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Abstract 

Idiopathic pulmonary fibrosis (IPF) is a progressive and debilitating respiratory disease with 
limited therapeutic options. We carried out genome-wide association (GWAS), post-GWAS 
and rare variant analyses utilising the whole genome sequencing data (WGS) from the 
100,000 Genomes Project (100kGP) of a cohort of IPF participants (n=586) to identify novel 
associations and potential drug targets. Meta-analysis combining 100kGP and published 
GWASs of IPF (total 11,746 cases and 1,416,493 controls) identified a novel association signal 
at the 1q21.2 locus (rs16837903, OR[95%CI]=0.88[0.85, 0.92], P=9.54x10-9) which was also 
successfully replicated with independent data and linked to the probable effector gene MCL1. 
MCL1 showed increased expression levels in IPF patients versus controls in alveolar epithelial 
type I cells. Despite its known antiapoptotic role, inhibition of MCL1 in vitro did not selectively 
deplete senescent cells, hinting at the complexity involved in targeting MCL1. Rare variant 
burden analysis identified ANGPTL7, a secreted glycoprotein involved in the regulation of 
angiogenesis, as a novel IPF candidate gene (OR[95%CI]=28.79 [8.51-97.43], P=6.73x10-8). 
Transcriptome-wide association analysis (TWAS) revealed that overexpression of cell cycle 
regulator SERTAD2 and nuclear importer TPNO3 were associated with increased IPF risk. We 
also investigated shared genetic mechanisms between IPF with severe COVID-19 and 
expanded the list of shared genetic loci with three novel colocalised signals at 1q21.2, 6p24.3 
and 16p13.3 with probable effector genes MCL1, DSP and RHBDF1, implicating regulation of 
apoptosis, cell adhesion and epidermal growth factor signalling, respectively. By leveraging 
the genetic correlation between IPF and severe COVID-19 (rg[95% CI]) = 0.39 [0.25-0.53]) 
through multi-trait meta-analysis, we further identified and replicated an additional novel 
candidate IPF signal at 2p16.1 with probable effector gene BCL11A, a regulator of 
haematopoiesis and lymphocyte development. Based on prioritized genes across analyses, 
we propose mechanisms mediating IPF disease risk and shared mechanisms between IPF and 
severe COVID-19, thereby expanding the potential for developing common treatments.  

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted August 17, 2024. ; https://doi.org/10.1101/2024.08.16.24312138doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.16.24312138


 3 

Introduction 
 
Idiopathic pulmonary fibrosis (IPF) is a debilitating lung disease characterised by irreversible 
loss of lung function. IPF has a poor prognosis and limited treatment options that only slow 
disease progression rather than being curative1,2, presenting a major unmet therapeutic need.  
 
Due to the mechanisms of the disease being largely unknown, hypothesis-free genetic studies 
are particularly attractive for identifying novel genes and pathways relevant for IPF pathology 
and for identifying potential new treatment targets. Genome-wide association studies 
(GWAS) have been successful in identifying several genetic variants associated with IPF, 
implicating pathways involved in host defence, telomere maintenance, mTOR signalling, and 
cell-cell adhesion3. As IPF is a rare disease, GWAS discovery for IPF has been powered by 
consortia that aggregate Biobank data around the world through meta-analysis3–5. The latest 
and best-powered effort was led by the Global Biobank Meta-analysis initiative (GBMI) that 
assembled multi-ancestry data from 13 Biobanks and from the International IPF Genetics 
Consortium, to identify 25 independent genetic associations with IPF of which three were 
replicated novel associations5.  
 
Most published IPF genetic studies have employed SNP microarrays for genotyping. However, 
this has limited the investigation of rare pathogenic variants contributing to IPF susceptibility. 
More recently, whole exome and whole genome sequencing (WES/WGS) rare variant studies 
have added evidence for rare variant effects on telomere-related genes (TERT, RTEL1)6,7, 
mRNA stability and degradation (PARN) and spindle assembly during cell division (SPDL1 and 
KIF15)8,9. 
 
Infectious diseases with a strong respiratory component have been linked to the pathogenesis 
of IPF10 and the recent COVID-19 pandemic prompted studies on potential genetic overlaps 
between IPF and severe COVID-195,11,12 enabled by the wealth of data that has been 
generated for the latter13–15. Exploring the connection between IPF and severe COVID-19 
could provide additional therapeutic concepts and potentially increase statistical power for 
genetic target discovery in IPF. 
 
The 100,000 Genomes Project (100kGP) is one of the world’s largest rare disease projects, in 
which undiagnosed patients with suspected monogenic diseases were recruited and screened 
by WGS to aid in their diagnosis. 100kGP participants include people affected with familial 
forms of IPF, as well both prevalent and incident sporadic cases, the latter identified by data 
linkage with electronic health records (EHRS). 
 
In this study, we set out to perform the largest meta-analysis of IPF by leveraging the 100kGP 

resource and GBMI GWAS summary statistics to further enhance power of common variant 

analysis1 as well as to search for associations in the rare variant space enabled by the 100kGP 

WGS data. We also further explored the genetic overlap of IPF and severe COVID-19 and 

leveraged the correlation of IPF and severe COVID-19 to amplify statistical power for GWAS 

discovery.  
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Results 
The 100,000 Genomes Project (100kGP) IPF cohort 
We defined an Idiopathic Pulmonary Fibrosis (IPF) case cohort of (n=586) individuals from 
participants of the 100,000 Genomes Project (100kGP). IPF cases comprised of individuals 
that were specifically recruited into the 100kGP for familial pulmonary fibrosis (n=147) plus 
‘incidental’ cases of IPF identified in the 100kGP cohort through analysis of linked EHRs 
(n=439, Supplementary Tables 1-4). We used a set of 100kGP participants (n=52,083) as 
controls after excluding individuals with relevant respiratory EHR indications (Supplementary 
Table 2) and examining matching of demographic characteristics such as age, sex and ancestry 
with cases to inform covariate selection downstream (Supplementary Tables 5-6 and 
Supplementary Figures 1-2, Methods). We kept 100kGP individuals with European genetically 
predicted ancestry and with WGS data that had passed sample quality control (Methods). 
 

IPF GWAS analysis and meta-analysis 

100kGP GWAS 
We performed GWAS analysis for the 100kGP IPF cohort with Ncases=586 and Ncontrols=52,083 
on 11,646,047 common variants (MAF>0.5%) that yielded one genome-wide significant (P-
value<5x10-8) signal at locus 11p15.5 with top variant chr11:1219991_G_T (rs35705950), P-
value = 2.09x10-25, OR [95%CI] = 2.94 [2.40, 3.60] (Supplementary Figure 3). This is the well-
known IPF-associated common variant in the promoter region of MUC5B16. 
 

Meta-analysis 
We then meta-analysed the 100kGP IPF GWAS results with the Partanen et al. (2022)5 GWAS 
summaries (Supplementary Table 7) with inverse variance weighted meta-analysis for 
10,644,973 variants (Figure 1). We used GCTA-COJO17 to identify 34 conditionally 
independent signals reaching genome-wide significance (P-value<5x10-8) across 23 loci 
(Supplementary Table 8; Methods). 19 loci harboured a single independent signal each, and 
the remaining four loci at 5p15.33, 11p15.5, 15q15.1 and 19p13.3, contained more than two 
independent signals each (Supplementary Table 8).  
 

 
Figure 1. Manhattan and Q-Q plot for the IPF meta-analysis of Partanen et al. 2022 and 100kGP GWAS. 
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We mapped lead variant signals to genes by annotating variant effects with Variant Effect 
Predictor (VEP) and also mapped the nearest gene for each lead variant (Table 1; 
Supplementary Table 8). More than half of the identified variants were in introns, while we 
identified two variants with missense consequences and six with regulatory consequences 
(Supplementary Table 8). Fine-mapping with SusieR18 enabled identification of credible sets 
(CS) that enabled prioritisation of additional variants by identifying those that had the worst 
consequence across the CS (Supplementary Table 8). 
 
Two of the identified associations were novel 55: (1) Signal at locus 1q21.2 with top variant 
chr1:150579566_G_A; rs16837903; OR (95%CI) = 0.88 [0.85, 0.92]; P-value=9.54x10-9 which 
is a 5’ UTR regulatory variant of MCL1 (Table 1; Supplementary Figure 4). (2) Signal at locus 
8q22.1 with top variant chr8:97822998_T_C; rs6983263; OR (95%CI) = 0.92 (0.9, 0.95); P-
value=4.47x10-8 which is an intronic variant of LAPTM4B (Table 1; Supplementary Figure 5). 
 

Table 1: Novel meta-analysis independent signals reaching genome-wide significance. Loci are displayed as cytogenetic band 
locations of the variants. For each variant, two IDs are shown: The variant ID, consisting of Chromosome, position in hg38 
coordinates, reference and alternate hg38 alleles (chr:pos_ref_alt), and the respective rsID. AF EUR corresponds to the allele 
frequency of the variants in a set of N=44,590 unrelated European individuals from the 100kGP that was used also as the LD 
reference for the conditional analysis. Odds ratios (OR) are calculated for the alternate allele matching the variant ID 
specification. Nvar clump corresponds to the number of variants included in the LD clump to which the displayed variant 
belongs. Full meta-analysis discovery table is Supplementary Table 8. Associations with a significant P-value that is less than 
a Bonferroni corrected threshold of 0.05/2=0.025 and with consistent odds ratio between discovery and replication datasets 
are annotated with asterisk (*) in replication P-value column. For each lead variant, VEP v.105-assigned most severe 
consequence across transcripts and the impacted gene is shown, with the nearest gene in parentheses when different. 

Locus 
Lead variant ID 

(rsID) 
AF 

EUR 
OR 

(95%CI) 
P-value 

Replication  
OR (95%CI) 

Replication  
P-value 

Nvar 
clump 

VEP 
Conseq
uence 

VEP 
Gene 

(Nearest) 

1q21.2 
chr1:150579566_G_A 

(rs16837903) 
0.15 

0.88 
(0.85, 0.92) 

9.54x10-9 
0.82 

(0.72,0.95) 
0.0057* 239 5’ UTR MCL1 

8q22.1 
chr8:97822998_T_C 

(rs6983263) 
0.48 

0.92 
(0.9, 0.95) 

4.47x10-8 
0.91 

(0.8,1.03) 
0.124 201 Intron 

LAPTM4B 
(MATN2) 

 

Replication of IPF novel signals 
To replicate the two novel signals identified in the meta-analysis (Table 1) we generated an 
independent IPF dataset through mathematical subtraction from another, partially 
overlapping, IPF GWAS dataset4 (Methods). Both novel variant signals had consistent 
direction of effects in the replication dataset, but only rs16837903 had a significant replication 
P-value (P<0.025; Table 1). 

IPF aggregate rare variant burden testing (AVT) analysis 
We expanded the analysis to rare variants that could potentially underlie additional 
associations with IPF by performing aggregate rare variant burden testing (AVT) analysis for 
the 100kGP IPF cohort with Ncases=569 and Ncontrols=50,847 for bi-allelic variants with 
MAF<0.5% (Supplementary Table 10). We ran AVT analyses for four variant masks: loss of 
function, ultra-rare damaging, rare damaging and flexible damaging (Supplementary Table 
11). These analyses identified two genes, ANGPTL7 and TERT, that achieved study-wide 
significance (P-value < 6.81x10-7) in at least one mask for the composite SKAT-O test (Table 2, 
Supplementary Figure 6). ANGPTL7 was significant in the loss-of-function mask (SKAT-O P-
value = 5.64x10-7), while TERT was significant in all but the loss of function mask (Table 2).  
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Rare deleterious genetic variants in TERT have been previously robustly associated with IPF19, 
whereas ANGPTL7 represents a novel association signal. We investigated further the 
individual variant statistics contributing to the signal for ANGPTL7, and identified a single 
variant chr1:11193631_C_T (rs143435072, HGVSp p.Arg177Ter ) as the main driver of the 
signal with P-value=6.73x10-8 and OR[95%CI]=28.79 [8.51-97.43] (Supplementary Tables 12-
13). Allele frequency for rs143435072 was 7.91x-10-3 in cases and 3.05x10-4 in controls,  the 
latter being similar to allele frequency for non-Finnish Europeans (3.24x10-4) in GnomAD 
v3.1.2, indicating that control composition is unlikely to underlie this signal. 
 
Table 2: Association results across masks for significant genes in the burden analysis. The total number of variants included 
in each test is shown (# Variants) and  the number of variants included in the collapsed ultra-rare variant (# Ultra-rare). Study-
wide significant associations for the SKAT-O test correcting for the total number of tests across all four masks (P-value < 
6.81x107) are annotated with asterisk (*). Dashes correspond to entries where summary statistics were not calculated due to 
all variants being ultra rare. 

Gene Mask # Variants # Ultra-rare 
P-value 
SKAT-O 

P-value 
Burden 

BETA burden 
(SE) 

ANGPTL7 

LOF 5 4 5.64x10-7* 1.09x10-6 0.128 (0.0262) 

RD 55 53 1 9.07x10-1 
-0.00464 
(0.0395) 

URD 37 37 5.39x10-1 - - 

FD 74 65 2.56x10-6 5.84x10-2 0.029 (0.0153) 

TERT 

LOF 7 7 7.78x10-2 - - 

RD 58 58 7.05x10-8* - - 

URD 49 49 3.01x10-8* - - 

FD 102 100 2.17x10-10* 1.32x10-9 0.114 (0.0187) 

LOF: loss-of-function, RD: rare damaging, URD: ultra-rare damaging, FD: flexible damaging.  

 

IPF Transcriptome-wide association study analysis (TWAS) 
To assess how genetically determined variation in gene expression might impact IPF disease 
susceptibility, we conducted a transcriptome-wide association study (TWAS) with S-
prediXcan20 utilizing gene expression data (GTEx v8) from lung tissue and leveraging the 
updated and better-powered IPF summaries from this study compared to previous TWAS 
analyses21,22. We tested a total of 14,528 genes and identified 21 genes with a significant P-
value at Bonferroni adjusted threshold (P<3.44x10-6; Figure 2). As TWAS signals can be driven 
by spurious pleiotropy, we also ran colocalisation23 analysis to test for shared causal variants 
between lung gene expression and IPF susceptibility. Seven genes successfully colocalised, 
with TNPO3 and SERTAD2 being previously unreported21,22 TWAS signals (Supplementary 
Table 14). 
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Figure 2. Gene-wide Manhattan plot from a Transcriptome-wide association study (TWAS) for IPF using S-prediXcan and GTEX 
v8 expression data from lung tissue. Annotated genes have significant P-values at the Bonferroni adjusted significance 
threshold of 0.05/14,528=3.44x10-6 (red dashed line). Genes highlighted in blue successfully colocalised with coloc in lung 
tissue (Methods). Effect direction corresponds to the predicted change in gene expression and is obtained from the gene-level 
z-score sign. 

 

IPF and COVID-19 
The availability of updated COVID-19 GWAS summary statistics compared to previous studies5 
enabled us to revisit the genetic overlap of IPF and severe COVID-19 by conducting 
colocalisation analysis. We also re-estimated and leveraged the genetic correlation between 
the traits to amplify statistical power to discover IPF associations by performing multi-trait 
meta-analysis (MTAG)24. For these analyses we used the IPF meta-analysis statistics produced 
in this study and  the latest meta-analysis summaries (Freeze 7) from the COVID-19 Host 
Genetics Initiative (HGI), for the Hospitalised covid vs. population phenotype 
(B2_ALL_leave_23andme), as this has produced the best balance between a carefully curated 
phenotype for severity and statistical power15,25(Supplementary Table 15).  
 
We tested for colocalisation between IPF and severe COVID-19 for a total of 23 loci 
significantly associated with IPF, and obtained significant colocalization evidence for six loci 
(Table 3, Supplementary Figure 7). Three signals at loci 11p15.5, 13q34 and 19p13.3 with lead 
variants with probable effector genes MUC5B, ATP11A and DDP9 reproduce signals previously 
reported12, while an additional three signals at 1q21.2, 6p24.3 and 16p13.3 with probable 
effector genes MCL1, DSP and RHBDF1, represent novel colocalization signals  (Table 3). 
 
Table 3. Colocalisation results between IPF and Severe COVID-19. Posterior probabilities PPH4 and PPH3 which were used to 
determine significant colocalisation. Novel significant colocalised loci are marked in with an asterisk(*) within the Locus 
column. The variant with the highest PPH4 in each locus is shown. The variant ID consists of Chromosome, position in hg38 
coordinates and reference and alternate hg38 alleles (chr:pos_ref_alt). Odds ratios and P-values for IPF and severe COVID-19 
GWAS, VEP v.105 consequences for the variants and affected genes are shown. Nearest gene is displayed in parentheses if it 
is different than the VEP annotated gene. 

Locus 
Variant ID 

(rsID) 

PPH4 
(p12=5
x10-5) 

PPH3 
(p12=10-

5) 

OR 
[95%CI] 

IPF 

OR 
[95%CI] 

COVID-19 

P-value 
IPF 

P-value 
COVID-19 

VEP 
conseq
uence 

VEP gene 
(nearest) 

1q21.2* 
chr1:150579566_G_

A 

(rs16837903) 

0.940 0.183 
0.88 

(0.85, 

0.92) 

 
0.96 

(0.93,0.98) 
 

9.54x10-9 6.15x10-4 5' UTR MCL1 

6p24.3* 
chr6:7562999_T_G 

(rs2076295) 
1.000 0.407 

1.21 
(1.18, 
1.25) 

1.03 
(1.01,1.04) 

 
9.00x10-43 1.93x10-3 Intron DSP 
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11p15.5 
chr11:1214934_A_

G 
(rs12802931) 

1.000 0.000125 
1.71 

(1.63, 
1.78) 

0.93 
(0.91,0.96) 

 
3.35x10-123 9.85x10-8 - 

- 
(MUC5B) 

13q34 
chr13:112881427_C

_T 
(rs12585036) 

0.990 0.000160 
0.89 

(0.86, 
0.92) 

1.1 
(1.08,1.12) 

 
2.22x10-11 3.15x10-21 Intron 

ATP11A 
(MCF2L) 

16p13.3* 
chr16:72352_C_T 

(rs368688757) 
0.820 0.199 

1.29 
(1.18,1.4

1) 
 

1.07 
(1.02,1.13) 

 
1.960x10-08 5.76x10-3 Intron RHBDF1 

19p13.3 
chr19:4717660_A_

G 
(rs12610495) 

0.990 0.000137 
1.11 

(1.08, 
1.15) 

 
1.16 

(1.14,1.18) 
 

4.38x10-11 4.06x10-52 
Missen

se 
DDP9 

 
We then estimated the genetic correlation between IPF and severe COVID-19 (rg[95% CI]) as 
0.39 [0.25-0.53] (Supplementary Table 16), which is consistent with previous estimates5, 
albeit with tighter confidence intervals. 
 
To amplify statistical power for discovery of new genetic associations with IPF we leveraged 
the estimated genetic correlation between IPF and severe COVID-19 by performing multi-trait 
meta-analysis between the two traits. MTAG analysis provided individual trait summary 
statistics for both IPF and severe COVID-19 with signals amplified or attenuated by the 
estimated genetic correlation between the traits (Figure 3).  
 
With MTAG, we identified five novel IPF-associated loci at 2p16.1, 8q24.12, 16q24.3, 
17q21.33, 19q13.32 and mapped VEP consequences for lead variants to BCL11A, DEPTOR, 
SLC22A31, a regulatory region, and FOXA3, respectively (Table 4). We used the independent 
2-way Allen et al. 2019 IPF meta-analysis to check replication evidence for these signals. The 
locus signal at 2p16.1, chr2:60480453_A_G (rs1123573), an intronic variant for BCL11A, 
successfully replicated (Table 4). 
 

 
Figure 3. MTAG results for IPF (top) compared with the IPF base meta-analysis (bottom). Red dashed line corresponds to P-
value < 5x10-8. P-values below 10-50, are set to 10-50. 

 
Table 4. Novel signals from clumping analysis of IPF MTAG results. The P-value for each clump lead variant was required to 
be genome-wide significant in the MTAG analysis (P<5x10-8) and less than 7.04x10-4 in the discovery IPF meta-analysis 
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(Bonferroni corrected P-value threshold for the 71 MTAG-significant signals; Methods). Associations with replication P-value 
less than Bonferroni corrected threshold of 0.05/5=0.01 and with consistent odds ratio between discovery and replication 
datasets are annotated with an asterisk (*). For each lead variant mapped VEP v.105  consequences and genes are shown. 
Nearest gene is displayed in parentheses if it is different than the VEP annotated gene. 

Locus 
Clump Lead Variant 

(rsID) 

Discovery 
IPF  

P-value 
(COVID) 

Discovery 
IPF OR 

[95% CI]  

MTAG P-
value 

MTAG  
IPF 

OR [95% CI]  

Replication 
OR (95%CI) 

Replication 
 P-value 

VEP 
Conseque

nce 

VEP gene 
(nearest) 

2p16.1 
chr2:60480453_A_G 

(rs1123573) 

2.31x10-5 
(1.32x10-

14) 

0.94  
(0.91, 
0.97) 

4.51x10-12 
0.94  

(0.92,0.96) 
0.818 7.31x10-4 * intron BCL11A 

8q24.12 
chr8:119900189_G_A 

(rs13258592) 

2.01x10-6 
(1.36x10-

4) 

1.07  
(1.04, 1.1) 

6.81x10-9 
1.06  

(1.04,1.07) 
0.908 

(0.803,1.03) 
0.124 intron DEPTOR 

16q24.3 
chr16:89196249_G_A 

(rs117169628) 

5.81x10-4 
(1.37x10-

14) 

1.08  
(1.03, 
1.12) 

1.74x10-10 
1.06  

(1.04,1.08) 
1.15 

(1.02,1.31) 
0.0243 missense SLC22A31 

17q21.33 
chr17:49863260_C_A 

(rs3848456) 

1.25x10-4 
(2.56x10-

21) 

1.14  
(1.06, 
1.21) 

2.08x10-13 
1.07  

(1.05,1.09) 
1.1  

(0.833, 1.45) 
0.4975 

regulatory 
region 

- 
(TAC4) 

19q13.32 
chr19:45871299_T_C 

(rs11669442) 

3.07x10-5 
(1.09x10-

7) 

1.07  
(1.03, 1.1) 

4.31x10-9 
1.05  

(1.04,1.07) 
1.07 

(0.973,1.18) 
0.160 intron FOXA3 

 
 

Functional follow-up of MCL1 
We further investigated the potential disease mechanism for MCL1 (the candidate effector 

gene at the novel IPF locus) by evaluating the expression of MCL1 in single-cell expression 

data from single-cell suspensions generated from lung tissue from IPF patients and non-

fibrotic controls (GSE13589326). We observed that MCL1 expression was increased in alveolar 

epithelial type I cells as well as in KRT5-/KRT17+ cells (aberrant basaloid cells) in IPF cases 

compared to controls (Supplementary Figure 8). We also found that the expression pattern 

of MCL1 was similar tissue-wise with the expression of CDKN1A, the gene coding for p21 

(Supplementary Figure 8), which is a marker of senescence27. The occurrence of increased 

levels of senescence is well described for IPF28. Moreover, it has previously been shown that 

alveolar epithelial cells exhibit an increased level of senescence and contribute to disease 

progression29,30. Considering MCL1 is an anti-apoptotic member of the BCL2 protein family, 

we hypothesized that inhibiting MCL1 in senescent alveolar epithelial cells will selectively 

deplete these cells through apoptosis.  

 

We therefore induced cellular senescence in primary human lung epithelial cells enriched for 
HT2-280-positive cells (marker of ATII cells) using bleomycin (Figure 4). We observed an 
increase of CDKN1A gene expression over time along with an increased expression of p21 
(Figure 4 A-B), confirming successful induction of senescence. We then analysed the 
expression of MCL1 as well as the complexes of MCL1 with BIM and BAK, which are important 
pro-apoptotic proteins of the BCL2 protein family. Binding of MCL1 to BIM and BAK can 
suppress pro-apoptotic functions, and conversely, releasing them from the complex can 
induce these pro-apoptotic functions. However, we did not observe any increased expression 
of MCL1, and only small increases in the MCL1:BIM and MCL1:BAK complexes (Figure 4 C-E). 
We additionally tested more senescence- and fibrosis-associated stimuli, but none of these 
stimuli increased the expression of MCL1 significantly (data not shown). 
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Figure 4. Induction of senescence in primary lung epithelial cells enriched for HT2-280 and subsequent testing of an anti-MCL1 
inhibitor. Cells have been treated with bleomycin for indicated timepoints and (A) CDKN1A gene expression, (B) p21 protein 
staining, (C) MCL1 protein, (D) MCL1:BIM complex or (E) MCL1:BAK complex was assessed. (F) Cells were treated with 
bleomycin for 24h, then rested for 48h and subsequently treated with an MCL1 antagonist for 24h. The effect of MCL1 
antagonism on viability, apoptosis (y-axis left) and cytotoxicity (y-axis right) in healthy (w/o bleomycin) and senescent cells 
(w/ bleomycin) were measured. (N=3-4 of individual donor cells). Asterisks highlight significant P-values where shown, * P-
value < 0.05, ** P-value < 0.01. 
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Although we could not detect an increase in MCL1 expression, we tested if we nevertheless 
could specifically deplete senescent alveolar epithelial cells in vitro, sparing healthy cells. We 
did not observe a difference of effect when comparing senescent and healthy cells, as both 
showed decreases in viability and increases in apoptosis and/or cytotoxicity at similar 
proportions (Figure 4F). 
 
Taken together, we observed increased MCL1 expression in IPF patients using single cell 
expression data, but inhibition of MCL1 failed to specifically deplete senescent lung epithelial 
cells.  
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Discussion 
 
In this study we performed the largest meta-analysis of IPF to date by integrating GWAS 
results from the 100,000 Genomes Project (100kGP) IPF cohort with previous meta-analysis 
summary statistics to increase GWAS discovery power and we also leveraged WGS data for 
rare variant analysis of this cohort. The increased statistical power of common variant meta-
analysis allowed us to discover and replicate a novel association signal at 1q21.2 with 
probable effector gene MCL1. Rare variant burden analysis revealed a novel candidate gene 
association for ANGPTL7 and TWAS analysis prioritised additional genes mediating risk for IPF 
through effects on expression in lung (SERTAD2 and TNPO3). We also updated the genetic 
correlation estimate and colocalised signals with severe COVID-19, and for the first time we 
leveraged that correlation through multi-trait meta-analysis to discover a novel and robustly 
replicated association signal (at 2p16.1/BCL11A). Following up on the novel GWAS signal from 
this study, we also investigated potential mechanisms linking probable effector gene MCL1 
expression to IPF via in silico and in vivo analyses with a focus on the gene’s known anti-
apoptotic properties and exploration of this gene as a therapeutic target. 
 

MCL1 and potential as a therapeutic target 
The lead variant from the meta-analysis GWAS, rs16837903, is in the 5’UTR of myeloid 
leukaemia 1 (MCL1) gene. MCL1 is an anti-apoptotic member of the BCL-2 family, which are 
regulators of apoptosis31 and are involved in various (patho-)physiological events, including 
development, wound repair, and cancer. IPF is a disease characterized by uncontrolled wound 
repair in the accumulation of senescent cells, both of epithelial and mesenchymal origin32. In 
a healthy environment, senescent cells initially contribute to tissue remodeling and repair and 
are subsequently cleared by NK cells or macrophages32. However, this process is impaired in 
IPF, and it has previously been shown that several IPF-relevant mechanisms can lead to an 
increase in senescence, including TGF-β signalling, telomere attrition, and mitochondrial 
dysfunction33. Members of the BCL2 protein family, in particular the anti-apoptotic members 
BCL2 and BCL-XL, have been implicated to block apoptosis in these cells and thereby 
contribute to IPF pathogenesis34,35. General ablation of senescent cells 36 but also specific 
targeting of BCL2 and BCL-XL reduced the levels of senescence and fibrotic burden both in in 
vitro cultures and in vivo lung fibrosis models34. However, targeting BCL2 and BCL-XL in IPF 
might not be feasible, as current pharmacological interventions are associated with a broad 
range of side effects and further investigations are needed to address this37. The identification 
of MCL1 as a probable effector gene offered a potential new avenue of targeting senescent 
cells in IPF, which was further supported by the upregulated MCL1 level in epithelial subsets 
based on single cell sequencing data. However, we did not detect an increase in MCL1 
expression in induced senescent primary lung epithelial cells from different donors. Previous 
studies have shown that increased expression of MCL1, and other BCL2 proteins like BCL2 or 
BCL-XL, is an important prerequisite to selectively deplete cancer cells38,39. Even though MCL1 
was not significantly upregulated in senescent cells, we found that pro-apoptotic members 
(BIM and BAK and their complexes with MCL1) were increased in the senescent cells, 
indicating MCL1 inhibition may have put an additional apoptotic pressure on senescent 
primary lung epithelial cells. We tested the effects of an MCL1 inhibitor on its ability to 
selectively deplete senescent primary lung epithelial cells through inducing apoptosis. 
However, we did not see an earlier induction of apoptosis in these cells, which was 
comparable to healthy primary lung epithelial cells along with effects on viability and 
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cytotoxicity. Alongside the HT2-280-enriched cells, we have also tested small airway epithelial 
cells (data not shown) and observed similar results for both. We therefore could not achieve 
a clear selective depletion. In IPF, not only epithelial cells are shown to have an increased 
senescence phenotype, but also immune and mesenchymal cells40,41. Therefore, while our 
studies indicate that epithelial cells might not be the prime target for an anti-MCL1 strategy 
to induce senolytic effects and improve the outcome for IPF patients, targeting other cell 
types might have beneficial effects. Further studies on MCL1 will be required to address these 
questions. 
 

Rare variants and ANGPTL7 
Rare variant analysis identified ANGPTL7 loss of function variant rs143435072 as a strong risk-
increasing risk factor for IPF. rs143435072 has previously been associated with lower 
intraocular pressure and protection against glaucoma 42. ANGPTL7 belongs to the functionally 
heterogeneous family of angiopoietin-like proteins (ANGPTLs)43–45. Apart from glaucoma42,46, 
it has also been implicated in corneal angiogenesis47, and tumour growth48. In the lung, 
ANGPTL7 is specifically expressed in type-1 alveolar epithelial cells (AT1)49. We performed a 
systematic review of the expression of ANGPTL7 in the lung using IPF Cell Atlas49 to develop 
hypotheses for a potential role of ANGPTL7 on IPF (Supplementary Material, Supplementary 
Figures 9-11). In brief, we hypothesise that ANGPTL7 may contribute to IPF by influencing 
interstitial ECM formation or by inhibiting alveolar angiogenesis. A critical next step is to 
replicate the ANGPTL7 rare variant signal identified here in other independent cohorts. 
Further investigations using functional assays and mouse models could then help to elucidate 
the precise involvement of ANGPTL7 in the lung and IPF pathogenesis. 
 

Gene expression effects of SERTAD2 and TNPO3 
Transcriptome wide association analysis revealed that overexpression of SERTAD2 and TNPO3 
in lung is associated with increased IPF risk. SERTAD2, also known as TRIP-Br2, is a cell cycle 
transcriptional co-regulator that has been linked to regulation of lipolysis, thermogenesis and 
oxidative metabolism50. SERTAD2 has been shown to promote oncogenesis in nude mice, is 
overexpressed in multiple human tumors51 and is activated by DNA repair protein REV1 in a 
Rad18-dependent manner to promote lung tumorigenesis52. These previous observations 
suggest that SERTAD2 overexpression might mediate risk for IPF through dysregulation of 
DNA repair. In turn, TNPO3 (Transportin 3) is a nuclear import receptor for serine/arginine-
rich (SR) proteins. Interestingly, previous studies have shown that mutations in TNPO3 can 
cause limb girdle muscular dystrophy53, in some cases through interference in the 
morphology and function of the myofibrillar network54. Interestingly, GWAS identified 
variants within the TNPO3-IRF5 locus have been previously associated with systemic 
sclerosis55,56, another fibrotic disease characterized by the excessive accumulation of collagen 
and other extracellular matrix proteins in the skin and various internal organs. Follow-up work 
with colocalisation analysis between IPF, systemic sclerosis and cis-eQTLs for this locus could 
help test whether causal variants are shared and potentially underlie a common disease 
mechanism. 
 

IPF and COVID-19: colocalisation 
Several previous studies have set out to identify shared genetic signals between IPF and 
severe COVID-19 phenotypes to investigate potential shared aetiology and mechanisms 
between the two diseases5,11,12. Following similar colocalisation analysis and using updated 
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IPF and severe COVID-19 summaries we identified novel shared signals at 1q21.2, 6p24.3 and 
16p13.3 with MCL1, DSP and RHBDF1 as probable effector genes.  
As discussed above, dysregulation of MCL1 could contribute to IPF by enabling survival of 
epithelial cells exacerbating fibrosis. MCL1 could follow an analogous mechanism in 
contributing to severe COVID-19 through dysregulation of apoptosis for SARS‑CoV‑2 infected 
cells. Remarkably, a recent study showed that SARS-CoV-2 suppresses apoptosis in cultured 
cells, human organoids and mice by interacting with MCL157, a mechanism also known as 
virus-induced senescence58. DSP is a key component of desmosomes, structures involved in 
cell-cell adhesion in epithelial tissues, including the lungs and is already established as a risk 
factor for IPF59. A recent study found that acute COVID-19 patients had increased levels of 
desmosomal Desmoglein-2 (DSG2) protein antibodies in serum contributing to an 
autoimmune mechanism potentially by exacerbating cardiac related complications60. RHBDF1 
encodes a intramembrane serine protease involved in the regulation of EGFR (Epidermal 
Growth Factor Receptor) signalling, which is critical for cell proliferation, survival, and wound 
healing61. Activation of EGFR through binding of either EGF or EGF‐like ligands, such as TGF‐
α, triggers downstream signalling pathways (e.g., JAK/STAT) that promote the progression of 
cancer and virus infection and targeting the EGFR signalling pathway has been proposed as a 
potential therapeutic option for severe COVID-1962. 
 

IPF and COVID-19: multi-trait analysis 
In this study for the first time, we also leveraged the genetic correlation between IPF and 
severe COVID-19 for GWAS discovery through multi-trait meta-analysis. The moderate 
genetic correlation between these traits (rg=0.39) suggests that multi-trait meta-analysis is 
expected a priori to have limited benefits in terms of amplifying statistical signal63. However, 
our analysis identified five novel IPF locus associations of which one was robustly replicated 
at 2p16.1. Signal at 2p16.1 had lead variant rs1123573, which is in an intron of gene BCL11A, 
a zinc finger protein transcription factor involved in the regulation of the developmental 
switch from foetal to adult haemoglobin64, is essential for lymphocyte development60 and 
have previously been linked with a wide range of diseases65. The pleiotropic association with 
severe COVID-19 and IPF suggests that this gene could potentially contribute to both diseases 
through dysregulation of adaptive immune responses mediated by lymphocytes. 
 

Study limitations 
Our study has several limitations: 
 
Firstly, the GWAS summaries sourced from the GBMI meta-analysis exhibit large variations in 
sample size across the genome, significant heterogeneity in effect sizes due to inclusion of 
data from both clinical and Biobank sources5, and contain multi-ancestry cohorts, particularly 
of East Asian ancestry (Supplementary Table 7). This heterogeneity can generate local 
inconsistencies between summary statistics, and linkage disequilibrium computed using a 
European LD-reference panel may have limited our ability to identify independent signals and 
perform fine-mapping. For these reasons, we strictly required non-overlap of LD-clumps as 
well as cytogenetic loci (which encompass large genomic regions) between the current and 
previous studies to declare novel signals. 
 
Secondly, to map probable effector genes for variant associations we mapped consequences 
for lead variants of each association with VEP and selected the gene affected or nearest gene 
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if consequence was not genic. Our selected effector gene might not correspond to the true 
effector gene. Analysis on worst consequence gene in credible set and TWAS analysis 
integrating QTL data has highlighted additional genes that could be considered as potential 
effector genes to follow-up.  
 
Thirdly, we selected MCL1 as effector gene from the 1q21.2 novel association to follow up 
with in vivo analysis due to its intriguing connection to apoptosis and our specific hypothesis 
in respect to the IPF mechanism involving senescent cells. Other nearby genes in the genomic 
region could be potential valid targets underlying the 1q21.2 association. 
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Materials and Methods 
 

Ethics statement  
100,000 Genomes Project: the 100,000 Genomes Project was approved by the East of 
England-Cambridge Central Research Ethics Committee (REF 20/EE/0035). Only participants 
of the 100,000 Genomes Project for whom WGS data were available and who consented for 
their data to be used for research purposes were included in the analyses.  
 

IPF Cohort 
The IPF cohort was constructed from participants of the 100kGP and comprised of the cases 
that were specifically recruited into the 100kGP for familial pulmonary fibrosis as well as 
‘incidental’ cases of idiopathic pulmonary fibrosis (IPF) that were identified based on 
diagnostic ICD-10 codes in linked Electronic Health Records (EHRs). The incidental cases are 
expected to represent predominantly sporadic forms of pulmonary fibrosis but may also 
include a small proportion of additional familial cases.  
 

Sample quality control 
Participants were required to have European ancestry (probability > 0.8), concordance 
between reported phenotypic sex and WGS inferred sex, assigned either XX or XY from WGS 
sex chromosome ploidy checks, passed internal WGS sample QC (from BAM and VCF-level 
metrics) based on Blood sample, EDTA extraction, Illumina TruSeq DNA PCR-Free library 
preparation. Related individuals were included and for individuals with a monozygotic twin-
pair (identified by KING kinship coefficient > 0.354), one of the pair was excluded (cases 
prioritised).  
 

GWAS analysis 

100kGP GWAS site quality control 
Small variants (SNPs and indels) were selected with the following site-level quality control 
filters: median read depth (DP) >=10, median genotype quality (GQ)>=15, ABratio for het calls 
>=25%, minor allele frequency (maf) > 0.5%, minor allele counts (MAC) > 20, site-wise 
missingness < 2%, differential missingness between cases and controls (Fisher Exact Test P-
value < 10-5), Hardy Weinberg Equilibrium test for unrelated controls (HWE P-value < 10-6). 
 

100kGP IPF GWAS 
To perform GWAS analysis in the 100kGP cohort, we used SAIGE66. SAIGE performs mixed 
model linear regression using a two-step approach where random effects for the genetic 
relationship matrix are estimated in step 1 (null model fit) and step 2 calculates association 
statistics for each variant while controlling for effects estimated in step 1. We used a set of 
63,523 common (maf>5%) high-quality independent SNPs to construct the GRM and fit the 
null model for SAIGE part 1 (the “HQ common SNPs” from Kousathanas et al. (2022)14). We 
included sex, age, age2, age*sex, and the first 20 principal components calculated in 
Europeans as covariates in the null model fit. We then computed SAIGE summary statistics 
for all variants passing GWAS site QC. 
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Meta-analysis and quality control 
We contacted the Global Biobank Meta-analysis Initiative (GBMI) consortium and gained 
access to the summary GWAS results from their latest meta-analysis5. This meta-analysis 
aggregated results from 13 Biobanks as well as another large IPF dataset described by Allen 
et al., 20203. GBMI in-house site quality control had removed variants from each biobank with 
imputation quality score < 0.3 or allele frequencies differing from gnomAD. A total of 
32,046,319 variants were present in the provided GBMI IPF summary statistics file, of which 
10,781,762 were also present in the Allen et al. (2020)3 results (header column “with_Allen”). 
To meta-analyse with the 100kGP IPF GWAS summaries, we included variants present in a 
minimum of 2 GBMI biobanks (max 13) and used inverse variance weighted fixed-effect meta-
analysis as implemented in METAL v.2011-03-25. The meta-analysis resulted in 10,644,973 
variants that were present in both GBMI meta-analysis and the 100kGP IPF GWAS. For 
downstream analyses, we further removed the following variants: (i) variants with strand flips 
in the GBMI dataset (i.e, strand_flip=”yes”); (ii) variants with calculated allele frequency > 1 
in either the GBMI or 100kGP IPF GWAS (which can arise from erroneous calculations of the 
number of alleles for chrX); (iii) variants with differences in absolute allele frequency between 
GBMI and 100kGP IPF GWAS > 0.1. These filtering steps resulted in a set of 10,287,302 
variants.  
 

Creation of 100kGP LD reference panel 
We used an LD reference panel based on the 100kGP cohort by creating an EUR-only cohort 
of 44,590 unrelated individuals (LD-100kGP-EUR) and for a bi-allelic variant site subset of 
9,044,108 variants. We used only Europeans for creating the LD reference panel as this 
ancestry represented 85% of the cases and 80% of the controls contributing to the IPF meta-
analysis dataset. 
 

Variant LD-clumping, conditional analysis and fine-mapping 
We performed LD-clumping, conditional analysis and fine-mapping procedures using the IPF 
meta-analysis GWAS summary statistics and the LD-100kGP-EUR as LD-reference panel. 
LD-clumping was used to collect variants in LD with GWAS signals with plink1.967 with P1 set 
to 5x10-8, clump distance 1500kb, P2=0.01, r2=0.1. 
To discover conditionally independent GWAS signals we ran a step-wise conditional analysis 
using GCTA 1.9.368 and –cojo-slc function69. We used a P-value threshold of 5x10-8, a distance 
of 10,000kb and a collinear threshold of 0.1. 
To narrow down the list of likely causal variants surrounding independent signals, we 
performed fine-mapping using R-package SusieR v0.11.42. We split the genome into 3Mbp 
non-overlapping windows and for each window containing at least one GW-significant variant 
(at P-value<5x10-8), we assigned the variant with the lowest P-value as the focal variant of the 
window and analysed the GWAS summaries and LD of variants within 1.5 Mbp on either side 
of each focal variant. This approach minimised the number of search windows for clustered 
signals while simultaneously centering on each signal. 
 

Replication 
We contacted the PFgenetics consortium (https://github.com/genomicsITER/PFgenetics) to 
gain access to the IPF 5-way meta-analysis summaries and 3-way meta-analysis summaries. 
The 3-way meta-analysis summaries had been previously included in the GBMI meta-analysis. 
We obtained independent IPF summary data through mathematical subtraction of the 3-way 
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meta-analysis summaries from the 5-way meta-analysis summaries, using MetaSubtract R-
package70. Replication of the novel signals of the present study was determined by requiring 
a Bonferroni-corrected P-value in the replication 2-way summaries and that the effect size 
direction matched. 
 

Variant annotation 
We used Variant Effect Predictor (VEP) v.105 for mapping variant effects. For each variant, 
we selected the worst predicted consequence across transcripts as the probable effector gene 
unless the variant was mapped as regulatory/intergenic in which case we assigned the nearest 
gene. 
 

Aggregate variant burden testing (AVT) 

AVT site quality control 
We used 100kGP aggregated data of bi-allelic variants that were processed by setting 
genotypes with depth of coverage (DP) < 10, genotype quality (GQ) < 20 and heterozygote 
genotypes failing an ABratio binomial test with P value < 10−3 to missing with bcftools setGT 
module. This was followed by a site quality control procedure that removed sites with >2% 
missingness and performed a Fisher’s exact test of missingness between cases and controls 
and filtered-out variants with P-value<10-5. 
 

AVT model 
Aggregate variant burden testing (AVT) was performed using SAIGE-GENE+ (version 
0.44.6.5)71. Sex, age, age2, age*sex, and the first 20 principal components calculated in 
Europeans were included as covariates in the SAIGE-GENE+ null model fit. 
 

AVT masks 
Small variants (SNPs and indels) were annotated using Ensembl VEP72 and a suite of additional 
functional and allele frequency datasets (including CADD, LOFTEE, and gnomAD). Variants 
annotated against all protein-coding transcripts from Ensembl VEP 105 (including canonical 
and non-canonical transcripts) were aggregated by gene and grouped into four variant masks 
shown in Supplementary Table 11. These masks were selected to align with existing AVT 
studies in IPF 8,19,73.  
 

Post-GWAS analyses 

Transcriptome-wide association study (TWAS) 
We conducted a transcriptome-wide association study (TWAS) for lung tissue using the 
MetaXcan framework20 along with the GTEx v.8 (eQTL) MASHR-M model (downloaded from 
http://predictdb.org/) using the S-PrediXcan function. We identified significant genes using 
the Bonferroni correction. 
 

Colocalisation for TWAS 
We tested for colocalisation between IPF and cis-eQTL summary statistics for genes with 
significant TWAS results. For each significant TWAS gene, we selected eQTLs located 1.5 Mbp 
on either side of the transcription start site (TSS) of the gene (as defined in Ensembl v104). 
We used Bayesian colocalisation analysis utilising the coloc_abf function implemented in R-
package coloc v5.1.023. We declared that a locus had significant evidence for colocalisation 
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when both of two criteria were met: (1) At p12=5x10-5, the probability of colocalisation with a 
shared causal variant (PPH4) was > 0.5, and (2) at p12=10-5, the probability of distinct causal 
signals (PPH3) was not the main hypothesis (PPH3 < 0.5). For each locus we determined the 
lead colocalisation variant as the one with the highest PPH4. 
 

Colocalisation for IPF and severe-COVID-19 
We tested for colocalization of each genome-wide significant IPF signal with severe COVID-19 
by selecting variants located 1.5Mbp on either side of the lead variant and performing 
colocalisation analysis using coloc v5.1.0 as for TWAS described above. 
 

Genetic correlation 
To compute genetic correlations between IPF and COVID-19 we used LDSC 
(https://github.com/bulik/ldsc)74. For this analysis, we used pre-computed European ancestry 
LD-score weights for GRCh38 coordinates. We used the files with prefix 
“weights.hm3_noMHC” that are split by chromosome. Running LDSC was performed in two 
steps: (1) Cleaning the summary statistics of each analysed trait for flip strands and taking an 
intersection with the LD-scores variants with script munge_sumstats.py, (2) Running genetic 
correlation analysis on pairs of traits with script ldsc.py. 
 

Multi-trait meta-analysis (MTAG) 
To perform multi-trait meta-analysis between IPF and COVID-19 we used MTAG 
(https://github.com/JonJala/mtag)24. For this analysis, we used European ancestry pre-
computed LD-score weights for GRCh38 coordinates. We used the files with prefix 
“weights.hm3_noMHC” that are split by chromosome. We performed variant clumping to 
collect variants in LD with GWAS signals and to help identify novel signals compared to the 
single trait meta-analysis, a process that resulted in 71 MTAG-derived significant LD-clumps 
for IPF. Due to the genetic correlation between IPF and severe COVID-19 being only moderate 
and the MTAG assumption for a constant genetic correlation across the genome, we expected 
that many signals in either trait will be entirely driven by strong signals of the paired rather 
than the focal trait. Therefore, to reduce the number of false positives when declaring 
significance, we required that the P-value of the focal SNP in each MTAG IPF LD-clump was 
also significant in the original single trait meta-analysis at a Bonferroni corrected threshold 
for the number of clumps in the MTAG results (0.05 / 71 = 7.04x10-4), and that the effect sizes 
were consistent between the original and the MTAG meta-analyses. 13 LD-clumps passed 
these criteria and we identified novel signals as those occurring in non-overlapping LD-clumps 
as well as different loci compared to the base IPF meta-analysis. 
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