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Abstract
Electronic health records can be used to track diagnoses and drug prescriptions in large heterogeneous popula-
tions over time. Coupled with recent advances in causal inference from observational data, these records offer new
opportunities to emulate clinical trials and identify potential targets for drug repositioning. Here, we run a hypoth-
esis generating cohort study of Danes aged 50 to 80 years from 2001 to 2015 (n = 2,512,380), covering a total of
23,371,354 years of observations. We examine prescription drugs at ATC level-4 and their effect on 9 major disease
outcomes. Using Bayesian time-varying Cox regression and longitudinal minimum loss estimation, our analysis suc-
cessfully reproduces known drug-disease associations from clinical trials, such as the reduction in the 3-year absolute
risk of death associated with Statins (ATC:C10AA) -0.8% (95% CI =[-1.2%, -0.5%]) and -0.8% (95% CI =[-1.3%,
-0.2%]) for females and males, respectively. Additionally, we discovered novel associations that suggest potential
repositioning opportunities. For instance, Statins were associated with a reduction in the 3-year absolute risk of
dementia by -0.3% (95% CI =[-0.5%, -0.1%]) for females and -0.2% (95% CI =[-0.4%, 0.1%]) for males. Further-
more, Biguanides (ATC:P01BB) stands out as a particularly interesting candidate with absolute risk reductions
across various outcomes. In total, we identified 76 potential drug-disease pairs for further investigation. However,
it should be stressed that the emulation of clinical trials here is solely of hypothesis generating nature and iden-
tified effects need to be corroborated with additional evidence, preferably from RTCs, as the risk of confounding
by indication in this study is substantial. In summary, this study provides a large-scale screen of prescribed drugs
and their effect on major debilitating disease in the Danish health registries. This provides an additional source of
information that can be used in the search for possible repositioning candidates.
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1 Introduction1

The development of new drugs is a time-consuming and expensive process with high rates of attrition often caused2

by efficacy- and safety-related failures [1–3]. Drug repurposing, re-utilizing approved drugs for target scopes other3

than the intended purpose, provides an intriguing proposition due to the reduced risk of adverse side effects given4

the prior assessment and evaluation for safety and dosing [4]. Repurposing propositions have largely been based on5

pharmacology and retrospective analysis with the most notable successes having been serendipitous like sildenafil6

for erectile dysfunction [5] or thalidomide for Multiple Myeloma [6] and Acute Myeloid Leukemia (AML) [7].7

More systematic studies to produce testable hypotheses range from experimental approaches like binding assays8

and phenotypic screening to computational methods like genetic association studies, molecular docking, signature9

matching, pathway mapping, or the mining of Electronic Health Records (EHRs).10

EHRs contribute a rich longitudinal and phenotypic data source, providing real-world evaluations of drug usage11

in large heterogeneous patient cohorts over prolonged time periods. The era of big data along with the development12

of new methods in the context of causality from observational data [8, 9], has opened new opportunities to leverage13

these data for novel insights by utilizing observational data to emulate hypothetical trials [10, 11].14

These approaches have already informed clinical decision-making [12–14] and are particularly useful when a15

classical randomized clinical trial may not be feasible, due to time or ethical constraints. This was especially apparent16

during the SARS-CoV-2 pandemic when causality methods were used to evaluate the comparative effectiveness of17

the different vaccinations and booster campaigns in a rapidly evolving environment [15]. Additionally, conducting18

an observational study with a target trail in mind can help avoid certain statistical pitfalls like immortal time bias19

[16] and provide more robust effect estimates [17].20
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Here we make use of the Danish National Prescription Registry (DNPR) [18] and the Danish National Patient21

Registry (LPR) [19] combining information on all prescribed drugs dispensed through Danish community phar-22

macies and secondary care diagnoses across all of Denmark since 1995. We examine the joint contributions of an23

individual’s drug usage and their comorbidities on the corresponding risk of onset for 9 extensively studied major24

disease outcomes (Dementia, Extrapyramidal disorders, Coronary vascular disease (CVD), Renal failure, Chronic25

obstructive pulmonary disease (COPD), Liver disease, Inflammatory bowel disease (IBD), Cancer and Death). A26

schematic representation of the study can be seen in Figure 1. The first step in the analytic approach is based on a27

Bayesian version of a time-varying Cox regression model as described previously [20]. This provides a preliminary28

evaluation of the multivariate effect size of the dispensed drug with the specified disease outcomes. As a second29

step, we use longitudinal minimum loss estimation (Ltmle) [21, 22], a doubly robust causal inference method, to30

obtain robust effect estimates. While we do use methods from causality they are applied in a generic way across31

most drugs and various outcomes, rather than explicitly emulating a specific target trail, therefore, estimates should32

not be considered causal.33

This study is of a hypothesis generating nature and will provide a broad screen of dispensed drugs and their34

effects on selected major disease outcomes, ultimately providing a set of potential repurposing targets that could35

be corroborated with further evidence in the literature and potentially taken up for additional testing.36

Figure 1 Schematic representation of the study. Information on secondary care admission and pharmacy dispensed drugs of individuals
residing in Denmark aged 50-80 are collated. 75% of the individuals are used for an observational study design (upper part) and 25%
are used for a target trail design (lower part). For either design, 9 outcomes are evaluated. The final results are effect estimates for a
specific drug across the different outcomes, measured as either hazard ratio or average treatment effect for the different study designs,
respectively.

2 Results37

The study is based on all individuals residing in Denmark aged 50-80 years during a time window from 2001 until38

2015 covering more than 2.5 million individuals and a combined 23 million years of observation containing 12 million39

diagnoses and 44 million dispensed drugs (Supplementary Table 1). At any given point in time, the covariates40

comprise binary indicators for secondary care diagnoses (ICD-10-3rd level codes e.g. E11 - Type 2 diabetes mellitus,41

Chapters: I-XVII: 1125/1034 - females/males) and binary indicators for dispensed drugs (ATC-4th level codes, e.g.42

A10BA, total: 472/458 - females/males) in the past 5 years. Separate models for females and males are estimated43

to investigate potential differential effects between the sexes.44
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In total we make use of two different study designs. First, one that follows standard observational studies45

containing a cross-section of the population (75%), on which we estimate a time-dependent Cox regression model46

for each of the 9 outcomes as a 1-year ahead prediction (upper section Figure 1). Second, one that uses an emulated47

target trail design covering the remaining 25% of the population to obtain robust estimates for all drug-disease48

pairs (lower section Figure 1). The full protocol for the emulated target trail can be found in the Methods section.49

In brief, the hypothetical trial for a specific treatment (ATC drug) and outcome starts in 2008. Every individual50

aged 50-80 who did not have the outcome yet and was not on treatment in the past 5 years is eligible to join. Each51

individual is assigned a random time between 1 and 36 months. If an individual starts treatment during this time52

window they are in the treatment arm otherwise they are assigned to the control arm. An individual’s start time is53

either the allocated random time or the time when they start treatment, whichever comes earlier. An additional 12-54

month wash-out period is added to the start time to avoid confounding by indication but also to allow for a phase-in55

time of the drug. Subsequently, the next 36 months are used as the observation time on which the counterfactual56

estimates are based.57

An overview of the number of individuals in the two designs as well as some basic characteristics can be seen58

in Table 1 (additional information can be found in Supplementary Table 1). The numbers for the emulated target59

trail are only approximate as they depend on each treatment/outcome pairing. A table for ATC:C10AA (Statins)60

and CVD is given in Supplementary Table 2 with all other combinations provided in the Supplementary Data.61

Table 1 Data overview. Number of individuals in the two study designs split by sex with some basic characteristics.
Additionally the number of events for each outcome is shown as well as the number of excluded individuals due to
protocol violation e.g. prior disease indication. The numbers for the target trail are only approximate and should be
understood as a rough guide as each case is dependent on the treatment/outcome combination.

Bayesian Cox Regression Emulated Target Trial

Female Male Female Male
Individuals: 901,833 51.29% 856,426 48.71% 218023 51.38% 206301 48.62%
Age:

36-46 240,559 26.67% 237,831 27.77% 0 0.00% 0 0.00%
46-56 258,033 28.61% 258,120 30.14% 53,467 24.52% 53,114 24.36%
56-66 204,272 22.65% 199,519 23.30% 89,204 40.91% 88,261 40.48%
66-76 149,047 16.53% 126,268 14.74% 57,924 26.57% 51,579 23.66%
76-86 49,922 5.54% 34,688 4.05% 17,428 7.99% 13,347 6.12%

Events: Exclude: Events: Exclude: Events: Exclude: Events: Exclude:
Dementia 18,731 4,421 17,321 4,566 2119 1,993 1,842 1,966
Extrapyramidal 6,594 2,884 7,671 2,623 608 1,226 750 1,234
CVD 91,671 41,656 133,700 66,726 7,373 16,950 9,832 28,185
Renal 13,626 1,971 23,207 3,117 1,641 993 2,643 1,799
COPD 47,915 20,584 46,070 18,359 4,035 8,988 3,740 7,688
Liver 11,468 8,820 14,286 10,550 954 2,894 1,168 3,082
IBD 16,313 12,465 11,718 9,565 1,526 4,263 1,057 3,106
Cancer 94,895 57,604 105,562 28,932 7,946 20,435 9,780 12,247
Death 101,615 0 134,759 0 9,604 0 12,204 0

Risk assessment of comorbidities and medication history62

To understand the overall contribution of secondary care diagnoses and dispensed drugs to the risk of developing63

one of the 9 outcomes, as well as to gain an initial estimate of effect sizes for different drugs, we conducted a classic64

observational study using penalized time-dependent Cox regressions.65

Overall, as depicted in Figure 2a and Supplementary Table 3 age-adjusted concordance evaluated on an inde-66

pendent test set demonstrates good discrimination across most of the 9 outcomes with an average concordance of67

0.692 (s.d.=0.08) and 0.68 (s.d.=0.079) for females and males, respectively. Cancers exhibit the least predictability68

with a concordance of 0.552 (95% CI =[0.548, 0.556]) for females and 0.56 (95% CI =[0.556, 0.564]) for males in69

line with previous results [23]. Conversely, renal failure and death show the best discrimination with 0.798 (95% CI70

=[0.79, 0.806]) and 0.798 (95% CI =[0.796, 0.80]) for females and 0.775 (95% CI =[0.769, 0.781]) and 0.774 (95% CI71

=[0.772, 0.776]) for males. Generally, discrimination between the sexes is similar, with the largest difference being72

observed for COPD with a concordance of 0.684 (95% CI =[0.68, 0.688]) for females and 0.62 (95% CI =[0.614,73

0.626]) for males.74
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As the aim of this study is to identify potential candidates for repurposing, we focus on significant negative75

effect estimates based on the highest posterior density of 95% (HPD) [Figure 2b]. For females, there are a total of76

207 drugs associated with the 9 outcomes. Extrapyramidal disorders show the fewest associations with only 4, while77

death has the most associations with 59. Similarly, for males, a total of 189 drugs are associated with the outcomes,78

with the fewest associations identified for extrapyramidal disorders and IBD, each with only 1 drug, and the most79

associations identified for death, with 51 drugs. Comparing across sexes, we identify a total of 98 drugs that show80

an effect in both, with extrapyramidal disorders having none, IBD and cancer having only 1 each, while death has81

the most with 33 common associations. Forest plots for all significant estimates, irrespective of the direction of the82

effect for each outcome, can be found in Supplementary Figures 1-9. The entire set of estimates can be found in the83

Supplementary Data.84

Overall, effect estimates largely agree across sexes, showing high degrees of correlation between the log(hazard)85

estimates, as depicted in Figure 2c. All outcomes show Pearson correlations above 0.6, except for cancers, which86

shows a correlation of 0.459 [Supplementary Table 4]. Visual inspection of Figure 2c reveals that most estimates lie87

on the diagonal, indicating good agreement. However, some points lie on the respective axes, indicating estimates88

close to 0 for either sex. This does not necessarily reflect a true effect size of 0 but might instead be a result of the89

penalization term and a corresponding lack of power.90

Further, summarizing the effects within the corresponding ATC chapters in Figure 2d reveals overall patterns91

of drug/disease pairs. For instance, drugs in the chapter Alimentary Tract and Metabolism (A) show an effect92

for all 9 outcomes, followed by drugs categorized in the Cardiovascular system (C) and drugs in Antiparasitic93

products, insecticides, and repellents (P), both missing associations with extrapyramidal disorders only. No negative94

associations are found for drugs in the chapter Antineoplastic and immunomodulating agents (L).95

Figure 2 a: Age-sex adjusted concordance on test set (25%) across all outcomes. b: Number of negative and significant effects (based
on highest posterior density 95%) across all outcomes split by sex and combined (counting effects that are present in both sexes).
c: Scatter plot of the log(hazard) estimates between the model for females and males colored by the corresponding outcome that is
estimated. d:Number of negative and significant associations aggregated by ATC chapter for each outcome. Effects for females and
males are combined and treated as individual estimates. A ALIMENTARY TRACT AND METABOLISM, B BLOOD AND BLOOD
FORMING ORGANS, C CARDIOVASCULAR SYSTEM, D DERMATOLOGICALS, G GENITO URINARY SYSTEM AND SEX
HORMONES, H SYSTEMIC HORMONAL PREPARATIONS, EXCL. SEX HORMONES AND INSULINS, J ANTIINFECTIVES
FOR SYSTEMIC USE, L ANTINEOPLASTIC AND IMMUNOMODULATING AGENTS, M MUSCULO-SKELETAL SYSTEM, N
NERVOUS SYSTEM, P ANTIPARASITIC PRODUCTS, INSECTICIDES AND REPELLENTS, R RESPIRATORY SYSTEM, S
SENSORY ORGANS, V VARIOUS. e: Forest plot of the effect estimates for ATC:C10AA (Statins) and ATC:P01BB (Biguanides)
across all outcomes and split by sex.
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However, the potentially most meaningful insights can be gained when examining individual drugs across all96

outcomes simultaneously, as exemplified in the case of ATC:C10AA (Statins) and ATC:P01BB (Biguanides) in97

Figure 2e. Consistent with published clinical trial results [24, 25] ATC:C10AA shows a reduced risk of death, with98

a log(hazard) of -0.211 (95% CI =[-0.226, -0.196]) for females and -0.246 (95% CI =[-0.259, -0.233]) for males, as99

well as a reduced risk of CVD, with log(hazard) of -0.136 (95% CI =[-0.153, -0.12]) for females and -0.088 (95% CI100

=[-0.102, -0.074]) for males.101

Surprisingly, ATC:P01BB, a Biguanide used for the treatment and prevention of Malaria shows clear negative102

associations across most of the evaluated disease outcomes, with similar performance across the sexes. However,103

this could very well be due to unmeasured confounding by indication, as people who use anti-malaria drugs might104

be traveling and hence are most likely in an overall healthy state. On the other hand side, Biguanides classified105

in ATC:A10AB, used in diabetic care e.g. Metformin, show either no effect or an increase in risk [Supplementary106

Figure 10].107

Pseudo-causal evaluation of drug-disease pairs108

To further gain insights into the reliability of the estimates, we perform a pseudo-causality analysis across most109

drug/disease pairs (only combinations with at least 1000 treated individuals). As mentioned earlier, this analysis is110

conducted in a generic way to scale to the number of combinations analyzed here, a total of 890 for females and 742111

for males, rather than through a carefully crafted target trial; therefore, it is termed pseudo. While we do control112

for a large extent of an individual’s medical history, there might be imbalances between the groups compared for113

unobserved confounders, and estimates should be interpreted with caution.114

In total, we identify 76 drugs that show a significant negative association with the outcomes, with 52 for females,115

24 for males, and 12 common across sexes. Dementia and death exhibit the most associations, with 21 and 10 for116

females, and 4 and 10 for males, respectively. Cancer and IBD display the fewest associations for females, with117

only 1 drug identified for each, while IBD shows no effects for males. Common associations between sexes are only118

identified for dementia, CVD, COPD, and death [Figure 2a].119

Figure 3 a: Number of negative and significant effects (based the 95% confidence interval) across all outcomes split by sex and
combined (counting effects that are present in both sexes). b:Scatter plot of the average treatment effect (ATE) estimates between the
model for females and males colored by the corresponding outcome estimated. c: Venn diagram of the count of overlapping negative and
significant effects between the observational study and estimators based on the emulated target trial, including the longitudinal target
minimum loss estimator (Ltmle), inverse probability of treatment weighted estimator (IPTW), and a simple Cox regression. d: Forest
plot of the effect estimates for ATC:C10AA (Statins) and ATC:P01BB (Biguanides) across all outcomes and split by sex.
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Overall, estimates between females and males appear similar, as can be seen in Figure 2b, with most estimates120

being close to the diagonal. This similarity is also reflected in the correlation of the average treatment effect (ATE)121

estimates between the sexes, with all outcomes showing a correlation of at least 0.2, except for cancers, which have122

a correlation of 0.129 (Supplementary Table 5).123

Further, estimates are relatively stable between the two study designs and across different approaches, as124

illustrated in Figure 2c. Here, we present a Venn diagram of the identified significant negative associations for drug-125

disease pairs aggregated over the sexes. We compare the estimates from the observational Bayesian Cox regressions126

with the Ltmle estimates, inverse probability of treatment weighting estimates (IPTW), and estimates from sim-127

ple Cox regressions fitted to the emulated trial data. A total of 45 (9.9%) estimates appear similar between the128

Bayesian Cox regression and Ltmle. A large fraction of 341 (74.6%) associations are only identified in the Bayesian129

Cox regressions, however, this is also expected as this design has the most power and is potentially more prone130

to identifying spurious relations. Estimates largely overlap with a total of 26 (5.7%) associations identified in all131

approaches. A table showing all estimates across the approaches can be found in the Supplementary Data.132

Lastly, we can once again examine the effects of individual drugs across all outcomes simultaneously, as exem-133

plified here by ATC:C10AA (Statins) and ATC:P01BB (Biguanides) in Figure 3d. Several of the effects identified134

for ATC:C10AA in the observational design vanish, with the main known effects from clinical trials remaining sig-135

nificant albeit slightly attenuated. Death shows an absolute risk reduction of -0.008 (95% CI =[-0.012, -0.005]) and136

-0.008 (95% CI =[-0.013, -0.002]) over a 3-year period for females and males, respectively, while CVD indicates a137

reduced absolute risk of -0.005 (95% CI =[-0.008, -0.0]) and -0.006 (95% CI =[-0.012, -0.0]).138

Interestingly, we still observe a significant effect for ATC:C10AA and dementia in females, with a reduced139

absolute risk of -0.003 (95% CI =[-0.005, -0.001]). ATC:C10AA also shows a negative effect for males, with an140

absolute risk reduction of -0.002 (95% CI =[-0.004, 0.001]), although there is no clear evidence for a sign effect. While141

a potential link between statins and dementia risk has been proposed earlier [26–28], evidence so far is inconclusive142

[29] and further investigation may be warranted.143

Proguanil:

Cycloguanil:

Atovaquone:

Chloroquine:

ATC:P01BB
(Biguanide)

Gene/Protein

Diseases

midial

Carrier
Enzyme
Target

Transporter

Association:

Figure 4 PrimeKG knowledge graph extract for drugs in ATC:P01BB (Biguanides) and their association with genes/proteins and
their respective associations with the disease outcomes as of June 2024.
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Surprisingly, many of the effects identified in the observational study for ATC:P01BB persist in the emulated144

trial design. In total, we find 8 significant effects for ATC:P01BB across all outcomes and both sexes. Death shows145

a clear 3-year absolute risk reduction of -0.0178 (95% CI =[-0.0258, -0.01]) and -0.0384 (95% CI =[-0.0498, -0.027])146

for females and males, respectively. Further, we identify a potential absolute risk reduction for cancers of -0.003147

(95% CI =[-0.0186, 0.0124]) in females and a significant reduction in absolute risk of -0.017 (95% CI =[-0.0354,148

-0.002]) for males. Most of the effects are similar between the sexes, albeit with stronger evidence of a sign effect149

in females. Dementia is the only exception to this, with a significant absolute risk reduction of -0.0056 (95% CI150

=[-0.01, -0.002]) in females but a potential absolute risk increase of 0.007 (95% CI =[-0.001, 0.0152]) in males.151

Looking at ATC:A10AB in Supplementary Figure 10, a different Biguanide containing Metformin, we mostly152

see no clear effects, with the exception of death in males with an absolute risk increase of 0.0155 (95% CI =[0.002,153

0.0289]) and liver diseases in males with an absolute risk increase of 0.006 (95% CI =[0.001, 0.0122]).154

While the effects identified for ATC:P01BB appear interesting as a potential drug for further investigation, as155

we have cautioned in the previous section, there are potential mechanisms of confounding that we cannot control156

for, which could have biased the effects towards a reduction in risk.157

The purpose of the study is solely of hypothesis generating nature and hence the effects need to be additionally158

verified in other more targeted studies and further corroborated through additional evidence. A minimal next step159

would be to investigate biomedical databases for potential links. As an example we looked at links between drugs in160

ATC:P01BB and our disease outcomes in the precision medicine database PrimeKG [30]. Traversing the knowledge161

graph from associations of associated drugs to genes/proteins as either carrier, enzyme, target or transporter to162

subsequently the association of the genes/proteins to our disease outcomes, as is shown in Figure 4, reveals a possible163

relation to several of the outcomes, with Chloroquine as a particularly outstanding case. Another possible mechanism164

of action reported in the literature is the link to the use of Hydroxychloroquine in the treatment of rheumatoid165

arthritis and other inflammatory rheumatic diseases [31]. Generally, we do see several anti-inflammatory related166

drugs e.g. Corticosterioids (ATC: C05AA, D07AB, H02AB, R01AD) or Anti-inflammatory and anti-rheumatic167

agents, non-steroids (ATC: M01AB, M01AX) with potential repositioning effects, indicating possibly underlying168

inflammatory aspects to some of the disease outcomes (Supplementary Figure 11). Further, recent studies suggest169

potential positive effect of Hydroxychloroquine on dementia risk [32] or Atovaquone in treatment of non-small cell170

lung cancer [33]171

3 Discussion172

Overall, this study demonstrates that EHRs, when combined with methods from causality, may be helpful in173

identifying novel associations that warrant further investigation. We conducted a comprehensive screening of most174

ATC level-4 drugs across a range of disease outcomes. All estimates are provided and can serve as a foundation for175

subsequent research or as supplementary evidence to support findings obtained from alternative approaches.176

The most effective way to utilize this type of data and methods is through a carefully crafted emulated target trial177

with proper inclusion criteria. However, this is only possible with a specific hypothesis in mind. While, our approach178

can easily be applied in a generic way across most combination, this also makes it more prone to misspecification179

and hence should be evaluated carefully and understood more from an explanatory viewpoint.180

Other limitations of our approach include the possibility of confounding from various sources. While we do control181

for a comprehensive set of medical information on individuals, there are certain aspects that may not be adequately182

addressed. Improved access to a broader range of clinical data could potentially mitigate some of these issues;183

however, the effects should be assessed with appropriate domain expertise to identify potential biases and directions184

of influence. Further, information on medications only contains prescriptions and does not necessarily reflect actual185

use. These two sources could explain the effects found for ATC:P01BB. First, it is not clear if individuals actually186

are taking the drug or only received a prescription due to planned travels. Second, individuals that are going on187

long-distance travels are probably healthier and potentially socioeconomically better suited for which we can only188

partially control.189

A potential extension to our approach could involve incorporating multiple time-points for the emulated trial,190

thereby enhancing the overall power of the approach. Additionally, this approach would enable the study of outcomes191

that are typically rare, potentially offering more opportunities for drug repositioning. However, technical issues arise192

as then individuals could be part of multiple trials.193

Furthermore, our design results in a real-time shift between the treatment and control arms, where treatment194

consistently occurs before the allocated random time. This shift should not significantly impact effect estimates195

unless there is a noticeable change in incidence within a small time window. However, during rapid shifts in disease196

incidence, such as those observed during the SARS-CoV-2 pandemic, this could become important and should be197
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taken into consideration. We conducted evaluations of the potentially introduced bias through simulations (see198

supplementary data) and found no measurable effect.199

Finally, our approach assesses a wide array of combinations. While we utilize shrinkage priors and incorporate200

multiple cohort splits (such as data and sex splits), thereby offering multiple lines of evidence, we do not adjust201

for multiple hypotheses. It is important to emphasize that the objective of the study is not to make inferential202

statements about a particular effect, but rather to explore and screen for new targets.203

4 Methods204

Observational study205

Data Sources: This study retrospectively utilizes data from the Danish health registries, which include the206

Central Person Registry (CPR), the Danish National Patient Registry (LPR), the Death Registry (DR), and207

the Danish National Prescription Registry (DNPR). Individuals born in or residing in Denmark for more than 3208

months are registered. All registries have been linked via a unique personal identifier. Data compilation spans from209

January 1, 1995, to December 31, 2014.210

211

Cohort: We included all individuals aged 50 to 80 who were alive on January 1, 2001, and who had been residing212

in Denmark continuously since at least January 1, 1995. This inclusion criterion ensures that all participants have213

a minimum of five years of recorded medical information at any given point in time. Participants exited the cohort214

upon reaching the age of 80 or due to exclusion criteria such as emigration, end of follow up or death, whichever215

occurred first. Individuals who emigrated after January 1, 2001, are censored at the point of emigration and remain216

so for the duration of the study. Individuals with events of interest occurring prior to January 1, 2001, are excluded217

from the study. The primary observational period for model fitting and evaluation extends from January 1, 2001,218

to December 31, 2014. The cohort is divided into three subsets: (i) a training set (70%), utilized for model training219

and development; (ii) a validation set (5%), employed for initial model evaluation and to determine the optimal220

penalization strength; (iii) a test set (25%), used for the final model assessment.221

222

Covariates: The covariates include binary indicators for secondary care diagnoses extracted from the Danish223

National Patient Registry (LPR), utilizing ICD-10 codes up to the third level of specificity, recorded across chapters224

I-XVII (e.g., E11 for Type 2 diabetes mellitus). Considering the gender specificity of some diagnoses, we filtered225

indicators relevant to each sex, resulting in a total of 1,125 indicators for females and 1,034 indicators for males.226

Moreover, we limited the indicators to records from the preceding five years at any given point in time to capture227

recent health changes. Similarly, binary indicators for dispensed medications, recorded in the Danish National Pre-228

scription Registry (DNPR), are included. These medications are classified using the ATC system at the fourth level229

(e.g., A10BA for Biguanides). Due to the existence of sex-specific medications, we identified a total of 472 indica-230

tors for females and 458 for males, respectively. These indicators reflect medication usage in the past five years.231

232

Outcomes: We consider a total of 9 outcomes including Dementia (ICD10: F00-03, G30-31), Extrapyramidal233

disorders (ICD-10: G20-26), Coronary vascular disease (CVD) (ICD-10: I21-26, I46, I50, I60-64), Renal failure234

(ICD-10: N17-19), Chronic obstructive pulmonary disease (COPD) (ICD-10: J41-J44, J47), Liver disease (ICD-10:235

K70-77), Inflammatory bowel disease (IBD) (ICD-10: K50-52), Cancers (ICD-10: C00-96, D37-48 excluding: C44,236

D45) and Death.237

238

Statistical analysis: We fit time-dependent Bayesian Cox models with shrinkage priors for each of the nine239

outcomes and for each sex, using age as the underlying timeline. These models are solely fitted on the training240

set. Individuals are considered at risk upon reaching the inclusion age or the age at which they enter the cohort,241

whichever comes first. They are followed until the occurrence of a specific outcome, death, emigration, or the end242

of the follow-up period. Covariates are treated as time-dependent consisting of binary indicators for diseases and243

medications within the preceding five years. The effects of these covariates are modeled through a linear predictor.244

To prevent the inclusion of data that may only reflect the diagnostic process leading up to an outcome, we intro-245

duce a one-year gap between the occurrence of an event and its associated covariates. This approach ensures that246

evaluations are based on predictions made at least one year in advance. For additional details on the method and its247

implementation, we refer to Jung et al. (2022, 2023)[20, 23]. The final model specification uses a Student-T distri-248

bution with location=0, scale=0.001, and 1 degrees of freedom as the prior. A lower-rank(50) Multivariate-Normal249

distribution is used as the distributional family for stochastic variational inference. We perform stochastic gradient250
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descent updates using batches of 8196 randomly selected individuals. Confidence regions or highest posterior251

densities (HPD) are determined based on the posterior distributions, typically covering a 95% confidence interval252

unless stated otherwise. The concordance index serves as the primary metric for evaluating the fits of the models.253

254

Emulated target trial255

Data Sources: We utilize the same dataset as in the observational study, specifically, all individuals from the test256

set. As the test set has only been used to evaluate the concordance index for the observational study, it constitutes257

an independent data subset for estimation purposes. In principle, all individuals from the test set are included;258

however, additional restrictions will apply based on the targeted trial design, which we address below.259

260

Covariates: The covariates utilized for estimation mirror those employed in the observational study. However,261

instead of treating them as time-dependent variables, we focus on a single time point: the start time of the emulated262

trial, excluding the washout period. From this time point, we construct binary indicators representing medication263

usage and acquired diseases over the past five years. Additionally, we apply a filtering criterion to the covariates,264

ensuring a minimum frequency of 0.01 in either the entire population, the treatment group, the untreated group,265

the event group, the non-event group, or any combination thereof, for each treatment and outcome pairing sepa-266

rately. This step aims to eliminate covariates that occur in only a small fraction of individuals across all possible267

subgroups, thereby expediting computational processes. Further, we add indicators for age at trial start in 5-year268

brackets from 50 to 75.269

270

Treatments: We consider all ATC level 4 drugs as potential treatments as this level of granularity provides the271

best trade off in our data between specificity of the drugs used and reasonably sized treatment groups. However,272

we restrict our analysis to drugs with a minimum of 1000 treated individuals in a given emulated target trial.273

274

Outcomes: Same as for the observational study.275

276

Eligibility criteria: Eligibility criteria are specific for each treatment and outcome. The start date for each trial277

is the 1st January, 2008. Individuals have to be between the age of 50 and 80 to be able to join. Further, the278

specific outcome under study should not have occurred prior to the start date. Individuals who have an indication279

of treatment in the preceding 5 years (1st January, 2003) are excluded.280

281

Treatment assignment: All individuals eligible for the trial on the 1st January, 2008 are assigned a random time,282

uniformly drawn from 1-36 months. If an individual has an indication of treatment within this time window, the283

earliest time of treatment initiation is set as the new allocated time for the individual and they enter the treatment284

arm. If no treatment indication is registered in the time window the individual enters the control arm. Individuals285

in the treatment arm stay on it during the entire study period. We do not consider treatment discontinuation as286

it is difficult to define generically valid intervals of treatment intermittence. Individuals in the control arm that287

subsequently switch to treatment become censored 6 months after the switch. We allow for a small time window288

to limit possible effects through treatment-by-indication.289

290

Treatment strategies: The strategies to be compared are (i) initiation of treatment and presumed continuation291

over the study period. (ii) No initiation of treatment during the entire study period.292

293

Follow-up: After treatment determination every individuals goes through a 1 year washout period to avoid the294

identification of treatment-by-indication effects but also to allow for a phase-in period of the drug. If an event295

occurred during treatment determination or the washout period, individuals are removed from the study. All296

remaining individuals are followed for a maximum of 36 months which constitutes the study end or until the297

occurrence of the event or possible censoring (death, emigration).298

299

Causal estimands: The primary outcome of the study is the average treatment effect between the treatment300

group and the control group after 36 months, measured as the difference between the absolute risk in the two arms.301

The causal contrast is the analog of the intention-to-treat.302

303

Statistical analysis: The primary statistical method for the emulated target trial analysis is based on a targeted304

maximum likelihood estimator (TMLE) for the parameters of longitudinal static and dynamic marginal structural305
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models as implemented in R-ltmle [22]. For details about TMLE we refer to [21]. One aspect of the current imple-306

mentation is the need for discretization of the follow-up time, therefore, we split time into 6 months intervals. For307

each time point 3 effective models are estimate, capturing: (i) the treatment assignment, (ii) the outcome model, (iii)308

the censoring mechanism, and subsequently combined. Each fit is done via parametric generalized linear models con-309

taining the aforementioned covariates plus a treatment indicator where relevant. Otherwise the default parameters310

for R-ltmle are used.311

We extract the TMLE estimate for our primary end point of the 36 months absolute risk between the treat-312

ment and control group, plus the corresponding 95% confidence interval. Similarly, we extract the corresponding313

inverse probability of treatment estimator (IPTW) from the same estimation procedure (automatically estimated314

for TMLE). Last, we also fitted a simple Cox regression on the emulated target trail data with the covariates and315

a treatment indicator as an additional comparator.316
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[12] Dickerman, B. A., Garćıa-Albéniz, X., Logan, R. W., Denaxas, S. & Hernán, M. A. Evaluating Metformin358

Strategies for Cancer Prevention: A Target Trial Emulation Using Electronic Health Records. Epidemiology359

(Cambridge, Mass.) 34, 690–699 (2023).360

[13] Rein, S. M. et al. Integrase strand-transfer inhibitor use and cardiovascular events in adults with HIV: an emu-361

lation of target trials in the HIV-CAUSAL Collaboration and the Antiretroviral Therapy Cohort Collaboration.362

The lancet. HIV 10, e723–e732 (2023).363

[14] Szmulewicz, A. G. et al. Emulating a Target Trial of Dynamic Treatment Strategies for Major Depressive364

Disorder Using Data From the STARD Randomized Trial. Biological Psychiatry 93, 1127–1136 (2023). URL365

https://www.sciencedirect.com/science/article/pii/S0006322322016365.366

[15] Hulme, W. J. et al. Comparative effectiveness of BNT162b2 versus mRNA-1273 covid-19 vaccine boosting in367

England: matched cohort study in OpenSAFELY-TPP. BMJ (Clinical research ed.) 380, e072808 (2023).368

[16] Hernán, M. A., Sauer, B. C., Hernández-Dı́az, S., Platt, R. & Shrier, I. Specifying a target trial prevents369

immortal time bias and other self-inflicted injuries in observational analyses. Journal of Clinical Epidemiology370

79, 70–75 (2016).371
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