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Abstract 

 The International Association for the Study of Pain defines three pain types presumed 

to involve different mechanisms - nociceptive, neuropathic and nociplastic. Basis on the 

hypothesis that these pain types should guide matching of patients with treatments, work has 

been undertaken to identify features to discriminate between them for clinical use. This study 

aimed to evaluate the validity of these features to discriminate between pain types. Subjective 

and physical features were evaluated in a cohort of 350 individuals with chronic 

musculoskeletal pain attending a chronic pain management program. Analysis tested the 

hypothesis that, if the features nominated for each pain type represent 3 different groups, then 

(i) cluster analysis should identify 3 main clusters of patients, (ii) these clusters should align 

with the pain type allocated by an experienced clinician, (iii) patients within a cluster should 

have high expression of the candidate features proposed to assist identification of that pain 

type. Supervised machine learning interrogated features with the greatest and least 

importance for discrimination; and probabilistic analysis probed the potential for coexistence 

of multiple pain types. Results confirmed that data could be best explained by 3 clusters, 

clusters were characterized by a priori specified features, and agreed with the designation of 

the experienced clinical with 82% accuracy. Supervised analysis highlighted features that 

contributed most and least to the classification to pain type and probabilistic analysis 

reinforced the presence of mixed pain types. These findings support the foundation for further 

refinement of a clinical tool to discriminate between pain types. 
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Introduction 

Chronic pain contributes to 71% of disability worldwide1. Back pain alone costs the 

US economy >$100 billion annually2, the most of any condition. Thousands of randomized 

controlled trials show modest effects3. One size does not fit all, yet >90% of back pain is 

labelled “non-specific” of unknown cause4 without evidence-based rationale to guide 

treatment. Trial-and-error application of treatment is wasteful, inefficient, and rejected by 

those with chronic pain5. High variability in individual responses could be improved by 

predictive biomarkers that guide treatment allocation. Unfortunately, attempts to target 

treatments have had limited success6. Identification of the predominant mechanism that 

explains and individual’s pain could help guide treatment7. 

Pain involves an array of inputs and outputs, and diverse biological and neural 

mechanisms, influenced by factors including emotions and cognitions8. Although activation 

of nociception by actual or threatened tissue damage is one input, many other inputs and 

mechanisms interplay. These differ between individuals9. The International Association for 

the Study of Pain (IASP) defines 3 pain types that are hypothesized to relate to different 

underlying mechanisms7, which should require different treatments. These are Nociceptive 

pain – arising from actual or threatened damage to non-neural tissue, due to activation of 

nociceptors; Neuropathic pain – caused by lesion or disease of the somatosensory nervous 

system; and Nociplastic pain –arising from altered nociception despite no clear evidence of 

actual or threatened tissue damage causing activation of nociceptors or evidence for disease 

or lesion of the somatosensory system10. Biomarker signatures for pain mechanisms have 

potential to predict response to targeted treatments for chronic pain.  

There is no “gold standard” to discriminate between mechanisms. Instead, methods 

have been proposed using multi-modal data (e.g., quantitative sensory testing (QST), pain 

qualities, questionnaires) to identify features suggesting predominance of one mechanism. 
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Progress has been compromised by diversity of opinion regarding how pain types might be 

identified11,12 or if this is possible13. Recent systematic reviews7,14 and expert consensus15 

have identified and refined candidate measures that could aid in the discrimination between 

the pain types, and other work has defined clinical criteria for identification of a single type 

(e.g., nociplastic16,17; neuropathic18). In the absence of a gold standard tool to identify 

mechanism, validation has been difficult.  

One alternative to evaluate the validity of the discrimination between the IASP pain 

types is to collect data for a cohort of individuals with diverse presentation of chronic pain, 

and test the hypothesis that, if the features nominated for each pain type represent 3 different 

groups, then (i) cluster analysis should identify 3 main clusters of patients, (ii) these clusters 

should align with the pain type allocated by an experienced clinician, (iii) patients within a 

cluster should have high expression of the candidate features that are proposed for that pain 

type. This study aimed to test these hypotheses using a cohort of individuals with chronic 

musculoskeletal pain attending a pain management clinic, and then to (i) interrogate which 

features had the greatest and least importance for the discrimination; and (ii) to probe the 

potential for coexistence of multiple pain types.  

  

Methods 

Study design 

 This study evaluated a cohort of individuals with diverse presentations of chronic pain 

using the highest ranked features allocated by expert consensus15 to aid discrimination 

between the IASP pain types. For this study all features were assessed with simple subjective 

and physical examinations that were feasible in a clinical setting without specialised 

equipment. All items were assessed for all participants (with some limited exceptions). The 

natural tendency for the data to cluster in to three groups was evaluated first. If three clusters 
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were present, we then interrogated the relationship with the predominant pain type allocated 

based on the scoring and review by an independent experienced clinician. Because the data 

assessed as “typical features” of each pain type and the classification of the participant’s 

predominant pain type use the same data, it might be argued the analysis step is biased to 

confirm the hypothesis. This outcome cannot be assumed because the clustering algorithms 

(unsupervised machine learning models) do not use the dependent variable (pain type) for 

modelling or prediction, that is, neither the score-derived nor examiner-derived pain type was 

used in generation of clusters. Second, we employed supervised machine learning to 

understand the relative importance of test items to the pain-type clusters. Third, we 

considered probabilistic models to provide insight into the coexistence of multiple pain types, 

which remains hidden in deterministic analysis. 

Participants 

Participants were 350 individuals with chronic pain who presented for attendance at a 

chronic pain management program. They were included if they had a primary complaint of 

chronic pain (pain of >3 months duration), were referred to attend a multidisciplinary pain 

management program, were aged between 18 and 75 years, and had sufficient fluency in 

English to complete the assessment. Participants were excluded if they had red flags that 

would be unsuitable for pain management (including active cancer, signs of cauda equina 

syndrome based on bladder or bowel disturbance, risk of spinal fracture, signs of potential 

infection, foot drop that my cause tripping, spondyloarthropathy). The Medical Research 

Ethics committee of LaTrobe University provided ethical approval for the collection and 

analysis of the data. Participants were asked to provide informed consent for analysis of their 

de-identified data when attending their initial assessment. Characteristics of the participant 

group were recorded using the electronic Persistent Pain Outcomes Collaboration (ePPOC) 

standardised assessment data set{Tardif, 2017 #8118}.  
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Measures 

Features were assessed as part of the clinical examination. Items were selected from the 

highest ranked items from the recent expect consensus study15, and refined using the clinical 

criteria reported to identify nociplastic16,17 and neuropathic18 pain. The full list of features 

considered for each pain type are presented in Supplementary Data 1-3. From the candidate 

items, a list of subjective and physical examination items was generated that was possible to 

apply in a clinical setting as subjective or physical tests. Table 1 presents the final list of 

features. The 31 items included 11 for nociceptive pain, 8 for neuropathic pain and 12 for 

nociplastic pain. For nociplastic pain, physical item 3 was only completed if item 2 was 

negative. All items were scored on a scale of 0-100, anchored with “not present” at 0 and 

strongly present at “100”. Although all items were used as independent items in the analysis, 

we also calculated the average score for the questions for each pain type separately. The 

dominant pain type was allocated based on that with the highest average score (Score-derived 

pain type). In addition, an experienced clinician independently reviewed the patient’s chart, 

including the response to the pain type questions and assigned a likely predominant pain type 

(Examiner-derived pain type).  

Data analysis 

Data preparation  

Quality of data was assessed in several ways depending on data type. 

Independent variables: The dataset contains responses on a scale from 0 to 100. 

Missing data were analysed through a graphical distribution analysis of the percentage of 

missing data. We assumed that missing metrics were ignored by the examiner because they 

were not necessary to allocate a pain type to the participant (e.g., nociplastic physical 3 was 

not performed if features 1 or 2 were positive). For this reason, missing values were imputed 

with zeros to avoid losing sample size.  

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted August 14, 2024. ; https://doi.org/10.1101/2024.08.13.24311924doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.13.24311924


Dependent variables: Dominant pain mechanisms were analysed using a distribution 

plot to consider the generalization ability of the model, and to consider class balance or 

imbalance for selection of the clustering algorithm selection and configuration. This was 

undertaken separately to for pain types derived from pain scores, and that diagnosed by an 

examiner. Unambiguous diagnosis was present in 80% of cases.  

Pre-clustering analysis using descriptive statistics and correlations 

A pre-clustering analysis was performed to ensure the independent variables 

contained sufficient information to distinguish between the three types of pain, by way of 

validating the potential to consider a clustering approach. First, a correlation analysis of the 

independent variables was performed using Pearson's correlation, visualised through a 

correlation plot, and arranged by nociceptive, nociplastic, and neuropathic criteria. To support 

the clustering approach, a high correlation within categories and low correlation between 

categories would be expected.  

Second, a heatmap was created, ordering data by pain type obtained from scores, 

visualising the “intensity” of responses to corresponding criteria to identify patterns. To 

support the clustering approach, patients within a cluster should have high expression of 

relevant features.  

Third, before clustering we also computed the Hopkins statistic19, to measure the 

natural cluster tendency in the data. Values close to 1 indicate that the data are highly 

clustered, and close to 0.5 indicates that the data are randomly distributed. Values below 0.75 

suggest that the clusters are sparse and with fuzzy borders between them. For this analysis, 

data were reduced using principal components analysis for visualization purposes as it allows 

projecting n-dimensional data into 2-dimensions. The clustering tendency was computed with 

the original features. The clustering tendency was presented using a scatter plot with the first 
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and second principal components on the x- and y-axes, respectively. A 2D density plot was 

included to visualise the concentration of pain types.  

Consistency of clusters with pain type classification 

 To determine whether analysis would identify three cluster, and if so, whether these 

were aligned to the three pain types we analysed the data ins several ways. First, the number 

of clusters was evaluated, considering clusters between two and ten. Three common 

clustering methods were assessed: k-means, Gaussian mixture models (GMM), and 

Hierarchical clustering20. The silhouette coefficient was calculated for each scenario. This 

coefficient provides an indication of how well each data point was clustered, with positive 

values indicating better classification21. We determined the optimal number of clusters as that 

which maximized the silhouette coefficient. To support our hypothesis that the clinical 

features relate to three pain types, this optimal number of clusters would be three. 

Second, using the three clusters, the consistency of each clustering methods was 

evaluated by comparing each point's clustering against the pain type derived from score-

derived and examiner-derived pain types. Each of the six resulting comparisons was 

evaluated using the True Positive Rate (TPR), which accounts for the percentage of cases that 

were correctly classified according to the average score (score-derived classification) and the 

experienced examiner (examiner-derived classification). This value is from 0 to 100%.  

Third, for hierarchical clustering (which provided the second highest TPR, see results, 

but enables investigation of the internal structure), a dendrogram was generated to 

graphically analyse the hierarchical structure, showing the model's clusters and allocation to 

predominant pain type based on highest scores. Within this approach the Euclidean distance 

and averaged linkage grouping criteria were used to allocate participants to each cluster.  

Prediction of pain type based on pain features using supervised machine learning and 

evaluation of relative contribution of test items to discrimination  
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If the unsupervised analysis confirmed the presence of three clusters, we planned to 

used supervised learning to explore the possibility of extracting relevant information to 

understand the relative value of individual test items to the classification. Due to small 

sample size, we applied a logistic regression model, which has fewer parameters than other 

models, and allows the prediction of pain type based on the independent variables and 

interpret the importance of the features to make this prediction. This approach was applied to 

classification of the predominant pain type deduced from the highest scores and that allocated 

by the independent examiner. We used 80% of the data for model training. The coefficients of 

both models were evaluated, analysing the sign of these coefficients to determine each 

variable's contribution to the prediction. The accuracy of both models was also evaluated 

using the TPR, ensuring consistency with the previous clustering comparison. 

Probabilistic predictions of pain mechanisms to investigate coexistence of pain types 

Finally, a probabilistic analysis was conducted to explore the uncertainty in model 

predictions, both supervised and unsupervised. GMM and logistic regression were used to 

output probabilistic classifications, and a probabilistic variation of k-means called c-means 

was also used to generate cluster membership likelihoods. The likelihood of the dominant 

pain type for each model is presented as boxplot. Values that are concentrated around 100% 

show the model is more certain about the prediction, whereas sparse values show higher 

uncertainty. Each comparison is presented with the Fuzzy Partition Coefficient (FPC), which 

evaluate the degree of uncertainty in the predictions, with values closer to 100% indicating 

well-defined and distinct clusters (i.e., if all pain types were mutually exclusive, the FPC 

would be 100% for all pain types). 

 

Results 

Participants 
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Data were available for 350 participants presenting for pain management with a 

primary complaint of chronic pain. Participants (62.7% female; 37.3% male) had an average 

(standard deviation) age, height and weight of 46(12) years, 167(11) cm and 84.2(20.9) kg, 

respectively. Regarding the duration of pain, 1.7% of individuals had experienced pain for 

less than 3 months, 22.3% for 3 to 12 months, 33.9% for 12 months to 2 years, 29.8% for 2 to 

5 years, and 12.4% for more than 5 years. When asked to describe their pain, 0.4% reported 

that it was rarely present, 4.7% said it was occasionally present, 8.5% described it as often 

present, 75.3% stated it was always present with varying intensity, and 11.1% reported it was 

always present with consistent intensity. The main sites of pain reported were the low back 

(28.3%), shoulder (22.2%), and neck (19.1%), with other less common sites including the 

mid back (5.7%), knee (4.8%), foot (3.9%), hip (3.5%), wrist (2.6%), hand (2.6%), and other 

areas (7.4%). The average total Pain Disability Questionnaire Score was 104 (27). From the 

possible data 265 data points contain at least one variable with missing values. 

Data preparation  

Figure 1 shows the distribution of missing values which indicates that most metrics 

have <15% of missing data. As expected, metrics such as "nociplastic subjective 3" (See 

Table 1 for item definitions) and "nociplastic physical 3" have the highest percentage of 

missing values, exceeding 30%. Pain type derived by the examiner was unavailable for 20% 

of participants. In this case the expert examiner had identified the pain type as ambiguous.  

The available sample is unbalanced for the different pain types (Figure 2). According 

to the pain type (both score-derived or examiner-derived), most cases were classified as 

nociplastic, followed by nociceptive and neuropathic with the least cases. In the case of the 

examiner’s unambiguous classification, all nociceptive participants are available, but 

availability of classification of the other pain types was reduced by diagnostic uncertainty.  

Pre-clustering analysis using descriptive statistics and correlations 
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As we required to proceed to the clustering step, the correlation among variables was 

higher and positive within the criteria for each pain type, than between pain types (Figure 3; 

high correlation expected within each red box). This finding demonstrates strong internal 

consistency. The highest correlation (R=0.82) was between nociceptive subjective items 2 and 

3, which both relate to the relation of pain to aggravating factors. Subjective and physical 

features of nociceptive that address similar constructs are highly correlated. Negative 

relations can be seen between features of different pain types, such as nociceptive and 

nociplastic, where negative values present in almost all comparisons. Nociceptive subjective 5 

and neuropathic subjective 6 have the strongest negative correlation, which is expected as 

these items relate to low or high scores, respectively, on the same neuropathic questionnaire. 

This neuropathic questionnaire was modestly correlated with nociplastic features, suggesting 

its items reflect both pain types. 

 The pattern of expression of each feature across participants is shown as a heat map in 

Figure 4. As expected, the density of blue, determined by the intensity of expression of each 

feature is high with the red boxes that are bounded on the x-axis arranged by pain type 

classified according to the scoring, and on the y-axis by the features for each pain type. In 

some cases (e.g., nociceptive physical 6, or nociplastic comorbidities 1) there is stable 

expression across all pain types, which suggests limited value in discrimination between the 

pain types. Note nociplastic physical 3 is commonly scored as 0 because it is only tested if 

nociplastic physical 2 is negative. 

When analysing the clustering tendency of the data, the Hopkins statistic was 60%. 

This indicates some degree of natural clustering is present in the data, but we should not 

expect perfectly defined clusters. The data distribution presented in Figure 5 shows that the 

density curves for pain types overlap between each other, suggesting that many points may be 

classified with more than one pain type. Consideration of the weightings for each of the 
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feature in the principal components demonstrates that principal component 2 distinguishes 

neuropathic from the other 2 and, as expected, is weighted by neuropathic features. Further, 

nociceptive and nociplastic are distinguished but principal component 2, which is weighted 

by features of these pain types.  

Assessment of consistency of classification with predominant pain type 

When testing the clustering algorithms, the optimal number of clusters was analysed 

as shown in Figure 6. The three clustering models minimize the share of negative silhouette 

at three clusters. At this point the overall silhouette is maximized for hierarchical approach, 

and for GMM and k-means is only beaten by the silhouette of using two clusters. Combining 

both metrics would suggest using three clusters. 

When predicting pain type using clustering methods, results differ depending on 

which version of the ground truth (score-derived or examiner-derived pain type) was used, as 

shown in Figure 7. For interpretation of this analysis, the pain type that was most likely to be 

represented by each cluster was identified by inspection of the heat map which showed the 

features that were commonly expressed in each cluster. As shown for the hierarchical cluster 

method in Figure 8, the largest cluster was dominated by high expression of features of 

nociplastic pain, and so on. When prediction accuracy was analysed using both versions, the 

best model was the GMM. The examiner’s diagnosis achieved a TPR of 82%, and the score 

derived pain type achieved a TPR of 89%.  

The hierarchical method achieved close to 80% TPR, and we can observe the 

structure of this model’s predictions in a tree structure (i.e., dendrogram) shown in Figure 9. 

It shows that the nociplastic predictions are the most consistent.  

Prediction of pain type based on pain features using supervised machine learning 

The sign of coefficients from application of supervised machine learning using 

logistic regression models, were in the expected direction with positive values for features of 
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corresponding pain type (Figure 10), and negative values for other pain types. The coefficient 

magnitudes were greater for the pain derived score model than for the examiner. This was 

expected as the score was directly derived from these measures. No features had significant 

positive magnitudes for more than one pain type. Several features show non-significant 

values for the three predicted pain types, which means they contributed little to the prediction 

of pain type (Table 2). Features such as nociplastic comorbidities 2, neuropathic subjective 6 

and nociceptive physical 2, physical 6 and subjective 3 contributed little to the prediction and 

were redundant. 

After performing predictions, the supervised classification models were evaluated 

with the TPR, and can be compared with previous results from cluster analysis. Figure 11 

shows that the model for the score derived pain type achieves a TPR of 94%, whereas the 

model for the examiners pain type achieves a TPR of 87%.  

Probabilistic predictions of pain mechanisms to evaluate coexistence of pain types  

Both supervised and unsupervised machine learning techniques were used to generate 

probabilistic outcomes. This was used to addressing the complexity of pain type classification 

by giving insight into the coexistence of multiple pain types (that remains hidden in 

deterministic analysis). Figure 12 shows the comparison of 4 different probabilistic models, 

where the dominant cluster likelihood is represented as boxplots. The GMM have high 

concentration of values close to 100%, which is consistent with the FPC of 95%, the highest 

of the sample. In contrast, the supervised models (score-derived or examiner-derived pain 

types) have FPC in the range of 72-80%, and in both cases the neuropathic pain type presents 

the lowest likelihood values among all pain types. Supervised clustering highlights 

probability for coexistence of pain types, and greatest uncertainty for the neuropathic type. 

 

Discussion 
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The results of this study support the validity of the clinical features proposed to 

discriminate between the three pain types defined by IASP. The data were best explained by 3 

clusters, these were characterised by features proposed to be relevant for the three pain types, 

and clusters aligned strongly with the pain type identified by the experienced clinician with a 

classification accuracy of up to 82%. Logistic regression demonstrated items that contribute 

substantially to the classification and those providing no additional value. Probabilistic 

analysis demonstrated uncertainty of classification which suggests co-existence of 

mechanisms in some individuals. These findings provide a foundation to further develop and 

refine a tool to discriminate between pain types. 

Validity of methods to discriminate between pain types 

In the absence of a gold standard method to assess pain type, the mathematical 

approach used in this study provided an innovative way to investigate the validity of features 

to discriminate between them. Although this analysis cannot directly assess whether a 

participant’s pain was explained by the allocated type, three features support this 

interpretation – data were naturally explained by three clusters, each cluster was characterised 

by high expression of features considered relevant for a specific pain type, and the 

classification had high agreement with an experienced clinician. The Gaussian mixture model 

had the greatest accuracy (True Positive Rate) with 82% agreement. The 18% inaccuracy in 

allocation might be accounted for by mixed pain types (see below) or because all criteria 

contributed the same weight to the determination of cluster, yet the examiner might have 

placed more weight on specific features when making the clinical decision. Such weighting is 

a feature of current clinical criteria for nociplastic 16 and neuropathic 16 pain – e.g., subjective 

evidence of a pain distribution consistent with neuropathology indicates possible neuropathic 

pain, whereas physical evidence carries greater weight and indicates probable neuropathic 

pain. Future work should consider allocation of weights to items. The lower TPR provided by 
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other clustering methods is accounted for by their properties. Unlike Gaussian mixture 

models which is a “soft” clustering technique enabling allocation of individuals to multiple 

clusters and clusters of different shapes22, K-Means23 and Hierarchical24 clustering are a 

“hard” clustering methods where individuals can only be allocated to a single cluster25 

(ignoring the potential for mixed pain types) with spherical shape, and Hierarchical clustering 

can have difficulty with clusters of different size26.  

The existence of three clusters defined by features considered to be relevant to 

discriminate between pain types provides some validation that pain presentations can be 

allocated to these three pain types. It is important to note that this does not exclude the 

possibility that further pain types might be identified if additional features were included. The 

pain types represent those defined by the IASP10, and identified in systematic review of the 

literature7. The features used to support the classification are derived from a list of items 

identified through a rigorous process of systematic review14, expert consensus15 and 

consideration of the clinical criteria that have been published for neuropathic18 and 

nociplastic16 pain.   

Relative importance of features 

 Supervised machine using logistic regression models highlighted positive 

relationships for all features suggested to be relevant for each pain types, but with variation in 

the magnitude of the coefficient. Consideration of the coefficients from the examiner-derived 

supervised analysis enable identification of the features that contributed most to the 

classification and those that contributed little additional information (Table 2). This analysis 

could be helpful to refine the number of required features that must be assessed but should be 

considered preliminary considering the nature of the data we collected using informal tests 

and the subjective rating scale. It is useful to consider the important of items in the context of 

the published clinical criteria for nociplastic and neuropathic pain. 
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 For nociplastic pain the most important criteria were the presence of regional 

distribution, physical findings of mechanical/heat/cold sensitivity, and painful after 

sensations. This aligns with the IASP clinical criteria which consider regional pain to be an 

“obligatory” criterion. Evoked hypersensitivity phenomena (including painful 

aftersensations) are necessary for nociplastic pain to be considered “possible” and additional 

evidence of sensitivity must also be found for it to be considered “probable” (the highest 

level)16. No additional value was provided by subjective evidence of sensitivity. This was not 

surprising because these features were strongly correlated with the physical measures. 

Allodynia is another example of and “evoked hypersensitivity phenomenon” for nociplastic 

pain, but physical and subjective evidence of sensitivity to light touch/allodynia did not make 

an additional contribution to classification. This is explained by high correlation with other 

features of this type and the higher prevalence of aftersensations in those with nociplastic 

pain. Although comorbidities are a commonly discussed as features of nociplastic pain27,28 

and are prominent features in the Central Sensitization Index29, the comorbidities (sensitivity 

to sound etc, sleep disturbance, fatigue, cognitive problems) did not provide additional 

information to the classification. This is explained by observation of the heat maps which 

show they can be present in any pain type. It has been argued that comorbidities could be 

removed from diagnosis of nociplastic pain as they do not directly relate to nociceptive 

function30. 

 For neuropathic pain, classification could be achieved if patients reported their pain in 

a neuroanatomically plausible distribution, hypoaesthesia (same distribution), and pain could 

be evoked by provocation of the nerve. No additional benefit was provided by report of 

dysesthesia (in the distribution), report of evidence of lesion or disease to the somatosensory 

nervous system, the neuropathic questionnaire above cut-off pain, or pain provoked by 

movements that load or compress neural tissue. When considering the clinical criteria for 
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neuropathic pain18, the present study did not include formal testing of lesion or disease of 

somatosensory system which is required for a diagnosis of “definite” neuropathic pain. We 

relied on patient report. Pain and sensory symptoms within a neuroanatomically plausible 

distribution are consistent with criteria for probable neuropathic pain when determined by 

physical examination and the high correlation between subjective and physical assessment 

explains why physical measures provided little additional contribution. Pain induced by nerve 

provocation might be considered an example of physical evidence of pain distribution 

(feature for probable diagnosis). It is perhaps not surprising that response to the Neuropathic 

Pain Questionnaire did not add to the classification as these questionnaires predate the change 

in definition of neuropathic pain from “dysfunction” to “lesion or disease” of the 

somatosensory nervous system31, and the introduction of “nociplastic” pain12. Questionnaires 

such as this include questions related to sensitivity and would be expected to have limited 

capacity to discriminate between neuropathic and nociplastic pain7. 

 There are no clinical criterial for nociceptive pain. The most important features for 

classification of this pain type include multiple features that would exclude the probability of 

other pain types. Features that should not be present include regional distribution (which 

could suggest nociplastic), and hypoaesthesia (which could suggest neuropathic pain), and 

features that should be present include no generalised hypersensitivity, which again implies a 

focus on exclusion of nociplastic pain. Together this implies convincing evidence of 

nociceptive pain involves a process of exclusion. This situation might be rectified by 

development of clinical criteria for nociceptive pain. The only other feature contributing 

strongly to classification is subjective and physical evidence of pain provoked by specific 

postures/movements in a proportional manner, which imply pain in response to tissue 

loading. This is consistent with the use of “movement evoked pain” or “mechanical pain” as 
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alternative terms for nociceptive pain7. Features that were unhelpful include signs of 

inflammation and absence of autonomic signs which were both present across all pain types.     

Distribution of pain types and coexistence of mixed pain types 

 The distribution of different pain types presented in this study should not be 

considered generalisable. The group were drawn from patients attending a chronic pain 

management program and might be expected to include a greater proportion of individuals 

with nociplastic pain, which we found. There will not yet be convincing evidence of 

distribution of pain types in existing literature for several reasons. First, the nociplastic pain 

type was only recently introduced and although sharing features with “chronic primary 

pain”32 or “central sensitization pain”33 it is not synonymous with those classifications. 

Second, methods do not yet exist to discriminate between pain types—hence the present 

work. 

 The probabilistic analysis enabled consideration of mixed pain types. The Fuzzy 

Partition Coefficient (FPC) measures the degree of uncertainty in the model predictions such 

that a value of 100% would indicate that all patients allocated to a paint type could only be 

allocated to that pain type. Our data show that this was not achieved for any pain type. 

Although this concurs with report of mixed pain types7, it is not completely consistent with 

the clinical criteria for nociplastic pain which include the obligatory criterion that “there is no 

evidence that nociceptive/neuropathic pain (a) is present or (b) if present, is entirely 

responsible for the pain”16. The nuance in this definition that overlaps with our data is the 

implication that another mechanism can co-exist if it is not “entirely responsible” for the 

presentation. How that is judged is unclear. A premise of the clinical criteria for nociplastic 

pain is that a patient can have nociplastic pain or not16. This highlights a major issue of the 

current clinical criteria for nociplastic and neuropathic pain – these criteria aim to enable the 

diagnosis of a single pain type, without indication of whether feature of the other pain type 
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are present or how they can be excluded. This is important for several reasons. First, it is 

plausible that predominant pain mechanism might change over time – e.g., a patient’s 

presentation might begin with characteristics of nociceptive pain, and transition to nociplastic 

features34. Second, as classification of pain types is proposed to assist in guiding matching 

patients to treatments7, whether a patient has a mixed pain type and which type predominates 

is likely to impact success of the matched treatment. 

 Of note, our probabilistic analysis suggested greatest uncertainty for neuropathic pain. 

This could reflect the frequent presence of “sensitivity” in neuropathic pain7,35,36. A major 

motivator for the development of “nociplastic” pain as the third pain type was the change in 

the definition of neuropathic pain12. When the criteria for neuropathic pain changed from 

“dysfunction” to “disease or lesion” of nervous system, there was a need to account for 

patients who presented with sensitivity and symptoms unexplained by ongoing nociceptive 

input, but without nervous system damage or lesion12. Our overlap in neuropathic and 

nociplastic could reflect some lack of clarity of this distinction   

Development of a tool to discriminate between pain types 

There is a need to develop a tool to discriminate between pain types to not only 

provide insight into the plausible mechanisms underlying a patient’s pain, but to guide 

matching of the right treatment to the patient. This study applied a preliminary version of 

features to support discrimination, based on outcomes of expert consensus regarding the most 

likely features to support this decision7. This study provides some initial validation of the 

features, and some initial consideration of which features are most important to inform to 

inform the classification.  

It is important to note that features of a tool to discriminate between pain types will 

differ from those for clinical criterial to diagnose a specific pain type because the purpose of 

these tools differs. Clinical criteria for a pain type specify the features that must be present, 
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but this does not exclude features that are present in all pain types, whereas a tool for 

discrimination should include features that are present in either one or two, but not all three 

pain types. A tool to discriminate between pain types fills an important gap as clinical criteria, 

require exclusion of the other pain types (explicitly for nociplastic, and implicitly for 

neuropathic), and this discrimination tool operationalises the identification of the other pain 

type to inform that decision.  

Further work is required to refine the pain type discrimination tool. First, this study 

used clinical judgement to assess each feature – formal operationalisation of assessment of 

these items would support interpretation and consistent implementation. Second, calculation 

of weights of each feature and refinement of the content will be necessary. Third, 

psychometric properties of the tool need to be assessed. Fourth, clinical validation of whether 

treatment outcomes are better when the tool is used to guide treatment matching is ultimately 

necessary. 

Methodological limitations 

 There are several methodological considerations. First, features were assessed and 

allocated to a score based on clinical judgement. We did not assess the psychometric 

properties of the scoring which might have increased variability in the data. Second, the 

results apply to a diverse group with chronic pain attending a specific chronic pain 

management program and might not be representative of chronic pain patients in other 

cohorts or environments. Third, features were based on a preliminary version of a pain type 

discrimination tool and are likely to differ from the final feature specification. Fourth, the 

experienced clinician used the clinical data including test outcomes to classify the pain types. 

Although the initial cluster analysis does not use this information and is therefore unbiased in 

its classification, these data were used for the supervised methods for the supervised machine 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted August 14, 2024. ; https://doi.org/10.1101/2024.08.13.24311924doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.13.24311924


learning, and potential for bias needs to be recognised. Fifth, we cannot exclude that 

additional clusters would be identified of additional features were assessed. 

Conclusion 

 In summary, this study provides initial validation of the approach to discriminate 

between pain types based on features of a patient’s pain presentation. This forms a foundation 

for future work to refine and test tool to deploy in clinical practice. 
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Table 1 Variables considered in the study 

Mechanism Category # Item 

NOCICEPTIVE 

CRITERIA 

Subjective 

examination 

1 Localised distribution of pain  

2 Proportional and direct relationship of pain response with 

aggravating factors 

3 Pain provocation by specific postures and/or movements 

consistent with a nociceptive clinical pattern 

4 Findings from imaging of body regions of potential 

relevance to the pain experience  

5 Below cut-off (< 0) on Neuropathic Pain Questionnaire  

Physical 

examination 

1 Signs of inflammation or a positive Clinical Inflammation 

Score  

2 Proportional and direct relationship of pain response with 

physical examination  

3 Pain provocation by testing of specific postures and/or 

movements consistent with a nociceptive clinical pattern 

4 Pain provocation by special tests consistent with a 

nociceptive clinical pattern  

5 No generalised hypersensitivity  

6 Absence of autonomic symptoms and/or signs (from CRPS 

features) 

NEUROPATHIC 

CRITERIA 

Subjective 

examination 

1 Dermatomal or peripheral nerve distribution of pain  

2 Dysesthesia (eg electric shock-like, lightning, paraesthesia)  

3 Evidence of lesion or disease of the nervous system  

4 Hypoaesthesia in a neuroanatomically plausible 

distribution  

5 Provoked by movements that load or compress neural 

tissue 

6 Above cut-off (³ 0) on Neuropathic Pain Questionnaire  

Physical 

examination 

1 Sensory deficits in a neuroanatomically plausible 

distribution  

2 Positive findings on nerve pain provocation testing  

NOCIPLASTIC 

CRITERIA 

Subjective 

examination 

1 Sensitivity to light touch or pin prick 

2 Sensitivity to deep pressure 

3 Sensitivity to heat or cold 

Presence of 

comorbidities 

1 Increased sensitivity to sound and/or light and/or odours 

2 Sleep disturbance with frequent nocturnal awakenings 

3 Fatigue 

4 Cognitive problems such as difficulty to focus attention, 

memory disturbances, etc 

Physical 

examination 

1 Dynamic mechanical allodynia to light touch 

2 Static mechanical sensitivity to deep pressure  

3 Heat or cold sensitivity (only test if above are negative) 

4 Painful after-sensations reported following the assessment 

of any of the above 

Other 

Criteria 

1 Regional distribution 
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Table 3  Most and least important features to support classification of pain type 

Pain type Most important (positive) Most important (negative) No additional benefit 

Nociplastic Criteria 1 (regional 

distribution); Physical 2 

(mechanical sensitivity); 

physical 3 (Heat/cold 

sensitivity); physical 4 

(painful after sensations) 

Nociceptive subjective 2 

(Proportional relationship of 

pain response with 

aggravating factors); 

Nociceptive subjective 1 

(Localised distribution of 

pain), 

Comorbidities 1 (sensitivity 

to sound etc); Comorbidities 

2 (sleep disturbance); 

Comorbidities 3 (fatigue); 

Comorbidities 1 (cognitive 

problems); Physical 1 

(allodynia); Subjective 1 

(sensitive to light touch); 

Subjective 2 (sensitive to 

deep pressure); Subjective 3 

(Sensitive to heat/cold) 

Nociceptive Subjective 3 (pain provoked 

by specific 

postures/movements); 

Physical 5 (no generalised 

hypersensitivity); Physical 2 

(proportional pain response 

with physical exam) 

Nociplastic criteria 1 

(regional distribution); 

Neuropathic subjective 4 

(hypoaesthesia in area) 

 

Physical 1 (signs of 

inflammation); Physical 4 

(pain provocation by special 

tests); Physical 6 (absence of 

autonomic signs); Subjective 

5 (neuropathic questionnaire 

below cut off) 

Neuropathic Physical 2 (positive nerve 

pain provocation); 

Subjective 1 

(dermatomal/peripheral 

nerve distribution of pain); 

Subjective 4 (hypoaesthesia 

in distribution) 

 Subjective 2 (dysesthesia in 

distribution); Subjective 3 

(evidence of lesion or 

disease); Subjective 5 

(provoked by movements 

that load or compress neural 

tissue); Subjective 6 

(Neuropathic questionnaire 

above cut-off) 
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Figure legends 

Figure 1 Percentage of missing values for the different variables of the study. Blue 

bars represent metrics with less than 15% missing data, whereas red bars represent metrics 

with more than 15% missing data. 

Figure 2 Distribution of participants across three different pain types. The y-axis 

represents the patient count for each pain mechanism, and the red outline box indicates the 

examiner’s available classification for each pain type. In the cases where the expert did not 

allocate a classification it was indicated as ambiguous, this uncertainty was higher in 

participants with higher neuropathic scores. This might bias the results using examiner-

derived pain types, particularly for underrepresented groups such as those with neuropathic 

pain.  

 

Figure 3 Correlation plot between the study independent variables. Each cell 

represents the Pearson correlation coefficient between pairs of variables, with the colour 

indicating the strength and direction of the correlation. Red boxes group specific questions 

for each pain mechanism.  

 

Figure 4 Heatmap of all the independent variables. Each cell represents the value of 

the participants answers to a given question, with the participants arranged by dominant pain 

type allocated by the largest score. Red boxes group specific questions for each pain 

mechanism with participants with corresponding dominant pain type.  

 

Figure 5 Cluster tendency of the independent variables. The upper panel demonstrates 

the Hopkins Statistic. The x- and y -axis represent the 1st and 2nd principal component of the 
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data. For each pain type, a density map is depicted to illustrate the differentiation of pain 

type’s distribution. The bottom panel shows the features that contribute to the 2 principal 

components. Note that nociceptive subjective 5 is a low score on the neuropathic 

questionnaire. 

 

Figure 6 Cluster Silhouette Analysis for different number of clusters. Silhouette 

indicates how well each data point was clustered, so it should be maximized. Three clustering 

methods were tested, varying the number of clusters between 2 and 10. Low values for the 

share of negative silhouette also serves as an overall metric of proper clustering.  

 

Figure 7 Clustering prediction accuracy. Each of the 3 clustering algorithms were 

tested against the dominant pain type as computed with the score, and against the pain 

defined by the examiner. Each comparison shows the percentage of predictions from one pain 

type that were classified as any pain type. The diagonal represents the correct predictions, and 

the sum of the diagonal is the True Positive Rate (TPR). 

 

Figure 8 Heatmap of all the independent variables for the clustered data. Each cell 

represents the value of the participants answers to a given question, with the participants 

arranged by the three clusters. Red boxes are bounded by the allocation of the participants to 

a cluster in the x-axis, and the pain type specific questions on the y axis.  

 

Figure 9 Cluster dendrogram. The tree structure represents the closeness between data 

points, where they merge iteratively until only one cluster is formed. The distance to the 

centre represents the difference between the merging branches. The colour of the branches 

represents the predominant pain type as defined by the model, and the colour of the points at 
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the end of each branch represents predominant pain type defined by the pain score. Note the 

high degree of consistency   

 

Figure 10 Coefficient heatmaps from logistic regression analysis for score-derived and 

examiner-derived pain types. The heatmap displays coefficients for each feature based on the 

observed pain type. Blue indicates a positive relationship, whereas red indicates a negative 

relationship with the pain mechanism categories. The outlined boxes on both heatmaps 

highlight the grouped coefficients for each pain mechanism. 

 

Figure 11 Supervised classification accuracy. Each of the pain type as computed with 

the score, and against the pain defined by the examiner were tested against a multiclass 

logistic regression model. Each comparison shows the percentage of predictions from one 

pain type that were classified as any pain type. The diagonal represents the correct 

predictions, and the sum of the diagonal is the True Positive Rate (TPR). 

 

Figure 12 Probabilistic classification analysis. Each colour represents the dominant pain 

type, and the values represent the model likelihood for each participant. The top panels show 

the results of probabilistic clustering (unsupervised), and the lower panels represent the 

probabilistic predictions of the supervised models already analysed. Each model is 

accompanied by the Fuzzy Partition Coefficient (FPC) which measures the degree of 

uncertainty in the model predictions.  
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Figure 1 Percentage of missing values for the different variables of the study. Blue 

bars represent metrics with less than 15% missing data, whereas red bars represent metrics 

with more than 15% missing data. 
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Figure 2 Distribution of participants across three different pain types. The y-axis 

represents the patient count for each pain mechanism, and the red outline box indicates the 

examiner’s available classification for each pain type. In the cases where the expert did not 

allocate a classification it was indicated as ambiguous, this uncertainty was higher in 

participants with higher neuropathic scores. This might bias the results using examiner-

derived pain types, particularly for underrepresented groups such as those with neuropathic 

pain.  
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Figure 3 Correlation plot between the study independent variables. Each cell 

represents the Pearson correlation coefficient between pairs of variables, with the colour 

indicating the strength and direction of the correlation. Red boxes group specific questions 

for each pain mechanism.  

 
 
 
 
  

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted August 14, 2024. ; https://doi.org/10.1101/2024.08.13.24311924doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.13.24311924


Figure 4 Heatmap of all the independent variables. Each cell represents the value of 

the participants answers to a given question, with the participants arranged by dominant pain 

type allocated by the largest score. Red boxes group specific questions for each pain 

mechanism with participants with corresponding dominant pain type.  
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Figure 5 Cluster tendency of the independent variables. The upper panel demonstrates 

the Hopkins Statistic. The x- and y -axis represent the 1st and 2nd principal component of the 

data. For each pain type, a density map is depicted to illustrate the differentiation of pain 

type’s distribution. The bottom panel shows the features that contribute to the 2 principal 

components. Note that nociceptive subjective 5 is a low score on the neuropathic 

questionnaire. 
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Figure 6 Cluster Silhouette Analysis for different number of clusters. Silhouette 

indicates how well each data point was clustered, so it should be maximized. Three clustering 

methods were tested, varying the number of clusters between 2 and 10. Low values for the 

share of negative silhouette also serves as an overall metric of proper clustering.  
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Figure 7 Clustering prediction accuracy. Each of the 3 clustering algorithms were 

tested against the dominant pain type as computed with the score, and against the pain 

defined by the examiner. Each comparison shows the percentage of predictions from one pain 

type that were classified as any pain type. The diagonal represents the correct predictions, and 

the sum of the diagonal is the True Positive Rate (TPR). 

 
 

 
 
 
  

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted August 14, 2024. ; https://doi.org/10.1101/2024.08.13.24311924doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.13.24311924


Figure 8 Heatmap of all the independent variables for the clustered data. Each cell 

represents the value of the participants answers to a given question, with the participants 

arranged by the three clusters. Red boxes are bounded by the allocation of the participants to 

a cluster in the x-axis, and the pain type specific questions on the y axis.  
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Figure 9 Cluster dendrogram. The tree structure represents the closeness between data 

points, where they merge iteratively until only one cluster is formed. The distance to the 

centre represents the difference between the merging branches. The colour of the branches 

represents the predominant pain type as defined by the model, and the colour of the points at 

the end of each branch represents predominant pain type defined by the pain score. Note the 

high degree of consistency   

 

 
 
  

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted August 14, 2024. ; https://doi.org/10.1101/2024.08.13.24311924doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.13.24311924


Figure 10 Coefficient heatmaps from logistic regression analysis for score-derived and 

examiner-derived pain types. The heatmap displays coefficients for each feature based on the 

observed pain type. Blue indicates a positive relationship, whereas red indicates a negative 

relationship with the pain mechanism categories. The outlined boxes on both heatmaps 

highlight the grouped coefficients for each pain mechanism. 
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Figure 11 Supervised classification accuracy. Each of the pain type as computed with 

the score, and against the pain defined by the examiner were tested against a multiclass 

logistic regression model. Each comparison shows the percentage of predictions from one 

pain type that were classified as any pain type. The diagonal represents the correct 

predictions, and the sum of the diagonal is the True Positive Rate (TPR). 
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Figure 12 Probabilistic classification analysis. Each colour represents the dominant pain 

type, and the values represent the model likelihood for each participant. The top panels show 

the results of probabilistic clustering (unsupervised), and the lower panels represent the 

probabilistic predictions of the supervised models already analysed. Each model is 

accompanied by the Fuzzy Partition Coefficient (FPC) which measures the degree of 

uncertainty in the model predictions.  
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Supplementary Table 1 Clinical criteria for Nociceptive pain (based on 15) 

NOCICEPTIVE CRITERIA 

Subjective examination 

1. Localised distribution of pain (measured by location of symptoms)  

2. Pain recovery or healing time predictable based on expected time of tissue recovery  

3. Generally responsive to tissue-based treatments (e.g., manual therapy, massage, acupuncture, heat/cold, removal of tissue pathology, 

splints)  

4. Proportional and direct relationship of pain response with aggravating factors (measured by aggravating factors)  

5. Pain provocation by specific postures and/or movements consistent with a nociceptive clinical pattern (measured by aggravating factors)  

6. Generally responsive to anti-inflammatory drugs  

7. Generally not responsive to anti-convulsant or anti-depressant medication 

8. Findings from imaging of body regions of potential relevance to the pain experience  

9. Below cut-off (< 0) on Neuropathic Pain Questionnaire  

Physical examination ± subjective examination 

11. Signs of inflammation (redness, heat/warmth, tenderness, swelling) or a positive Clinical Inflammation Score  

12. Proportional and direct relationship of pain response wth physical examination  

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted August 14, 2024. ; https://doi.org/10.1101/2024.08.13.24311924doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.13.24311924


13. Pain provocation by testing of specific postures and/or movements consistent with a nociceptive clinical pattern including mini-treatment 

response 

14. Pain provocation by special tests consistent with a nociceptive clinical pattern (measured by physical examination)  

15. No generalised hypersensitivity (measured by physical examination)  

16. Absence of autonomic symptoms and/or signs (from CRPS features) 
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Supplementary Table 2 Clinical criteria for Neuropathic pain (based on 18) 

NEUROPATHIC CRITERIA 

Subjective examination 

1. Dermatomal or peripheral nerve distribution of pain (body chart)  

2. Dysthaesia (e.g., electric shock-like, lightning, paraesthesia) (body chart)  

3. Evidence of lesion or disease of the nervous system (imaging/electrophysiological testing)  

4. Hypoaesthesia in a neuroanatomically plausible distribution (body chart)  

5. Provoked by movements that load or compress neural tissue (aggravating factors)  

6. Above cut-off (> 0) on Neuropathic Pain Questionnaire  

Physical examination 

7. Sensory deficits in a neuroanatomically plausible distribution (neurological testing)  

8. Altered or absent deep tendon reflexes (neurological testing)  

9. Positive findings on nerve pain provocation testing (e.g., neurodynamic testing, Tinel's sign)  

10. Muscle atrophy in a neuroanatomically plausible distribution (observation)  

11. Motor deficits (e.g., weakness) in a neuroanatomically plausible distribution (neurological testing)  
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Supplementary Table 3 Clinical criteria for Nociplastic pain (based on 16) 

NOCIPLASTIC CRITERIA 

Subjective examination - features of pain hypersensitivity in the region of pain with any one of the following: 

1. Sensitivity to light touch or pin prick 

2. Sensitivity to deep pressure 

3. Sensitivity to movement 

4. Sensitivity to heat or cold 

Presence of comorbidities (of at least moderate severity) with any one of the following: 

5. Increased sensitivity to sound and/or light and/or odours 

6. Sleep disturbance with frequent nocturnal awakenings 

7. Fatigue 

8. Cognitive problems such as difficulty to focus attention, memory disturbances, etc 

Central Sensitisation Index - score >40 is considered indicative of central sensitisation 

Physical examination - Pain hypersensitivity distal to and/or in the region of pain with any one of the following: 

9. Dynamic mechanical allodynia to light touch 

10. Static mechanical sensitivity to deep pressure  
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11. Heat or cold sensitivity (only test if above are negative) 

12. Painful after-sensations reported following the assessment of any of the above 

Additional criteria: 

13. Chronic (> 3 months) 

14. Regional (rather than localised and/or neuroanatomically plausible) in distribution 
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