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Abstract 
Obesity-related conditions are among the leading causes of preventable death and are increasing 
in prevalence worldwide. Body size and composition are complex traits that are challenging to 
characterize due to environmental and genetic influences, longitudinal variation, heterogeneity 
between sexes, and differing health risks based on adipose distribution. We constructed a 4-
factor genomic structural equation model using 18 measures and unveiled shared and distinct 
genetic architectures underlying birth size, abdominal size, adipose distribution, and adiposity. 
Multivariate genome-wide associations revealed the adiposity factor was enriched specifically in 
neural tissues and pathways, while adipose distribution was enriched across widespread 
physiological systems. In addition, polygenic scores for the adiposity factor predicted many 
adverse health outcomes, while body size and composition predicted a more limited subset. 
Finally, we characterized the factors’ genetic correlations with obesity-related traits and 
examined the druggable genome through constructing a bipartite drug-gene network to identify 
viable therapeutic targets.  
 
Introduction 
Human body size and body composition vary throughout an individual’s lifecourse and across 
individuals in a population. The strong associations linking excess fat stores with a constellation 
of morbidities have highlighted the importance of understanding how various anthropometric 
traits are connected to the broad and multifaceted biological systems underpinning human health. 
Obesity prevalence has increased markedly in the United States between 1999 and 2020 from 
30.5% to 41.9%.1 On a global scale, the increasing rates of obesity observed among children and 
adults are a widespread source of concern;2 obesity-related conditions such as heart disease, 
stroke, type 2 diabetes (T2D), and some cancers are among the leading causes for preventable 
death.3 Although family-based2 and genome-wide association studies (GWASs)4 point to 
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substantive genetic influences on obesity, the broader landscape of what characterizes this 
genetic signal across different measures of adiposity remains poorly understood.  

The phenotypic and genetic signal of adiposity traits is remarkably difficult to 
characterize due to heterogeneity between sexes and longitudinal variation across the lifespan. 
The genetic architecture for adipose distribution is notably different between males and females,5 
and women exhibit a greater ratio of subcutaneous-to-visceral adipose tissue than men.6 
Moreover, the amount of visceral adipose tissue tends to increase with age for both males and 
females, but men tend to lose relatively more visceral adipose tissue due to calorie restriction 
than women.6–8 Body mass index (BMI) – an easily obtainable clinical measure (diagnosing 
obesity as BMI ≥ 30 kg/m2) – falls short when differentiating between masses of visceral 
adipose, subcutaneous adipose, muscle, or bone, leading to its criticism as a misleading metric of 
body composition and cardiometabolic health.9–11 Waist circumference adjusted for BMI 
(WCadjBMI), hip circumference adjusted for BMI (HCadjBMI), and waist-to-hip circumference 
ratio adjusted for BMI (WHRadjBMI)5 are proxy measures of body fat distribution. Notably, the 
genetic drivers of BMI and WHRadjBMI are distinct: genetic associations for BMI and obesity 
are linked to enriched gene expression in the central nervous system (CNS), implicating a 
relationship between obesity and the brain,2,5,12,13 whereas genes associated with WHRadjBMI 
demonstrate less enrichment for tissue-specific expression in the CNS and more with gene 
expression in preadipocytes and adipocytes.5,14 Similarly, the genetic contributors to metabolic 
syndrome (MetSyn) – a cluster of often comorbid risk factors (e.g., hypertension) that link 
adiposity with cardiovascular disease and T2D – strongly overlap with the genetic associations 
for waist circumference (WC).15 However, the alleles associated with a higher subcutaneous-to-
visceral adipose distribution (increased capacity for adipose tissue expansion)16 are protective for 
T2D, heart disease, and high blood pressure.17,18 These findings highlight the complexity of body 
composition and genetic influences, with sometimes contrasting effects on health outcomes. 

Given this complex and intertwined landscape of anthropometric measurements, we 
speculated that the genetic associations for human body size and body composition would be 
more suitably represented as latent variables in a genomic structural equation modeling 
(Genomic SEM) framework.19 Genomic SEM estimates how strongly the genetic associations of 
various observed traits are related to a number of underlying and unobserved genetic constructs 
(latent factors). It does so by estimating the strengths of the relationships (loadings) of each trait 
with the factors, which themselves can be related to one another (genetic correlations). A 
primary characteristic of Genomic SEM is its ability to include different sets of traits from 
various participant samples; this enabled us to incorporate a diverse range of anthropometric 
traits from across the lifespan and stratified by biological sex into the same statistical model. 
Through this modeling process, we balanced model complexity and parsimony to unveil the 
shared and distinct genetic components underlying differences in birth size, abdominal size, 
weight distribution, and adiposity. We found the enrichment of biological pathways and tissue 
types to be distinct among the 4 genetic factors in the model, and the factors showed different 
associations with adverse health outcomes in an independent dataset with electronic health 
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records. In addition, we contextualized the genome-wide signal for each of the factors by 
identifying differing genetic correlations with obesity-related traits. Together, our results 
particularly highlighted the adiposity factor for its distinct enrichment in nervous systems, 
genetic correlations with related traits, and prediction of adverse health outcomes across broad 
phenotypic domains. Finally, we examined the druggable genome and constructed a bipartite 
drug-gene network to identify possible mechanistic explanations for weight-related side effects 
and the potential for repurposing therapeutics to address adiposity. 
 
Results 
A four-factor model of anthropometric and adiposity genetics 
We began by bringing together GWAS summary statistics for 18 adiposity and anthropometric 
measures from different points in the lifespan and stratified by sex (Supplementary Table 1). The 
Genomic SEM model in Fig. 1 revealed an overall structure with 4 latent genetic factors referred 
to as F1-F4 and had adequate model fit20,21 (comparative fit index [CFI] = 0.94 and a 
standardized root mean square residual [SRMR] = 0.11). The genetic covariance and correlation 
matrices are shown in Supplementary Figs. 1-2 along with further description of the modeling 
techniques and considerations in the online methods. The model estimated differing strengths of 
relationships between the 18 genetic indicator variables and their underlying latent constructs, as 
represented by their factor loadings (Fig. 1 one-directional arrows). F1 included 3 loadings for 
traits related to birth size, F2 included 3 loadings for traits relating to abdominal size, F3 
included 7 loadings for traits relating to body size and adipose distribution, and F4 included 7 
loadings for traits relating to adiposity. The 4 factors generally exhibited small genetic 
correlations (Fig. 1; rg ≤ 0.15 indicated by two-directional arrows representing standardized 
covariance relationships between the factors). The only sizable genetic correlation was for F1 
and F3 (rg = 0.44), likely reflecting the shared genetic effects of birth length and adult height (rg 
= 0.49). Together, this emphasized the unique subclusters of genetic signal across traits that are 
often thought of as similar proxy measurements of anthropometry and adiposity. 

Among the 6 sex-stratified traits, each male-female pair generally loaded onto the same 
factor, highlighting the largely shared genetic associations within males and females. HCadjBMI 
male and female had similar loadings on F3, and BMI male and female had similar loadings on 
F4 – however, across the other sex-stratified traits there were some notable differences. More 
genetic variance of WHRadjBMI was explained by F2 in females relative to males (see loadings 
in Fig. 1), and F4 explained more variance of female than male arm fat ratio (AFR). In addition, 
the variance in female trunk fat ratio (TFR) was mostly explained by F3, but male TFR had 
modest cross-loadings between F3 and F4, with substantial residual genetic variance (0.83) and 
generally low genetic covariance (Supplementary Fig. 1) with other anthropometric traits, 
suggesting a more divergent genetic influence on male TFR. WCadjBMI female cross-loaded 
substantially onto both F2 and F3, while WCadjBMI male only loaded on F3. One primary 
advantage of our SEM model is its ability to estimate these sex-specific differences and 
relationships within the landscape of anthropometric traits across the lifespan. The 4 factors in 
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our model provide latent constructs that are less prone to measurement error and can discern the 
genetic components relating to body size and body composition; as such, this novel genetic 
representation goes beyond any single indicator variable, such as BMI. 

We subsequently used our 4-factor Genomic SEM to perform multivariate GWASs, 
which leveraged improved power over the constituent indicator GWASs. We identified multiple 
genome-wide significant (GWS; p < 5 x 10-8) variants that were unique to each factor and not 
identified in the underlying GWASs after removing SNPs with heterogeneous effects (QSNPs; 
Supplementary Table 2). F1, F2, F3, and F4 respectively uncovered 103; 1,318; 8; and 6,206 
novel GWS SNPs that were not identified in the indicator GWASs for each factor, and 
Manhattan plots for each multivariate factor-GWAS are shown in Supplementary Figs. 3-6. We 
characterized these multivariate GWASs in multiple downstream analyses. First, we 
implemented DEPICT22 to identify significantly prioritized genes (FDR < 0.05) from the 88; 
344; 1,173; and 675 independent GWS loci for F1, F2, F3, and F4 respectively, and assessed the 
enrichment of those loci across functional gene sets (p < 4.56x10-6, the Bonferroni-corrected 
significance threshold) and tissue-specific expression profiles (FDR < 0.05). Next, we used 
FOCUS23 to perform transcription-level analyses for each of the latent factor GWASs, and we 
extracted genes with posterior inclusion probability (PIP) > 0.1 that were fine-mapped to non-
null 90% credible sets (CSs). We additionally used the factor multivariate GWASs’ effect 
estimates and LDpred224 to calculate 4 polygenic risk scores (PRSs) in an external dataset (N = 
25,240) which were then tested for association (FDR < 0.10, due to the highly correlated 
structure of the phecodes) with 1,591 phecode-based phenotypes in a phenome-wide association 
study (pheWAS). Next, we estimated the genetic correlations with comorbidity-related traits to 
contextualize each factor within a broader genomic landscape using LDSC.25,26 Finally, we 
constructed drug-gene interaction networks for the factors’ DEPICT- and FOCUS-identified 
genes to advance existing, proposed, and novel therapeutic targets for adiposity-related 
conditions. 
 
F1 – birth size 
F1 characterized the genetic signal underlying size at birth with loadings from 3 indicator 
variables (Fig. 2a). The DEPICT analysis highlighted 88 independent GWS loci with 24 
significantly prioritized genes and 3 enriched gene sets including ‘incomplete somite formation’ 
and ‘decreased embryo size’ gene sets. The GWS loci for F1 were not enriched for expression 
profiles across physiological systems, cell types, or tissue types (Fig. 2b). In a tissue-agnostic 
transcriptome wide association study (TWAS) analysis using FOCUS, however, there were 158 
finemapped genes across 69 CSs (Supplementary Fig. 11). These putatively causal gene-
expression mediated effects consisted of SNP-expression weights from 27 general tissues 
including the brain (43 genes), adipose (17 genes), and esophagus (16 genes). The F1 PRSs that 
were validated in an external dataset (N = 25,240) were negatively associated with acute 
sinusitis, insomnia, renal failure, T2D, and hypertension (Fig. 2c).  
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F2 – abdominal size 
F2 had 3 loadings from indicator variables relating to adult abdominal size (Fig. 3a) and 319 
significant DEPICT-prioritized genes from 344 independent GWS loci. We observed significant 
physiological system enrichment across 7 of the 10 categories (Fig. 3b), including adipocytes, 
subcutaneous adipose tissue, and abdominal adipose tissue. Beyond those adipose-related tissues, 
F2’s genetic signal was broadly enriched throughout the body including the musculoskeletal, 
urogenital, cardiovascular, digestive, and endocrine systems. Using tissue-agnostic FOCUS 
TWAS we identified 676 finemapped genes across 243 CSs (Supplementary Fig. 12). These 
prioritized TWAS associations spanned 28 general tissues but primarily consisted of brain (160 
genes) and adipose tissue weights (78 genes). F2 PRS-pheWAS showed positive associations 
with T2D, peripheral angiopathy, and hypertension (Fig. 3c) suggesting a genetic propensity for 
larger abdominal size was predictive of these circulatory and metabolic health outcomes. These 
phenotypic associations were aligned with the DEPICT gene-set analysis which identified 185 
significantly enriched gene sets relating to insulin resistance and organ development/morphology 
(particularly within the cardiovascular system). 
 
F3 – body size and adipose distribution 
The third genetic factor, F3, captured the shared variance among 7 indicator variables describing 
body size and adipose distribution (Fig. 4a), with notable differences between the loadings for 
male and female traits, especially for TFR (described above). The DEPICT analysis for F3 
identified 1,864 significantly prioritized genes for 1,173 independent GWS loci and enrichment 
in 8 of the 10 physiological system categories (Fig. 4b; musculoskeletal, urogenital, 
cardiovascular, endocrine, digestive, respiratory, hemic and immune, integumentary), 
exemplifying the multifaceted physiology underlying variation in adult body size and adipose 
distribution. We found 1,127 gene sets significantly enriched for F3, including many gene sets 
relating to embryonic development and protein‑protein interaction subnetworks. In a tissue-
agnostic FOCUS TWAS, we identified 2,266 finemapped genes across 689 CSs (Supplementary 
Fig. 13), spanning 28 general tissues, particularly brain (571 genes), esophagus (242 genes), 
adipose (218 genes), and artery (202 genes). Interestingly, APOE, a gene linked to Alzheimer’s 
disease and catabolism of lipoprotein constituents, was significantly associated via prostate 
expression weights (Z-score = -5.35, PIP = 0.61). The PRS-pheWAS analysis revealed that F3 
was predictive of a few health outcomes including negative associations with abdominal pain, 
hyperlipidemia, and hypertension, but a positive association with atrial fibrillation. 
 
F4 – adiposity 
F4 had 7 adiposity-related indicator variables loading onto it relating to excess fat tissue and 
obesity (Fig. 5a). The associated loci were enriched only in one physiological system (nervous; 
Fig. 5b). Broad regions across the CNS were enriched, including the hindbrain (cerebellum) and 
the forebrain (cerebral cortex, temporal lobe, occipital lobe, frontal lobe, parietal lobe, basal 
ganglia) – regions responsible for complex perceptual, cognitive, and behavioral processes 
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involving learning, emotion, and memory. The F4 DEPICT analysis identified 437 significantly 
prioritized genes for the 675 independent GWS loci and 62 enriched gene sets; upon comparing 
these gene sets to the other 3 factors, they were much more specific to the CNS, relating to brain 
development, neurons, synaptosomes, and dendrites. In a brain-tissue-prioritized FOCUS 
TWAS, we identified 850 finemapped genes across 335 CSs (Supplementary Fig. 14). These 
prioritized TWAS associations spanned 28 general tissues but the majority corresponded to brain 
tissue weights (498 genes). The PRS-pheWAS analysis for F4 uncovered many more 
associations with adverse health outcomes, spanning a wide range of domains (Fig. 5c): chronic 
pain, fatigue, asthma, shortness of breath, sleep apnea, benign skin neoplasm, cancer of kidney 
and renal pelvis, osteoarthritis, substance use disorders, anxiety, depression, sepsis, allergy to 
medications, skin/nail fungal infections, anemia, renal disease/failure, obesity, T2D, liver 
disease/cirrhosis, bariatric surgery, esophageal diseases, acid reflux, cellulitis, long-term 
anticoagulants, and hypertension.  
 
Comparison of F4 and BMI genetic signals 
The male and female BMI indicator variables both had large standardized loadings of 0.95 with 
F4; therefore, we explored the shared versus novel aspects of the genetic signals for F4 (a highly 
predictive latent factor) compared to BMI. There were 6,578 GWS SNPs common between the 
F4 and BMI GWASs, but 6,206 SNPs that were novel to F4 (i.e., not GWS in any of the 
indicator GWASs loading onto F4, including BMI). Overall, the GWS SNPs for F4 and BMI 
(combined males and females) resided in 675 and 1,035 independent significant loci, 
respectively, which only partially overlapped (624 of the 675 F4 loci had genomic positional 
overlap with the BMI loci [Extended Data Fig. 1, Supplementary Figs. 6-7]). Notably, while 392 
DEPICT-prioritized genes were common to BMI and F4, 45 genes were unique to only F4 
(Supplementary Table 18, Extended Data Fig. 2). In addition, while 339 putatively causal genes 
with expression mediated effects (FOCUS-identified genes) were common to BMI and F4, 511 
genes were unique to F4. Only 21 genes were common to all 4 analyses (identified by DEPICT 
and FOCUS for both F4 and BMI). Beyond these distinguishing overlaps at the gene-level, the 
DEPICT tissue enrichment analyses (Supplementary Fig. 9) pinpointed a key difference between 
F4 and BMI: the BMI-associated genetic loci were distinctively enriched for the hypothalamus 
and the hypothalamo hypophyseal system – the brain’s control center for hunger and satiety. The 
BMI-associated loci were therefore enriched in the canonical energy homeostasis-related areas of 
the brain whereas the F4-associated loci were not. Thus, F4 was characterized by a novel 
partitioning of the genetic architecture of adiposity; F4 disentangles a neural and behavioral 
component of adiposty that is rooted in sensory processing, learning, memory, and experience. 
 The genetic differences between F4 and BMI motivated us to perform an additional 
pheWAS controlling for BMI to investigate the conditionally idependent associations of F4’s 
polygenic risk with heath outcomes (Extended Data Fig. 3). We observed an attenuation of the 
F4-pheWAS associations, as expected, after conditioning on BMI (Supplementary Fig. 10); 
several health outcomes including chronic pain, sleep apnea, depression, and acid reflux dropped 
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below the significance threshold, implicating BMI as a potential mediator for some disease 
associations. However, F4 clearly captured additional and unique contributions to health 
outcomes beyond BMI alone, with F4 still positively and significantly predicting adverse health 
outcomes for the vast majority of associations (Fig. 5c, Extended Data Fig. 3) . These results 
illustrate the utility of F4 as a polygenic predictor beyond BMI, and they showcase the added 
value of our model for disentangling the genetics of adiposity and anthropometrics across the 
lifespan. 
 
Genetic correlations with related traits 
Following the characterization of each of the 4 factors with regard to their genome-, 
transcriptome-, and phenome-wide associations, we estimated LDSC-based genetic correlations 
between each factor and 75 adiposity-related traits (Supplementary Tables 3 and 48), including 
metabolism, substance use, psychopathology, neuroticism, risk tolerance, diet, sleep, exercise, 
pain, frailty, dementia, inflammatory disease, autoimmune disease, and cardiovascular disease. 
The full genetic covariance and correlation matrices are shown in Supplementary Figs. 16-17 and 
Supplementary Tables 49-52, and pairwise genetic correlations with F1, F2, F3, and F4 are 
shown in Extended Data Fig. 4 and Supplementary Figs. 18-26. Fig. 6 depicts the prominent 
genetic correlations (> 0.15) with each of the factors in our Genomic SEM; F1 and F3 were the 
only factors with a notable inter-factor genetic correlation (rg = 0.44). The genetic link between 
F3 and atrial fibrillation recapitulates the F3 pheWAS result (Fig. 4c) highlighting the shared 
genetics underlying an association between taller stature and increased risk of atrial fibrillation.27 
F2 had positive genetic correlations with the components of MetSyn and smaller genetic 
correlations relating to substance use, but weak correlations otherwise. F4 was again the most 
central factor in terms of the strength and quantity of genetic correlations, including positive 
correlations with metabolic disorders, pain, internalizing disorders, general risk-tolerance, 
attention-deficit hyperactivity disorder, substance use disorders, frailty, adult-onset asthma, 
coronary artery disease, and gout. F4 was negatively correlated with measures of 
fitness/exercise, compulsive disorders, HDL cholesterol, alcohol consumption frequency, and 
sleep efficiency. Interesting and nuanced relationships emerged between adipose genetic factors 
and mental health traits: general neuroticism was more genetically correlated with F2 (rg = 0.18) 
compared to F4 (-0.01), but the depressed affect and worry subtypes of neuroticism were more 
genetically correlated with F4 (0.20 and -0.21, respectively) compared with F2 (0.12 and 0.10, 
respectively). Thus, we found opposite directionality of the genetic correlation between F4 and 
the neuroticism subtypes and also between F4 and compulsive disorders (e.g., obsessive 
compulsive disorder [-.25] and anorexia nervosa [-.27]) versus internalizing disorders (e.g., 
anxiety disorders [.12] and major depressive disorder [.14]). Together, this suggests that the 
relationship of adiposity and mental health outcomes depends in part on which aspect of body 
composition is evaluated, and in turn, the possible physiological and neurological systems 
involved. 
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Drug-gene network 
Our final downstream analysis aimed to identify potential therapeutics that might ameliorate or 
prevent adipostiy by querying the significantly associated genes across two drug-gene interaction 
databases (Drug Repurposing Hub [DRH] and Drug-Gene Interaction Database [DGIdb]). We 
constructed a bipartite drug-gene network for each of the latent factors to assess the druggable 
genome in the context of our 4-factor model. Given the extensive phenotypic associations we 
observed for the PRS trained on the 4th factor (Fig. 5c), we primarily focused on F4’s 1,239 
DEPICT- or FOCUS-identified genes (results for the other three factor-identified genes are 
presented in Supplementary Tables 53-60). Our bipartite network for F4 included 733 drug-gene 
pairs (451 from the DRH, 192 identified by the DGIdb, and 90 identified by both), consisting of 
151 genes and 529 drugs with regulatory approval. Of these 529 drugs, a substantial number 
(148) had prior descriptions of weight-related adverse drug events (wADEs) in the OnSIDES 
database.28 The 381 drugs without wADEs typically interacted with genes that were connected to 
drugs with known wADEs (Extended Data Figs. 5-10).  

This network had groups of drugs clustered around high-degree genes, and drugs that 
served as links between different modules. Upon annotation of these drug clusters, we identified 
parts of the network that were specific to psychiatry, neurology, cardiology, oncology, 
endocrinology, and gastroenterology illustrating the diversity of therapeutics with potential 
wADEs based on interactions with F4-associated target genes. This analysis identified drug-gene 
pairs for serotonergic (e.g., trazodone) and dopaminergic agents (e.g., quetiapine) – well-known 
psychiatric medication classes with wADEs, sulfonylureas – diabetes medications with known 
wADEs, and tirzepatide – a potent weight loss and diabetes medication that interacts with GIPR. 
In addition, the drug-gene network for F3 recapitulated the function of fenofibrate as a 
therapeutic for MetSyn components15 via interactions with two significant genes (SCARB1 and 
GCKR). These confirmatory results support the utility of our approach to identify novel and 
salient drug targets or existing drugs that might be repurposed to target adiposity. Moreover, 
genes interacting with drugs with known wADEs – e.g., antihistamines interacting with HRH1 – 
frequently interacted with numerous other medications of the same drug class, suggesting 
weight-related drug effects may be under-recognized among medications with a common 
mechanism of action. Our bipartite network results can also be used to explore direct 
mechanisms for the drug-induced bodyweight changes that are commonly listed as adverse side 
effects of treatment and are observed in routine clinical care. For example, olanzapine (a 
psychiatric drug for schizophrenia and bipolar disorder), interacts with the same gene target as 
tirzepatide – GIPR – and this could explain the adverse weight gain often associated with 
olanzapine administration.29–32 In addition, the DEPICT GWAS identified muscarinic 
cholinergic receptor gene CHRM4 and the FOCUS TWAS identified histamine receptor gene 
HRH1 for F4 – these genes provide potential explanations for the wADEs of drugs that are used 
to treat mental disorders33 and antihistamine medications.34 Similarly, the identification of 
several receptor tyrosine kinases as having potentially causal effects on adiposity from the 
DEPICT and FOCUS analyses provides a mechanistic explanation for the wADEs of tyrosine 
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kinase inhibitors.35 We also uncovered potentially novel drug-gene pairs that may inform studies 
of drug repurposing. One of the 45 genes that was identified by our DEPICT analyses for F4 but 
not for BMI was PDE5A on chromosome 12; this gene is targeted by dipyridamole (a medication 
used to prevent blood clots), which has been implicated as a potential therapeutic for weight loss 
via stimulating brown fat energy expenditure.36  
 
Discussion 
Our 4-factor structural equation model serves as an informative and parsimonious representation 
of the genetic relationships among anthropometrics and adiposity across the lifespan. While 
many different measurements aim to quantify aspects of body size and body composition, our 
approach using correlated latent factors is less prone to the measurement error introduced by a 
singular phenotype definition, such as BMI. Furthermore, our modeling approach leveraged the 
combined power across indicator GWASs to identify novel genomic associations and provided a 
comprehensive mapping of the genetic architecture underlying birth size, abdominal size, 
adipose distribution, and adiposity. Our model highlighted differing genetic effects and loadings 
between males and females, and we characterized the distinct polygenic signals underlying each 
of the 4 genetic factors through various downstream analyses: multivariate GWASs, SNP-to-
gene mapping, gene set enrichment, tissue enrichment, fine-mapped TWASs, PRS-based 
pheWASs, genetic correlations, and drug-gene interaction networks.  

All of these analyses recapitulated the importance of F4, the adiposity factor, as the 
primary genetic culprit predisposing individuals to adverse health outcomes. Compared to the 
other 3 factors, F4 showed distinct enrichment for neuronal tissues and gene sets, stronger 
genetic correlations with related traits, broad health associations across numerous phenotypic 
domains, and relevant drug-gene pairings across diverse fields of medicine. Furthermore, F4 
showed distinct genetic signal compared to BMI. The link between F4 and substance use traits is 
further accentuated by our identification of GIPR and tirzepatide in the drug-gene network 
because of the growing evidence for GIP and GLP-1 receptor agonists as potential anti‐addiction 
treatments (beyond their primary indication for diabetes and weight loss).37,38 In the context of 
our ongoing search for more effective treatments, F4 provided possible mechanistic explanations 
for weight-related side effects across many medications and identified the potential for 
repurposed therapeurics to address adiposity (e.g., dipyridamole, an antiplatelet medication, 
which has been shown to target inosine as a stimulant of energy expenditure in brown 
adipocytes).36,39 The findings from our downstream analyses triangulated F4’s close relationship 
with behavioral traits through disentangling the genetic architecture of adiposity; the neuronal 
and behavioral context of F4 emphasized that the genetic loci associated with increased adiposity 
are underlain by complex relationships with environmental and lifestyle influences. F4 
implicates a broad and cascading network of adiposity-mediated diseases40 and the underlying 
physiology of excess fat storage,41 adipokines (e.g., leptin and adiponectin),42,43 chronic 
inflammation from adipocyte apoptosis,44 MetSyn,15 and diabetes subtypes.45,46  
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Anthropometrics and adiposity across the lifespan have important health implications 
amidst a complex landscape of various patterns of inheritance (e.g., rare-vs-common genetic 
variants, high-vs-low penetrance, large-vs-small effect sizes)2 and diverse environmental 
contexts (e.g., food availability, physical activity, exposure to pollutants).47–49 The present 
analyses were limited to individuals of European ancestry, and future work will aim to 
characterize anthropometrics for additional ancestry groupings. In addition, our analyses share 
the strengths, assumptions, and limitations of the underlying methods including Genomic SEM,19 
LDSC,25,26 DEPICT,22 and FOCUS.23 Extending our genetic insights into multi-ancestry, 
longitudinal, and multi-omics50 frameworks will enable the identification of biological markers 
beyond the genome and further disentangle the etiology of adipose-related diseases. While F4 
had the strongest and most widespread health implications, the other three genetic factors 
characterized important aspects of body size and adipose distribution, reflecting unique 
influences on additional health outcomes, including respiratory illness,51 renal failure,52 
hypertension,53 kidney stones54, T2D, and hyperlipidemia.55–57 Future directions might involve 
further exploration of the negative pheWAS association for F3 with hyperlipidemia, especially in 
the context of F3’s evidence for sex differences regarding depot-specific genetic architectures of 
adipose distribution.58 

Our model describing the genetic associations for variation in human body size and body 
composition across the lifespan recapitulates the notion that food intake is not merely an 
unconditioned response to an energy deficiency, nor is it restricted to the canonical energy 
homeostasis areas in the brain (e.g., the hypothalamus).59 Instead, the involvement of brain areas 
performing the functions of sensory processing, learning, emotion, and memory indicates a 
broader neuro-centric genetic relationship with obesity. In this context, this neural component 
carries significant influence on health outcomes; and from a personalized medicine perspective, 
F4 has the promising capability to improve the prediction, diagnosis, treatment, and prevention 
of morbidities such as obesity, diabetes, adult persistent asthma, heart disease, chronic pain, 
substance use, and mental disorders. 
 
Online Methods  
Genomic structural equation modeling 
Structural equation modeling is a widely used methodology for understanding the correlation and 
covariance patterns of interconnected variables. The resulting models are useful for explaining 
the variance of measurable variables, latent variables, and the relationships between those latent 
variables.60 We constructed an SEM describing the genetic associations of body size and body 
composition using a set of publicly available GWASs for various anthropometric traits. The 
measurement model that we constructed consisted of 18 individual GWAS summary statistics for 
12 different phenotypes (described in Supplementary Table 1).14,61–69  Given our interest in 
investigating the sex-specific genetic architecture of body size and body composition, we 
included male and female GWASs independently for 6 of the 12 traits. The GWAS summary 
statistics were formatted using the munge function in the GenomicSEM R package after 
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specifying the effect alleles, the effect sizes, standard errors, and sample sizes for each dataset. 
All 18 GWASs passed heritability-based quality control (QC) with heritability Z-statistics 
greater than 4, signifying they were well powered and had measurable effects across 954,086 
overlapping genetic variants. These GWASs were comprised of European ancestry populations 
and the corresponding SNP reference file and linkage disequilibrium (LD) scores and were 
downloaded from the Genomic SEM data repository. The Ethics Board at the University of 
Colorado Boulder deemed that institutional review board approval was not necessary for our 
analyses as GWAS summary data do not include individual-level results; the studies that 
published the incorporated summary statistics obtained written informed consent from 
participants and were approved by local ethics committees. 

The only binary trait included in the analysis was childhood obesity, which consisted of 
9,116 cases and 13,292 controls; because this GWAS was a meta-analysis of multiple cohorts, 
the sum of effective sample sizes was used along with a sample prevalence of 0.5 (per the 
Genomic SEM multivariable LDSC function guidelines) and a population prevalence of 0.20 for 
liability scale conversion.62 We implemented the standard parameters for Genomic SEM, and QC 
criteria ensured the included SNPs were common (maf.filter = 0.01) and that the SNPs with 
lower imputation quality were removed from the analysis (info.filter = 0.9). When initially 
attempting to include all 3 bio-electrical impedance fat distribution GWASs (arm-fat-ratio 
[AFR], leg-fat-ratio [LFR], and trunk-fat-ratio [TFR]), the model showed poor fit and spurious 
standardized loadings greater than 1. This was due to the linear dependency among these 3 traits 
(the ratios of AFR, LFR, and TFR sum to 1, and therefore one ratio is predictable by the other 
two) which was problematic when inverting the sample covariance matrix in the process of 
computing the model estimates. We omitted LFR from the analysis since, LFR has many 
redundant genetic associations with TFR,61 and TFR was more relevant given the relationship 
between visceral adipose tissue and adverse health outcomes.  

We implemented Genomic SEM in a 2-stage modeling process to fit an SEM to the 
genetic association estimates.19 We used multivariate linkage disequilibrium score regression 
(LDSC)25,26 to construct the genetic covariance (SLDSC) and sampling covariance (𝑉!!"#$) 
matrices for the 18 GWAS summary statistics. Then, we fit an SEM using diagonally weighted 
least squares (DWLS) estimation. An important feature of Genomic SEM is that it is designed to 
handle varying degrees of sample overlap among the incorporated GWASs.  

We first performed an exploratory factor analysis (EFA) by using odd chromosomes then 
a confirmatory factor analysis (CFA) using the even chromosomes to serve as a hold-out sample 
and protect from model overfitting. We used the Kaiser rule,70 the acceleration factor, and 
optimal coordinates criteria71 to assess the EFA and determine which eigenvalues of the genetic 
covariance matrix were most pronounced; all 3 criteria indicated that 4 latent factors was a 
judicious choice for the SEM. The factanal R package was used to perform a promax (i.e., 
correlated factor) rotation preceding the estimation of the unstandardized and standardized 
loadings from the nearest positive definite genetic covariance matrix via the nearPD function 
from the matrix R package. Variables with standardized loadings greater than 0.3 were 
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specified to load onto each of the 4 latent factors, and the model structure was notably consistent 
for any threshold choice between 0.3 and 0.5. Heywood cases were handled for indicator 
variables with loadings close to 1 by constraining the residuals to be greater than 0.0001. The 
resulting fit of the SEM was evaluated using the comparative fit index (CFI) and the 
standardized root mean square residual (SRMR). Generally, CFI > 0.9 and SRMR < 0.1 are 
indicative of acceptable model fit for Genomic SEM models.20,21 WCadjBMI females and TFR 
males showed notable genetic correlations with indicator variables loading onto the 3rd and 4th 
factors respectively; including these cross-loadings improved model fit and resolved warnings 
regarding the covariance matrix of the residuals of the observed variables being non-positive 
definite. Ultimately, the CFA showed consistent factor structure with the EFA, and the overall 
measurement model achieved a reasonable balance between model fit and model parsimony. The 
resulting Genomic SEM model contained 4 factors and 127 degrees of freedom with a CFI = 
0.94 and an SRMR = 0.11. After observing the generally distinct signals exhibited by these 4 
factors and the poor model fit from a common factor model, we refrained from fitting a 
hierarchical factor model to the data. 
 
Genetic factors: multivariate genome wide association study 
After defining the measurement model, we estimated SNP effects for the 4 genetic factors. This 
analysis was run in parallel for 954,086 SNPs that were common across the indicator GWASs 
and passed QC criteria. For each factor, we fit an independent pathways model for each SNP to 
test for heterogeneity of effect sizes among the indicator variables loading onto the same factor. 
The Genomic SEM QSNP methods included a fix_measurement parameter which was used to 
specify that the measurement model should be fixed across all SNPs, and we used the differences 
in the two models’ χ2 test statistics and degrees of freedom to identify SNPs with evidence for 
significant differences in model fit (QSNP p < 5x10-8).19 While these QSNPs are of interest because 
their indicator-specific effects might explain phenotypic divergence, for the purposes of 
constructing latent genetic factors that represent shared variance we removed these QSNPs along 
with nearby SNPs in LD. A European ancestry LD reference panel from the thousand genomes 
project (TGP)72 consisting of 503 unrelated individuals and 13.6 million genetic variants was 
implemented with PLINK73,74 to identify and filter variants within 1 mega-base and LD r2 ≥ 0.2 
with the QSNPs. F1, F2, F3, and F4 respectively had 23; 335; 1,525; and 969 significant QSNPs, 
and after considering LD structure 79; 1,284; 6,909; and 4,183 SNPs were removed. The allele 
frequencies and the standard errors of the effect estimates were used to estimate the effective 
sample size for each of the 4 latent factors via the method described in the supplement of 
Mallard et al., 2022.75 F1, F2, F3, and F4 had estimated effective sample sizes of 52,404; 
176,820; 690,110; and 393,268 respectively.  

We used DEPICT22 v1.194 to identify independent, associated genomic loci using default 
parameters of p < 5x10-8, LD pairwise r2 < 0.1, and physical distance < 1 Mb (Supplementary 
Tables 19, 24, 29, and 34). These significantly associated independent loci were used as input for 
the following analyses included in the DEPICT framework. First, we performed DEPICT SNP-
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to-gene mapping to identify likely causal genes based on the assumption that genes within an 
associated locus have functional similarity to genes from other associated loci. This consisted of 
a scoring step (to quantify the similarity of gene set membership of genes near associated loci), a 
bias adjustment step (to control for gene length and data structure), and a false discovery rate 
(FDR) estimation step. Significantly prioritized genes with FDR < 0.05 were retained as likely 
causal genes for our downstream analyses and are included in Supplementary Tables 4, 7, 10, 
and 13 for each factor GWAS. Next, DEPICT was used to identify functional or phenotypic gene 
sets that are enriched in genes within associated loci. This was performed using DEPICT’s 
10,968 reconstituted gene sets that are representative of a broad spectrum of biological 
annotations. Gene sets with enrichment nominal p-values less than the Bonferroni-corrected 
significance threshold (p < 4.56x10-6) are listed in Supplementary Tables 21, 26, 31 and 36 for 
each factor GWAS. Finally, DEPICT was implemented to test for enrichment (FDR < 0.05) of 
tissues or cell types for the associated loci which is described included in Supplementary Tables 
22, 27, 32, and 37.  
 
Genetic factors: multivariate transcriptome wide association study 
TWAS methods provided a natural extension of the multivariate GWASs to highlight genes with 
predicted expression that are putatively causal for the latent factors. We implemented TSEM and 
FOCUS softwares to perform transcription-level analyses of the previously discussed latent 
factor GWASs.23,76,77 Ultimately, the FOCUS framework was prioritized over TSEM in our 
TWAS analysis because the software’s fine-mapping approach handled the induced correlation 
structure for predicted gene expression and provided PIPs and credible sets of putatively causal 
genes. Although we do not discuss the TSEM results here, they are included in Supplementary 
Tables 61-72. Using FOCUS, we identified 90%-credible gene sets that excluded the null model 
(i.e., regions with strong evidence for modeled gene expression associating with the phenotype; 
Supplementary Tables 23, 28, 33, and 38). These credible sets were estimated using SNP LD 
structure, prediction eQTL weights, and the factor GWAS summary statistics. We used the 
FOCUS repository’s recommended European ancestry reference LD plink-formatted files from 
LDSC and the FOCUS repository’s multiple tissue, multiple eQTL reference panel weight 
database. First, the FOCUS munge functionality was used to format the factors’ GWAS 
summary statistics, and then each chromosome was run in parallel using independent genomic 
regions across European ancestry identified by LDetect78 and the prior probability for a gene to 
be causal as 0.001. The tissue-enrichment results from DEPICT revealed that the 4th factor was 
the only factor with enrichment in a singular physiological system (enriched only for nervous 
tissues and cell types); thus, FOCUS was run tissue-agnostic for the first 3 factors (F1, F2, and 
F3), and was run tissue-prioritized for the ‘brain’ for the 4th factor (F4). The 4 factors 
respectively had 86, 290, 737, and 562 LD blocks with identified 90%-credible gene sets, and 69, 
243, 690, and 335 of those did not contain the null model, respectively. Among those gene sets 
that did not contain the null model, we retained genes with PIP > 0.1 to filter out low probability 
genes from our downstream analyses. This thresholding step resulted in 158; 676; 2,266; and 850 
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respective genes with putatively causal predicted gene expression effects for each of the 4 factors 
(Supplementary Tables 5, 8, 11, and 14). 
 
Genetic factors: genetic correlations 
We evaluated the genetic correlations of the four factors with a broad range of obesity-related 
traits, using multivariate LDSC. Given the far-reaching spectrum of obesity-related health 
outcomes, we compiled a list of traits relating to psychopathology, risky behavior, neuroticism, 
diet, sleep, exercise, substance use, pain, frailty, dementia, inflammatory disease, autoimmune 
disease, cardiovascular disease, and metabolism. The full set of considered traits is described in 
Supplementary Tables 3 and 48 along with sample sizes, population prevalence, and heritability 
Z-statistics. The multivariate LDSC function in the Genomic SEM R package was used to 
estimate genetic covariances and correlations. 
 
Genetic factors: phenome wide association study of genetic risk scores 
Polygenic risk score (PRS) SNP weights were estimated for the 4 factor GWASs using 
LDpred2.24 A random subset of 5,000 unrelated individuals of European ancestry from the UK 
Biobank were used as an LD reference panel. This LD reference panel was > 1,000 individuals 
per the LDpred2 guidelines, and we ensured the individuals were unrelated via gcta64 --
grm-singleton 0.05.79 Standard QC processes involved filtering SNPs based on Hardy-
Weinberg equilibrium p > 1 × 10−6, genotyping rate > 0.99, minor allele frequency (MAF) > 1%, 
and filtering individuals based on heterozygosity within 3 standard deviations of the mean and 
sample missingness < 0.02. The ancestry matched remarkably well between the LD panel and the 
summary statistics and nearly all SNPs were retained when applying the LDpred2 standard 
deviation filter on SNPs (Supplementary Fig. 28). The snp_ldpred2_auto function in the 
bigsnpr package was used to generate LD-adjusted PRS weights for a sequence of causal 
variant thresholds (30 evenly spaced values on a logarithmic scale ranging from 1x10-4 to 0.9). 
The average of the betas for the models that converged were used for the PRSs resulting in 
710,801; 710,489; 709,195; and 709,830 SNP weights for F1, F2, F3, and F4 respectively. 
Visualization of the raw GWAS effect sizes compared to the attenuated LDpred2 adjusted PRS 
weights are included in (Supplementary Fig. 27). 

These PRS weights were validated in an external dataset with no sample overlap with the 
included GWASs. We conducted 4 phenome-wide association studies (pheWASs) to investigate 
the associations between each of the 4 PRSs and all 1,591 phecode-based phenotypes in a cohort 
of unrelated Europeans from the Colorado Center for Personalized Medicine (CCPM) Biobank 
freeze2 (N = 25,240). Ancestry information was inferred based on the grouping of individuals’ 
genetic proximity to reference populations via PCA-UMAP (Principal Component Analysis-
Uniform Manifold Approximation and Projection) projection and k-nearest neighbors methods. 
We excluded related individuals identified through KING-robust kinship estimates greater than 
2x10-3.5, using the bigsnpr package in R.80 Details regarding the recruitment of CCPM Biobank 
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participants, data processing, and the inference of population structures are described in Wiley et 
al., 2024.81  
 Our association model corrected for age, sex, batch, and the first 10 genetic principal 
components. To achieve unbiased estimates in the presence of case-control imbalance, we 
utilized the Saddlepoint approximation method from the SPAtest package in R.82 Due to the 
highly correlated structure of the phecodes, we considered associations with an FDR < 0.10 
significant for characterizing the predictive signal of the factor PRSs. To evaluate the predictive 
utility of the F4 PRS conditioned on BMI, we ran an auxiliary pheWAS with BMI included as an 
additional covariate. To estimate BMI for each participant, we used the median of BMI 
measurements across the electronic health record. For each encounter with documented height 
(measured in inches) and weight (measured in ounces) we performed unit conversions and 
calculated the BMI as height/weight2. BMI values less than 13 kg/m2 or greater than 60 kg/m2 
were removed before finding the median.  
 
Genetic factors: drug-gene network 
We queried two large drug repurposing databases (Drug Repurposing Hub [DRH; 3/24/2020 
version]83 and the Drug-Gene Interaction Database and the [DGIdb; 12/2023 version]) for the 
genes that were significantly prioritized by DEPICT for the independent GWAS loci (FDR < 
0.05), or in non-null 90% credible sets identified by FOCUS (and PIP > 0.1) from the fine-
mapped TWAS. There were 24; 319; 1,864; and 437 significantly prioritized DEPICT genes and 
215; 862; 2,944; and 864 FOCUS fine-mapped genes for F1, F2, F3, and F4, respectively. The 
DGIdb contained drug-gene interaction scores reflecting strength of supporting publications and 
the relative drug-gene specificity. We filtered out drug-gene pairs with low interaction scores (< 
0.50) based on the QC procedures described in similar studies.84,85 To map gene identifiers 
between datasets, we used the custom download feature from https://www.genenames.org/ to 
map the official gene symbol approved by the HGNC to the manually curated Ensembl Gene 
IDs. There were 14,472 drug-gene pairs for 6,798 drugs in the DRH and 19,819 drug-gene pairs 
for 8,037 drugs in the DGIdb. For visualization86 of the drug-gene network for F4 we removed 
drugs that did not have ‘launched’ clinical phase in the DRH or ‘approved’ status in the DGIdb. 
Drug indications were extracted from the ensemble MEDication Indication resource (MEDI-C)87 
containing 38,378 high precision drug-indication pairs. The PheWAS R package88 was used to 
map the indication ICD10CM codes to phecodes and their corresponding phenotype domains. 
The ON-label SIDE effectS resource (OnSIDES, v2.0.0_20231113)28 was used to identify 
wADEs for the drugs in the network. This database contained 2,020 ingredients and 4,302 
unique adverse reactions that were assigned using natural language processing models of drug 
labels. We considered drug-ADE pairs for which the adverse reaction was extracted from at least 
75% of labels, and defined wADEs based on the following list of drug events: ‘Obesity’, 
‘Central obesity’, ‘Weight increased’, ‘Weight decreased’, ‘Weight fluctuation’, ‘Abnormal loss 
of weight’, ‘Abnormal weight gain’, ‘Weight loss poor’, ‘Decreased appetite’, ‘Increased 
appetite’, ‘Appetite disorder’, ‘Hunger’, ‘Early satiety’, ‘Binge eating’, ‘Sleep-related eating 
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disorder’, ‘Eating disorder’. Of these 16 terms, ‘Decreased appetite’, ‘Weight increased’, 
‘Weight decreased’, and ‘Increased appetite’ were the most prominent and frequently observed 
(comprising 98% of wADE instances). 
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Figure Legends 
Figure 1: Genomic structural equation model of adiposity and anthropometrics across the 
lifespan.  
The standardized measurement model derived using genomic structural equation modeling 
(SEM) comprised of 4 latent genetic factors and 18 indicator variables. The 4 genetic factors are 
shaded yellow, the traits with combined males and females are shaded gray, and the traits 
stratified by males and females are shaded in color-matched pairs. The one-directional arrows 
signify standardized factor loadings and describe the strength and direction of the relationships 
between genetic indicators and their underlying latent constructs. Standardized covariance 
relationships (i.e., correlations) between the factors are represented by two-directional arrows, 
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and the two-directional arrows pointing from a variable to itself to denote the standardized 
residuals (the unique genetic variance not reflected through other paths in the model). 
 
Figure 2: Characterizing F1 – the genetics of birth size.  
The 3 indicator variables relating to birth size and their standardized loadings on F1, the 1st latent 
genetic factor, are shown in (a). This genetic factor did not have any genetic enrichment across 
physiological systems, cell types, or tissue types (FDR < 0.05) in the DEPICT analysis (b). The 
polygenic risk score (PRS) weights for F1 were validated in an external sample (CCPM Biobank, 
N = 25,240) and implemented in a phenome wide association study (pheWAS); The significant 
pheWAS associations between F1 PRS and phenotypes are shown in (c), with phenotype labels 
for the points to the right of the vertical dashed red line denoting FDR < 0.10, and triangle 
direction (up/down) indicating F1 PRS direction of effect (+/-). 
 
Figure 3: Characterizing F2 – the genetics of abdominal size.  
The 3 indicator variables relating to abdominal size and their standardized loadings on F2, the 2nd 
latent genetic factor, are shown in (a). This genetic factor showed gene expression enrichment 
across a variety of physiological systems, cell types, and tissue types (orange coloring, FDR < 
0.05) in the DEPICT analysis (b). The polygenic risk score (PRS) weights for F2 were validated 
in an external sample (CCPM Biobank, N = 25,240) and implemented in a phenome wide 
association study (pheWAS); The significant pheWAS associations between F2 PRS and 
phenotypes are shown in (c), with phenotype labels for the points to the right of the vertical 
dashed red line denoting FDR < 0.10, and triangle direction (up/down) indicating F2 PRS 
direction of effect (+/-). 
 
Figure 4: Characterizing F3 – the genetics of body size and adipose distribution.  
The 7 indicator variables relating to body size and adipose distribution and their standardized 
loadings on F3, the 3rd latent genetic factor, are shown in (a). This genetic factor showed gene 
expression enrichment across a variety of physiological systems, cell types, and tissue types 
(FDR < 0.05) in the DEPICT analysis (b). The polygenic risk score (PRS) weights for F3 were 
validated in an external sample (CCPM Biobank, N = 25,240) and implemented in a phenome 
wide association study (pheWAS); The significant pheWAS associations between F3 PRS and 
phenotypes are shown in (c), with phenotype labels for the points to the right of the vertical 
dashed red line denoting FDR < 0.10, and triangle direction (up/down) indicating F3 PRS 
direction of effect (+/-). 
 
Figure 5: Characterizing F4 – the genetics of adiposity.  
The 7 indicator variables relating to adiposity and their standardized loadings on F4, the 4th latent 
genetic factor, are shown in (a). This genetic factor showed gene expression enrichment only in 
nervous physiological systems and cell types (FDR < 0.05) in the DEPICT analysis (b). The 
polygenic risk score (PRS) weights for F4 were validated in an external sample (CCPM Biobank, 
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N = 25,240) and implemented in a phenome wide association study (pheWAS); The significant 
pheWAS associations between F4 PRS and phenotypes are shown in (c), with phenotype labels 
for the points to the right of the vertical dashed red line denoting FDR < 0.10, and triangle 
direction (up/down) indicating F4 PRS direction of effect (+/-). 
 
Figure 6: Network of genetic correlations with the 4 factors.  
A network describing the genetic correlations between the 4 Genomic SEM factors and a variety 
of genetically related traits is shown in panel (a); pairwise correlations ≤ 0.15 were pruned from 
the network. An inset correlation matrix for the 4 factors illustrates the mostly distinct genetic 
components represented by the factors. Abbreviations corresponding to the full trait names are 
described in panel (b) to assist with interpretation. 
 
Extended Data Figure 1: Comparison of F4 and BMI GWAS loci.  
A side-by-side chromosomal-map comparison of genome-wide significant (GWS; p < 5 x 10-8) 
genetic variants illustrating the shared and discordant associations across the 675 independent 
loci for F4 (left) and the 1,035 independent loci for BMI (right). 624 of the 675 F4 loci had 
genomic positional overlap with the BMI loci. The green-to-red shading describes density of 
significant GWAS SNPs in these loci across the 22 autosomes (bottom right color-scale). 
 
Extended Data Figure 2: Comparison of identified genes for F4 and BMI.  
UpSet plot visualization89 of the set membership for identified genes in the DEPICT and FOCUS 
analyses of the F4 and BMI genome wide association studies (GWASs). Bars depicting set size 
in the bottom left show the number of genes identified by DEPICT (significantly prioritized 
genes from DEPICT with FDR < 0.05) and FOCUS (fine-mapped genes with PIP > 0.1 across 
non-null 90% credibles sets). The implicated genes from DEPICT describe variant-to-gene 
mapping from the GWAS, and the implicated genes from FOCUS describe genes with predicted 
expression that are putatively causal for the phenotype in a brain-tissue-prioritized transcriptome 
wide association study (TWAS). Genes identified by only 1 of the analyses are represented on 
the right, and genes with more overlap between sets are shown on the left. 
 
Extended Data Figure 3: F4 pheWAS adjusted for BMI.  
The polygenic risk score (PRS) weights for F4 were validated in a phenome wide association 
study (pheWAS) in an external sample (N = 25,240); Panel (a) matches Figure 5c and is included 
alongside panel (b) for comparison to illustrate the pheWAS associations before (a) and after (b) 
adjusting for participant BMI. The significant associations between the PRS and phenotypes are 
labeled to the right of the vertical dashed red line denoting FDR < 0.10. Upward pointing 
triangles indicate a positive effect size between PRS and phenotype, and downward pointing 
triangles indicate a negative effect size.  
 
Extended Data Figure 4: Genetic correlations with related traits.  
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The genetic correlations between F1, F2, F3, and F4 and a variety of comorbidity-related traits. 
Rows of the heatmap90 are ordered in correspondence to the dendrogram along the right to 
cluster traits with similar relationships across the 4 factors. Genetic correlations greater than 0.15 
are shown in Figure 6a, the full correlation matrix is shown in Supplementary Figure 49, 
standard errors are included in Supplementary Table 50, and information on the summary 
statistics is included in Supplemental Tables 3 and 48. 
 
Extended Data Figure 5: Drug-gene network for F4.  
The bipartite approved drug-gene network for significant genes in the GWAS DEPICT gene 
prioritization analysis or the FOCUS TWAS fine mapping analysis for F4 (the latent genetic 
factor relating to adiposity). For visualization of this network we removed drugs that did not 
have ‘launched’ clinical phase in the Drug Repurposing Hub (DRH) or ‘approved’ status in the 
Drug-Gene Interaction Database (DGIdb), for a total of 733 drug-gene pairs (451 identified in 
the DRH [purple edges], 192 identified in the DGIdb [orange edges], and 90 identified by both 
[red edges]) between 529 drugs and 151 genes significant for F4. The gene vertices are colored 
grey, and the drug vertices are colored green unless they had a weight-related adverse drug 
events (wADEs) listed in the ON-label SIDE effectS resource (OnSIDES) database (in which 
case they are colored blue with a black border). 
 
Extended Data Figure 6: Drug-gene network for F4 with indications.  
The bipartite approved drug-gene network for significant genes in the GWAS DEPICT gene 
prioritization analysis or the FOCUS TWAS fine mapping analysis for F4 (the latent genetic 
factor relating to adiposity). For visualization of this network we removed drugs that did not 
have ‘launched’ clinical phase in the Drug Repurposing Hub (DRH) or ‘approved’ status in the 
Drug-Gene Interaction Database (DGIdb), for a total of 733 drug-gene pairs (451 identified in 
the DRH [purple edges], 192 identified in the DGIdb [orange edges], and 90 identified by both 
[red edges]) between 529 drugs and 151 genes significant for F4. The gene vertices are colored 
grey, and the drug vertices are colored by their most frequent indication category in the MEDI-C 
database. Drugs vertices with weight-related adverse drug events (wADEs) listed in the 
OnSIDES database have a black border. 
 
Extended Data Figure 7: Drug-gene network for F4 (GWAS-identified genes).  
The bipartite approved drug-gene network for significant genes in the GWAS DEPICT gene 
prioritization analysis for F4 (the latent genetic factor relating to adiposity). For visualization of 
this network we removed drugs that did not have ‘launched’ clinical phase in the Drug 
Repurposing Hub (DRH) or ‘approved’ status in the Drug-Gene Interaction Database (DGIdb), 
for a total of 314 drug-gene pairs (179 identified in the DRH [purple edges], 101 identified in the 
DGIdb [orange edges], and 34 identified by both [red edges]) between 248 drugs and 75 genes 
significant for F4. The gene vertices are colored grey, and the drug vertices are colored green 
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unless they had a weight-related adverse drug events (wADEs) listed in the ON-label SIDE 
effectS resource (OnSIDES) database (in which case they are colored blue with a black border). 
 
Extended Data Figure 8: Drug-gene network for F4 with indications (GWAS-identified 
genes).  
The bipartite approved drug-gene network for significant genes in the GWAS DEPICT gene 
prioritization analysis for F4 (the latent genetic factor relating to adiposity). For visualization of 
this network we removed drugs that did not have ‘launched’ clinical phase in the Drug 
Repurposing Hub (DRH) or ‘approved’ status in the Drug-Gene Interaction Database (DGIdb), 
for a total of 314 drug-gene pairs (179 identified in the DRH [purple edges], 101 identified in the 
DGIdb [orange edges], and 34 identified by both [red edges]) between 248 drugs and 75 genes 
significant for F4. The gene vertices are colored grey, and the drug vertices are colored by their 
most frequent indication category in the MEDI-C database. Drugs vertices with weight-related 
adverse drug events (wADEs) listed in the OnSIDES database have a black border. 
 
Extended Data Figure 9: Drug-gene network for F4 (TWAS-identified genes).  
The bipartite approved drug-gene network for significant genes in the FOCUS TWAS fine 
mapping analysis for F4 (the latent genetic factor relating to adiposity). For visualization of this 
network we removed drugs that did not have ‘launched’ clinical phase in the Drug Repurposing 
Hub (DRH) or ‘approved’ status in the Drug-Gene Interaction Database (DGIdb), for a total of 
442 drug-gene pairs (288 identified in the DRH [purple edges], 95 identified in the DGIdb 
[orange edges], and 59 identified by both [red edges]) between 360 drugs and 84 genes 
significant for F4. The gene vertices are colored grey, and the drug vertices are colored green 
unless they had a weight-related adverse drug events (wADEs) listed in the ON-label SIDE 
effectS resource (OnSIDES) database (in which case they are colored blue with a black border). 
 
Extended Data Figure 10: Drug-gene network for F4 with indications (TWAS-identified 
genes).  
The bipartite approved drug-gene network for significant genes in the FOCUS TWAS fine 
mapping analysis for F4 (the latent genetic factor relating to adiposity). For visualization of this 
network we removed drugs that did not have ‘launched’ clinical phase in the Drug Repurposing 
Hub (DRH) or ‘approved’ status in the Drug-Gene Interaction Database (DGIdb), for a total of 
442 drug-gene pairs (288 identified in the DRH [purple edges], 95 identified in the DGIdb 
[orange edges], and 59 identified by both [red edges]) between 360 drugs and 84 genes 
significant for F4. The gene vertices are colored grey, and the drug vertices are colored by their 
most frequent indication category in the MEDI-C database. Drugs vertices with weight-related 
adverse drug events (wADEs) listed in the OnSIDES database have a black border. 
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