (SI Appendix, Table S7). 196
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Fig. 3. Effects of bottleneck length on PRS transferability. The PRS was modeled
on 50 simulations of the European population (EUR) that came out of Africa (AFR)
through a bottleneck of different duration (length of bottleneck, lb=500, 1000, 2000
generations) but constant size (nb= 2000 individuals). The bottleneck decreases the
effective population size, making the population more homogeneous the longer it
lasts (A). Therefore, R2 increases slightly for EUR from lb= 500 to lb= 2000. Likewise,
the transferability between EUR and Asia (EAS), whose populations split after the
bottleneck, increases for larger lb (C). In contrast, an opposite effect is seen for the
transferability to AFR. The longer the bottleneck lasts, the higher is the effect of
drift, decreasing the genetic similarity between EUR and AFR (B). For significance in
medians see SI Appendix, Table S8.

B. Effect of genetic drift and effective populations size. In addi-197

tion to our historic demographic model, we considered the simplified198

model to study the effect of the bottleneck size nb and length lb on the199

transferability of PRS. We received quantitatively similar results for200

the historic model of one simulation and the simplified model with201

baseline parameters of averages over 50 simulations (SI Appendix,202

Fig. S3). The subsequent results are always based on the simplified203

scenario. For an additive dominance coefficient of h = 0.5, shortening204

the Eurasian bottleneck (lb) reduces the predictive performance for205

EUR and EAS populations, since the heterogeneity of the population206

after the bottleneck and before the EUR and EAS split is higher than207

in the baseline scenario (Fig 3). In contrast to the EAS population, the208

transferability to AFR individuals was higher for shorter bottleneck209

length (lb).210

For recessive (h = 0.05) and dominant (h = 0.8) settings, the211

effects of bottleneck length stay qualitatively the same (SI Appendix,212

Fig. S4). However, the predictive performance regarding the recessive213

scenarios shows lower values for application on European individuals214

and overall higher performance for the transfer to the other ethnicities.215

Considering h = 0.8, performance is located between recessive and216

additive settings on the European population. The transfer to African217

and Asian populations results in the lowest levels with respect to the218

dominance coefficients.219

The size and length of the population bottleneck also affects the220

correlation between randomly chosen alleles of individuals of different221

populations due to random drift (Wright’s F-statistics, SI Appendix,222

Fig. S5). For instance decreasing nb and increasing lb both result in223

more drift and higher FS T values between AFR and EUR.224

The size of the bottleneck, nb, mainly influences the effective pop-225

ulation size. For smaller nb, the probability that pathogenic variants226

achieve a higher allele frequency in the population increases due227

to more genetic drift. On the other hand, a more severe bottleneck228

results in more prominent purging of recessive alleles (inbreeding229

depression) (23). Therefore, the strongest effect on predictability and230

transferability can be observed for h = 0.05 in EUR and EAS: The231

smaller nb, the higher R2 (SI Appendix, Fig. S1 b-f, Fig. S6, Tables 232

S1-S6). 233

C. Effect of the genetic model on the PRS. The terms recessive, 234

additive and dominant describe both the variant effects in the sim- 235

ulations (dominance coefficient h) and also the genetic model used 236

during PRS calculations. For a clearer distinction, we will refer to 237

the genetic model as mode of inheritance (MOI). In the preceding 238

results, the conventional choice of an additive MOI was used. This 239

approach can detect associations of common variants with additive 240

and to a certain extent also non-additive effects, but yields suboptimal 241

results for most Mendelian and complex disease variants that deviate 242

from strict semidominance (7, 8, 24). The impact of different MOI 243

on polygenic traits was examined on the simulated European popula- 244

tion data. Besides the standard additive assumption, it is possible in 245

PLINK 2.0 and PRSice-2 to select recessive or dominant MOI. Each 246

MOI model works best on its corresponding variants (Figure 4A). 247

Particularly prominent is the increase in predictive performance for 248

recessive effects (h = 0.05) when a recessive MOI is applied instead 249

of the default additive assumption: an increase in median R2 from 250

0.32 to 0.77. 251

The recessive MOI not only improves the predictive performance 252

on its base population, it also increases the transferability to popu- 253

lations of other ethnicity compared to the additive MOI (Figure 4 B 254

and C). We observed an increase in R2 from 0.024 to 0.15 regarding 255

the transfer of European effect sizes to African individuals, and from 256

0.15 to 0.54 concerning Asian individuals. The use of dominant MOI 257

also improves predictive performance for the scenario with dominant 258

variants slightly. However, the performance differences between the 259

additive and dominant model are more moderate due to the relatively 260

small proportion of homozygous states which is were the two models 261

differ in weighting (SI Appendix, Table S2). 262

3. Discussion 263

PRS are increasingly used in healthcare and therefore their trans- 264

ferability to different populations matters. For the transferability of 265

a risk model, the proportion of pathogenic variants that is retained 266

or common to both populations, as well as differences in their al- 267

lele frequency spectrum are crucial. The main forces affecting these 268

characteristics are genetic drift and selection (5, 25–27). 269

In this work we studied the effect from drift resulting from de- 270

mographic perturbations and selection mediated by the dominance 271

coefficient h on the transferability of polygenic risk models. We evalu- 272

ated a simplified demographic model with three different populations 273

that were separated before or after a bottleneck. The length and size of 274

the bottleneck, as well as the dominance coefficients of the pathogenic 275

variants were varied and the transferability of the PRS trained on one 276

population to the other two was averaged over 50 simulations per 277

parameter setting. We aimed to study the effect of each parameter 278

while keeping the others constant, and in total, data from 750 dif- 279

ferent simulations were evaluated. The baseline scenario aimed to 280

emulate a realization of an European (EUR), an East Asian (EAS), 281

and an African (AFR) population and varying the bottleneck size (nb) 282

and length (lb) had partially opposing effects on the transferability 283

of the PRS from EUR to EAS and AFR: A larger lb and smaller nb 284

increases drift, therefore we expected a negative effect of these param- 285

eter changes on the transferability for populations separated by the 286

bottleneck (EUR-AFR). On the other hand, transferability increases 287

for EUR-EAS, the more homogeneous the populations are before 288

expansion. In that regard a larger lb works in favor of transferabil- 289

ity. Overall, the transferability from the EUR model to AFR is so 290
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Fig. 4. Effect of the genetic model on the PRS. The choice of the dominance coefficient h in the simulations affects PRS. h = 0.05 is best modeled with a recessive mode of
inheritance (MOI), h = 0.5 with additive MOI, and h = 0.8 is most similar to a dominant MOI. The default setting for PRS modeling is “additive” but can be adapted to “recessive”
and “dominant” in plink2 and PRSice. Shown is the performance for the three possible models trained and applied on EUR individuals (A). All PRS models perform best when
the MOI matches the dominance coefficient. This also applies to the transferability of PRS models on African (B), and Asian (C) individuals. The predictive performance in EAS
and AFR for h = 0.05 benefits from modeling with recessive MOI and achieves substantially higher R2 than the other. For significance in medians see SI Appendix, Table S9.

low, that admixture will result in a linear relationship as described by291

Bitarello and Mathieson. In contrast, for the transferability to EAS292

the demographic parameters length and size of bottleneck had a clear293

impact.294

The characteristics of the bottleneck also affect the interplay be-295

tween selection and drift and consequently the transferability for296

different dominance coefficients. First, we found that a higher pre-297

dictive performance was reached if the applied MOI during PRS298

computation corresponded to the simulated dominance coefficient.299

This was found to be true not only for EUR individuals and the trans-300

ferability of effect sizes to the genetically closer EAS individuals,301

but an improvement was also recorded for the transfer to the AFR302

population. Especially by incorporating recessive MOI, we observed303

a considerable improvement for recessive variants (Figure 4).304

Previous works have focused on ancestry-adjusted PRS to increase305

transferability across different populations (25, 28). However, our306

work uncovered two main aspects: (1) the need for adequately mod-307

eling the underlying dominance coefficient particularly for recessive308

variants and (2) the effects of a bottleneck strongly limiting the poten-309

tial transferability of PRS.310

With respect to the first aspect, Heyne, et al. have shown that311

recessive modeling can detect additional associations that have not312

been found with additive modeling (8). In our simulations, when 313

the MOI was known, we could confirm those findings. However, 314

when working with non-simulated data, the true effect of the vari- 315

ants may not be known and especially not be uniform. Different 316

approaches to adequately model the underlying dominance coefficient 317

have been proposed. One way to handle this situation would be to 318

accept the maximum of the additive, recessive and dominant models 319

(MAX3, (29)). Kim et al. propose an association test that does not 320

require prior knowledge of the dominance of each variant (30). They 321

include different genetic models for each variant and make use of a 322

Cauchy Combination Test (focuses on SNP-set associations). Ohta 323

et al. infer the dominance coefficient of each variant and use adapted 324

base-learners in a statistical boosting framework (31). 325

Regarding the second aspect, our work revealed the effects on 326

genetic drift and selection during the bottleneck that highly influence 327

the genetic homogeneity between the different populations. Partic- 328

ularly, the dominance coefficient of deleterious variants determined 329

the number of such after the occurrence of a bottleneck. For some 330

settings, the EUR and AFR populations were heterogeneous to an 331

extent in which a transferability of an EUR PRS to an AFR population 332

seems impossible. 333

In our work we mainly analyzed the consequences of varying de- 334
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grees of genetic drift and selection during the bottleneck. Although335

we could explain many of the trends we observed for the transfer-336

ability, some of the quantitative findings will also require a more337

comprehensive analysis of the growth rates after the bottleneck. For338

the frequency distribution of single pathogenic variants, it has already339

been shown that the burden rate and expansion load will also depend340

on the dominance coefficient (17, 32). We could confirm these previ-341

ous findings and acknowledge that further simulations are required to342

analyze the effect of the population expansion on the transferability343

(SI Appendix, Fig. S7-S11).344

In conclusion, we showed by simulations that genetic drift result-345

ing from demographic perturbations and selection are the driving346

factors for a loss of transferability. Therefore, while methods such347

as ancestry-adjusted PRS and non-additive modelling can increase348

the transferability for some populations, the ultimate goal should be349

to create more diverse biobanks and develop methods that explicitly350

consider ancestry in polygenic risk modeling.351

Code availability. The scripts for the simulations and the analysis are352

available at: https://github.com/fohler/PRS_transferability.353
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