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ABSTRACT 
Background: 
Accurate prediction of mortality in critically ill patients with hypertension admitted to the 
Intensive Care Unit (ICU) is essential for guiding clinical decision-making and improving 
patient outcomes. Traditional prognostic tools often fall short in capturing the complex 
interactions between clinical variables in this high-risk population. Recent advances in 
machine learning (ML) and deep learning (DL) offer the potential for developing more 
sophisticated and accurate predictive models. 
 
Objective: 
This study aims to evaluate the performance of various ML and DL models in predicting 
mortality among critically ill patients with hypertension, with a particular focus on 
identifying key clinical predictors and assessing the comparative effectiveness of these 
models. 
 
Methods: 
We conducted a retrospective analysis of 30,096 critically ill patients with hypertension 
admitted to the ICU. Various ML models, including logistic regression, decision trees, 
and support vector machines, were compared with advanced DL models, including 1D 
convolutional neural networks (CNNs) and long short-term memory (LSTM) networks. 
Model performance was evaluated using area under the receiver operating 
characteristic curve (AUC) and other performance metrics. SHapley Additive 
exPlanations (SHAP) values were used to interpret model outputs and identify key 
predictors of mortality. 
 
Results: 
The 1D CNN model with an initial selection of predictors achieved the highest AUC 
(0.7744), outperforming both traditional ML models and other DL models. Key clinical 
predictors of mortality identified across models included the APS-III score, age, and 
length of ICU stay. The SHAP analysis revealed that these predictors had a substantial 
influence on model predictions, underscoring their importance in assessing mortality risk 
in this patient population. 
 
Conclusion: 
Deep learning models, particularly the 1D CNN, demonstrated superior predictive 
accuracy compared to traditional ML models in predicting mortality among critically ill 
patients with hypertension. The integration of these models into clinical workflows could 
enhance the early identification of high-risk patients, enabling more targeted 
interventions and improving patient outcomes. Future research should focus on the 
prospective validation of these models and the ethical considerations associated with 
their implementation in clinical practice. 
 
Keywords: 
Hypertension, Intensive Care Unit, Mortality Prediction, Machine Learning, Deep 
Learning, Convolutional Neural Networks, SHAP Analysis  
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INTRODUCTION 

Hypertension is a prevalent chronic condition that significantly increases the risk 

of severe complications, including heart disease, stroke, and kidney failure.[1] Critically 

ill patients with hypertension admitted to the Intensive Care Unit (ICU) often present 

with complex medical profiles and are at a heightened risk of mortality.[2] Early and 

accurate prediction of mortality in these patients is crucial for guiding clinical decision-

making, optimizing resource allocation, and improving patient outcomes. However, 

predicting mortality in this population is challenging due to the multifactorial nature of 

their conditions and the dynamic, rapidly changing clinical environment of the ICU.[3] 

Traditional prognostic tools, such as scoring systems like the Acute Physiology 

and Chronic Health Evaluation (APACHE) and Sequential Organ Failure Assessment 

(SOFA), have been widely used to assess the severity of illness and predict outcomes 

in ICU patients.[4] While these tools provide valuable insights, they are often limited by 

their reliance on a predefined set of clinical variables and may not fully capture the 

complex interactions between patient characteristics and clinical outcomes. 

Furthermore, the predictive accuracy of these traditional models can be compromised 

by the heterogeneous nature of critically ill populations, including those with 

hypertension.[5] 

Recent advances in machine learning (ML) and deep learning (DL) have opened 

new avenues for developing more sophisticated and accurate predictive models.[6] 

These models can handle large, multidimensional datasets and automatically identify 

complex patterns and interactions within the data, offering the potential for more 

personalized and precise predictions.[7] In particular, deep learning models, such as 
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convolutional neural networks (CNNs) and recurrent neural networks (RNNs), have 

shown promise in various clinical applications, including the prediction of mortality, 

disease progression, and treatment response.[8, 9] 

Despite the potential advantages of ML and DL models, their application in 

predicting mortality among critically ill patients with hypertension remains 

underexplored. This study seeks to address this gap by evaluating the performance of 

various ML and DL models in predicting mortality in this high-risk population. 

Specifically, we compare traditional ML models, such as logistic regression and decision 

trees, with advanced DL models, including 1D CNNs [10] and long short-term memory 

(LSTM) networks.[11] We also investigate the importance of different clinical features in 

predicting mortality, with a particular focus on the role of commonly used ICU scoring 

systems, such as the APS-III score and SOFA score.[12] 

The objectives of this study are twofold: first, to identify the most effective 

predictive model for mortality in critically ill patients with hypertension; and second, to 

provide insights into the key clinical features that drive these predictions. By leveraging 

the strengths of both ML and DL approaches, we aim to contribute to the development 

of more accurate and clinically useful prognostic tools that can support decision-making 

in the ICU. 
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METHODS 

Dataset processing 

This study utilized the Medical Information Mart for Intensive Care IV (MIMIC-IV) 

dataset, which contains de-identified healthcare information for approximately 40,000 

patients admitted to critical care units at Beth Israel Deaconess Medical Center 

(BIDMC) between 2008 and 2019. [13] Patients with hypertension were identified using 

ICD-9 and ICD-10 codes.[14] We extracted the following data from the patients' 

electronic health records (EHRs): (1) Demographics, including self-reported race, sex, 

and age; (2) Vital signs; (3) Laboratory test results; (4) Maximum creatinine levels on 

days two and three; and (5) Patient mortality.  

We also calculated the Sequential Organ Failure Assessment (SOFA) Score and 

the Acute Physiology Score III (APS-III) for each patient. The SOFA score assesses 

organ failure in ICU patients, tracking the status of six organ systems: respiratory, 

cardiovascular, hepatic, coagulation, renal, and neurological.[15]  SOFA is 

advantageous as it does not require specific tests and relies on routinely collected ICU 

data. The APS-III score evaluates the severity of illness in adult ICU patients [16] and is 

an enhanced version of the Acute Physiology and Chronic Health Evaluation (APACHE) 

system.[17]  APS-III is designed to predict hospital mortality with greater accuracy by 

assessing the patient's current health status, underlying medical conditions, and 

complications arising during their ICU stay. It is widely used in critical care research to 

compare illness severity across patients and to adjust outcomes in clinical studies. [18] 
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We addressed missing data using Multivariable Imputation by Chained Equations 

(MICE).[19]  MICE is a robust statistical technique that imputes missing values with 

plausible estimates, creating complete datasets. Initially, missing values are filled with 

preliminary imputations, such as means and standard deviations. The method then 

iteratively models each variable with missing data as a function of other variables in a 

chained equation system, updating the imputations at each step. This process is 

repeated over multiple cycles until convergence. Multiple complete datasets are 

generated, analyzed separately, and the results are combined to account for imputation 

uncertainty. 

This study aimed to predict patient mortality using various predictors and to 

examine the relationship between these predictors and mortality. We employed multiple 

machine learning models, including Decision Trees and Support Vector Machines 

(SVM), as well as deep learning models, such as one-dimensional convolutional neural 

networks (1D CNNs) and recurrent neural networks (RNNs). We excluded data with 

values outside reasonable ranges (e.g., heart rate above 200). 

 

Statistical analysis 

Statistical analysis was conducted using Python and the open-source library 

“statsmodels”.[20] The analysis had two main objectives: (1) to explore the bivariate 

association between patient mortality and predictors, and (2) to perform initial feature 

selection using conventional statistical machine learning models, specifically 

multivariable logistic regression. We defined a model with all predictors as the initial 
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selection and a model with highly associated predictors as the backward selection. For 

the initial selection, we performed multivariable logistic regression to obtain unadjusted 

relationships with p-values. Predictors with the highest p-values greater than 0.05 were 

iteratively removed until all remaining variables had p-values below 0.05. The resulting 

set of predictors was considered strongly relevant and used as input variables for the 

backward selection. Model performance was assessed using root mean square error 

(RMSE) through 10-fold cross-validation. For logistic regression, odds ratios, p-values, 

and 95% confidence intervals were computed. Receiver operating characteristic (ROC) 

curves were drawn for both the initial and backward selections during the 10 runs of 

cross-validation, and the area under the curve (AUC) was calculated for each run. A 

higher AUC (closer to 1) indicates better model performance, while an AUC of 0.5 

suggests no discrimination.[21] 

 

Model 

We developed multiple classifiers to predict mortality using scikit-learn [22] for 

machine learning models and TensorFlow [23] for deep learning models. Categorical 

variables, such as race, were encoded as vectors using one-hot encoding, and 

continuous variables, such as lab test results, were standardized by subtracting the 

mean and dividing by the standard deviation to facilitate model fitting. 

Several algorithms were used to predict mortality, including logistic regression, 

support vector machines, multilayer perceptrons (a type of artificial neural network), 

random forests, bagging decision trees, and boosting decision trees. For logistic 
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regression, we optimized the binary cross-entropy loss using the "Newton-Cholesky" 

solver, which is well-suited for binary classification with a large number of samples 

compared to features. For the support vector machine, we employed the stochastic 

gradient descent algorithm to minimize the log-loss function. The multilayer perceptron 

architecture included two hidden layers, with 7 neurons in the first layer and 4 neurons 

in the second, using Rectified Linear Unit (ReLU) activation functions and the Adam 

solver.[24] For the random forest, we set the number of estimators to 100 and the 

maximum number of features per tree to the square root of the total features. The 

bagging decision trees also had 100 estimators, with decision trees as the base 

estimator. Lastly, the boosting decision trees were implemented using a histogram-

based gradient boosting strategy, which is more powerful and efficient for large datasets 

than other strategies. 

To ensure generalizability and robustness, we employed three prominent deep 

learning methods: 1D CNNs, RNNs, and long short-term memory networks (LSTMs). 

The 1D CNN, a variant of the traditional 2D CNN, is specifically designed for processing 

sequential data, such as time-series data. Our model architecture included two 1D 

convolutional layers with a max-pooling layer in between, followed by two fully 

connected layers, a dropout layer for regularization, and a SoftMax output layer for 

classification. For the RNN and LSTM models,[11] we replaced the 1D CNN with RNN 

and LSTM units, respectively, while keeping the rest of the architecture the same. The 

binary cross-entropy loss was optimized using the Adam optimizer with a learning rate 

of 0.0001 over 20 epochs. To avoid overfitting, we monitored the training process by 

calculating the loss on the validation set and saved the optimal model at the point where 
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validation loss began to increase. In our study, each sample from the dataset was 

treated as having 36 time steps, with a single feature per time step. Additionally, we 

incorporated SHAP (SHapley Additive exPlanations) values into our predictor selection 

process to evaluate predictor importance and refine the backward selection.[25] SHAP 

is a game-theoretic approach that explains the output of machine learning models by 

connecting optimal credit allocation with local explanations using the classic Shapley 

values from game theory. 

We evaluated all models using multiple metrics, including AUC, accuracy, 

sensitivity, specificity, positive predictive value (PPV), and negative predictive value 

(NPV). The dataset was split into a training set (80%), validation set (10%), and testing 

set (10%). Hyperparameter tuning was conducted on the training and validation sets, 

and model performance was evaluated on the test set. 

 

Study Approval  

This study exclusively used publicly available MIMIC-IV data. 

 

RESULTS 

Statistics overview 

A total of 30,096 patients met the inclusion criteria for this study. The 

demographic and clinical characteristics of these patients are summarized in Table 1. 

The majority of the cohort was white (67.55%), with 13,619 (45.25%) patients deceased 
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following ICU admission, and 16,477 (54.75%) patients surviving. This near-equitable 

distribution indicates that the classification task is reasonably balanced. 

Supplemental Table 1 presents the bivariate associations between patient 

mortality and the predictors of interest. In the unadjusted logistic regression analysis, 

variables such as minimum SpO2, mean SpO2, minimum platelet count, and maximum 

sodium levels (p > 0.05) were not significantly associated with patient mortality post-ICU 

admission. The multivariable logistic regression model using backward selection is 

detailed in Supplemental Table 2. The analysis indicates that patients with elevated 

red blood cell counts and creatinine levels are more likely to succumb upon ICU 

admission. 

 

Models 

We conducted logistic regression analyses using 10-fold cross-validation across 

10 iterations, each with different random seeds. The results, shown in Supplemental 

Table 3, suggest that the initial selection model exhibits superior classification 

performance compared to the backward selection model. This finding implies that 

incorporating all predictors may lead to more accurate predictions. 

Table 2 outlines the performance metrics on the testing set across the models 

employed in the backward selection, where the top fifteen predictors ranked by the 

SHAP framework were used as input. Each metric provides unique and critical insights 

into the model's performance. Among the models, the 1D CNN achieved the highest 

AUC (0.7744), demonstrating both good sensitivity and a strong positive predictive 
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value. This suggests that the model not only excels at identifying positive cases but also 

produces highly reliable positive predictions. These results indicate that the models 

effectively fit the data without overfitting, due to the cross-validation strategy employed. 

Notably, the LSTM model reached the highest NPV (0.7317). Overall, the 1D CNN 

model from the initial selection outperformed the other models across all metrics, 

indicating that deep learning approaches may be particularly powerful for this study. 

Figure 1 illustrates the ROC curves for the machine learning models. Among 

these, the boosting decision trees model achieved the best AUC (0.762), regardless of 

whether the initial or backward selection was used. Figure 2 presents the ROC curves 

for the deep learning models, with the 1D CNN emerging as the top performer (AUC: 

0.770). 

 

Model interpretation 

We provided an interpretation of the 1D CNN model, which had the best overall 

performance (AUC: 0.774). First, we identified the top 25 predictors based on their 

mean absolute SHAP values. Figure 3 shows the relationship between these predictors 

and their influence on the model's output. Globally, the APS-III score, age, and length of 

ICU stay were the top three predictors. 

We further analyzed individual predictors with scatter plots. Figure 4(a) 

demonstrates that younger age (left side, negative SHAP values) contributes negatively 

to the model's output, while older age (right side, positive SHAP values) contributes 

positively. Extreme ages appear to have a more significant impact on the model's 
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predictions, indicating that age has a monotonically increasing effect on the prediction of 

patient mortality. Figure 4(b) shows that SHAP values increase with the APS-III score, 

suggesting that a higher APS-III score correlates with an elevated probability of 

mortality, consistent with the score’s role in assessing patient risk. 

Finally, we used SHAP values to interpret two individual cases. Figure 5(a) 

displays the contribution of clinical measurements and patient characteristics to a 

positive mortality prediction, where age, APS-III score, and maximum blood urea 

nitrogen had the strongest positive contributions. Conversely, Figure 5(b) illustrates a 

case where the model predicted survival, with APS-III score, length of ICU stays, and 

SOFA score being the most significant factors in the negative prediction. 

SHAP values were calculated for all models discussed in this paper.[26] Across 

models, we identified a consistent set of significant predictors for mortality in critically ill 

patients with hypertension. These predictors include minimum bicarbonate, APS-III 

score, maximum blood urea nitrogen, maximum creatinine during days 2 and 3, mean 

respiratory rate, minimum creatinine, maximum red blood cell count, length of ICU stay, 

age, minimum prothrombin, SOFA score, minimum systolic blood pressure, minimum 

diastolic blood pressure, and minimum hemoglobin. 

 

DISCUSSION 

Accurate prognosis prediction is vital for patient-centered care, facilitating shared 

decision-making and informing treatment strategies. In this study, we evaluated various 

machine learning and deep learning models to predict mortality in critically ill patients 
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with hypertension upon ICU admission. Our findings reveal that deep learning models, 

particularly the 1D CNN, consistently outperformed traditional machine learning models 

in predictive accuracy, as measured by AUC and other performance metrics. 

Specifically, the 1D CNN model, using an initial selection of predictors, achieved the 

highest AUC (0.7744), demonstrating its superior ability to distinguish between patients 

who survived and those who did not after ICU admission. 

Our analysis also underscored the significance of specific clinical features, with 

the APS-III score, age, and length of ICU stay emerging as the most influential 

predictors of mortality. These results highlight the importance of comprehensive 

physiological assessments and detailed patient history in developing predictive models 

for critically ill populations. 

The identification of key predictors such as APS-III score, age, and length of ICU 

stay carries significant implications for clinical practice.[27] These factors are routinely 

available in ICU settings, making the integration of the 1D CNN model into real-time 

clinical decision-making practical. With its high AUC and reliable positive predictive 

value, this model could assist healthcare providers in the early identification of high-risk 

patients, enabling more targeted interventions that may improve patient outcomes and 

optimize resource allocation.[28] 

Moreover, the model's ability to efficiently process large and complex datasets, 

coupled with its capacity for ongoing learning and adaptation, suggests that deep 

learning approaches could be instrumental in advancing precision medicine in critical 

care. This study demonstrates the effectiveness of both classic machine learning 

algorithms and modern deep learning models in predicting mortality among critically ill 
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patients with hypertension. Our predictive models incorporated a diverse set of 

variables, leveraging professional medical knowledge by including SOFA and APS-III 

scores, which assess overall organ failure and the severity of illness. This approach 

enhanced the models' ability to predict patient mortality more accurately. 

Among the models evaluated, the 1D CNN exhibited the best performance, likely 

due to its architecture that combines the learning capabilities of neural networks with the 

efficiency of convolutional filters. The 1D CNN's ability to capture local dependencies 

and recognize patterns within the data enabled it to outperform other models, including 

RNNs and LSTMs, which did not perform as well, possibly due to the lack of strong 

sequential dependencies in the predictors used.[29] Decision tree algorithms also 

performed well, consistent with existing literature, while support vector machines 

(SVMs) lagged behind, potentially due to the high-dimensional complexity of the 

dataset. 

The 1D CNN prediction model has the potential to facilitate advanced clinical 

decision-making for critically ill patients with hypertension. The 1D CNN is designed to 

process sequential data, such as time series or any data with a temporal dimension. Its 

structure, which includes convolutional layers, activation functions, max pooling, and 

fully connected layers, is particularly suited for tasks requiring the recognition of local 

and positionally invariant patterns.[30] This makes 1D CNNs robust and efficient for 

analyzing large input sequences, eliminating the need for manual feature engineering, 

and ensuring robustness to shifts and variations in the input data. By reducing the 

number of parameters through shared weights and pooling, 1D CNNs are 

computationally efficient and can automatically learn to detect important features from 
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raw data. This makes them particularly beneficial in complex clinical data scenarios, 

where data may not always be perfectly aligned or uniform. The model's robustness to 

slight variations in input data is especially valuable in clinical contexts, where data 

consistency can vary.[30] 

Our findings are consistent with previous research that has shown the utility of 

machine learning in predicting patient outcomes in the ICU.[31] However, this study 

advances the field by demonstrating the particular effectiveness of deep learning 

models, such as the 1D CNN, in handling the complex and multidimensional data 

typically found in ICU settings. Unlike traditional machine learning models, which often 

require extensive feature engineering, deep learning models can automatically discern 

intricate patterns and interactions within the data, leading to potentially more accurate 

predictions.[32] 

The study also builds on prior work by using SHAP values to interpret the 

models, thereby providing transparency and insight into the decision-making process. 

Through the SHAP framework, we explored the impact of predictors across all 

employed models. This feature selection method has become widely recognized for 

explaining the effects of each feature on learning algorithms. Addressing one of the 

main criticisms of deep learning models—namely, their "black-box" nature—this 

approach elucidates the contributions of individual predictors to the model's predictions. 

Such interpretability is crucial for gaining the trust of clinicians and ensuring that these 

models are used effectively and ethically in practice. 
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LIMITATIONS 

Despite its strengths, this study has several limitations. First, the study was 

conducted using a retrospective dataset, which may limit the generalizability of the 

findings to other patient populations or clinical settings. Future research should aim to 

validate these models prospectively in diverse ICU populations to confirm their utility 

and robustness in real-world settings. Second, although we employed SHAP values to 

enhance model interpretability, there remains a need for further research into the ethical 

implications of using such models in clinical practice. Issues such as algorithmic bias, 

patient consent, and the transparency of decision-making processes should be 

rigorously examined to ensure that these technologies are implemented responsibly.[33] 

Finally, while the models demonstrated good predictive performance, there is room for 

improvement. Exploring ensemble methods that combine multiple deep learning models 

or incorporating time-series data could further enhance predictive accuracy. 

Additionally, integrating multi-modal data sources, such as genomic information, clinical 

notes,[34] patient-generated health data,[35] and imaging data,[36] could provide a 

more comprehensive view of patient health, leading to even more personalized and 

precise predictions.[37] 

 

CONCLUSION 

This study demonstrates the potential of deep learning models, particularly the 

1D CNN, in predicting mortality in critically ill patients with hypertension in the ICU. The 

superior performance of these models, coupled with their ability to handle complex 
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datasets and provide interpretable results, positions them as powerful tools for 

improving patient outcomes in critical care settings. However, ongoing research is 

needed to validate these findings in broader patient populations and to address the 

ethical challenges associated with the deployment of such technologies in clinical 

practice. By continuing to refine these models and ensuring their responsible use, we 

can move closer to realizing the promise of precision medicine in the ICU. 
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Table 1. Characteristics of patients with hypertension in ICU. 

Variables Total Survival Mortality P-value 

Sex, N (%)    0.229 

   Male 16985 (56.44) 9351 (56.75) 7634 (56.05)  

   Female 13111 (43.56) 7126 (43.25) 5985 (43.95)  

Race, N (%)    <0.001 

   White 20329 (67.55) 11058 (67.11) 9271 (68.07)  

   African American 2804 (9.32) 1319 (8.01) 1485 (10.90)  

   Hispanic 1038 (3.45) 640 (3.88) 398 (2.92)  

   Other 5925 (19.68) 3460 (21.00) 2465 (18.10)  

Age, years, median 

(IQR) 

67 [57, 78] 65 [54, 75] 71 [61, 80] <0.001 

Maximum creatinine 

during day 2 and day 3, 

mg/dL 

1.69 (1.69) 1.45 (1.53) 1.99 (1.83) <0.001 

Minimum creatinine, 

mg/dL 

1.47 (1.50) 1.26 (1.36) 1.72 (1.61) <0.001 

Maximum creatinine, 

mg/dL 

1.69 (1.76) 1.46 (1.62) 1.97 (1.88) <0.001 

Maximum heart rate, 

bpm 

128.19 (12.20) 127.43 (12.15) 129.12 (12.20) <0.001 

Mean heart rate, bpm  86.70 (13.84) 85.06 (13.64) 87.49 (14.03) <0.001 

Minimum systolic bp, 

mmHg  

93.46 (18.97) 96.14 (12.77) 90.50 (18.66) <0.001 

Mean systolic bp, mmHg 117.07 (18.45) 118.66 (18.50) 115.32 (18.24) <0.001 

Minimum diastolic bp, 

mmHg  

47.76 (12.83) 50.01 (12.77) 45.62 (12.42) <0.001 

Mean diastolic bp, 

mmHg  

64.14 (14.63) 65.75 (14.51) 62.36 (14.55) <0.001 

Minimum SpO2, % 85.52 (3.29) 85.54 (3.47) 85.49 (3.04) 0.215 

Mean SpO2, %  86.06 (1.76) 86.07 (1.84) 86.05 (1.65) 0.262 

Minimum hemoglobin, 

g/dL 

9.83 (2.24) 10.08 (2.29) 9.53 (2.13) <0.001 

Minimum prothrombin, 

g/dL 

15.70 (7.16) 14.62 (5.71) 17.01 (8.41) <0.001 

Maximum prothrombin, 

g/dL 

17.78 (11.06) 16.50 (9.12) 19.34 (12.86) <0.001 

Minimum respiratory 

rate, bpm 

11.90 (4.68) 11.55 (4.61) 12.32 (4.73) <0.001 

Maximum respiratory 

rate, bpm 

28.91 (8.27) 28.46 (8.64) 29.45 (7.75) <0.001 

Mean respiratory rate, 

bpm 

19.58 (4.07) 19.15 (3.87) 20.11 (4.24) <0.001 

Maximum glucose, 

mg/dL 

165.24 (97.99) 160.58 (8.98) 170.85 (106.80) <0.001 
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Minimum platelet count, 

K/μL 

195.95 (109.42) 195.46 (103.99) 196.53 (115.67) 0.408 

Minimum calcium, 

mg/dL 

8.16 (0.85) 8.17 (0.82) 8.14 (0.88) 0.001 

Minimum bicarbonate, 

mg/dL 

22.88 (4.20) 22.77 (3.82) 23.02 (4.64) <0.001 

Maximum potassium, 

mg/dL 

4.49 (0.77) 4.45 (0.74) 4.52 (0.80) <0.001 

Maximum blood urea 

nitrogen, mg/dL 

30.78 (23.56) 25.45 (19.67) 37.25 (26.13) <0.001 

Maximum red blood cell 

count, x 106/μL 

3.63 (0.70) 3.75 (0.69) 3.50 (0.70) <0.001 

Minimum red blood cell 

count, x 106/μL 

3.33 (0.76) 3.14 (0.76) 3.24 (0.74) <0.001 

Mean red blood cell 

count, x 106/μL 

3.49 (0.70) 3.58 (0.69) 3.37 (0.70) <0.001 

Maximum white blood 

cell count, K/μL 

14.09 (10.87) 13.92 (8.55) 14.30 (13.14) 0.004 

Maximum sodium, 

mmol/L 

139.80 (5.87) 139.80 (5.30) 139.80 (6.49) 0.989 

Minimum sodium, 

mmol/L 

128.57 (27.85) 130.46 (2.43) 126.24 (31.54) <0.001 

Mean sodium, mmol/L 135.93 (9.78) 136.47 (8.50) 135.28 (11.12) <0.001 

Length of ICU stay, days 6.00 (6.20) 5.45 (5.45) 6.67 (6.93) <0.001 

SOFA score 4.86 (3.35) 4.23 (3.08) 5.62 (3.50) <0.001 

APS-III score 46.31 (19.64) 40.74 (17.14) 53.06 (20.35) <0.001 
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Table 2. Performance metrics on the models.  

 AUC Accuracy Sensitivity Specificity Positive Predicative 

Value 

Negative Predicative 

Value 

LR  0.7532 0.6860 0.6004 0.7587 0.6728 0.6950 

SVM  0.7284 0.6779 0.5950 0.7532 0.6614 0.6850 

MLP  0.7573 0.6919 0.6387 0.7350 0.6681 0.7144 

RF 0.7460 0.6894 0.6147 0.7459 0.6684 0.7046 

Bag DT  0.7412 0.6891 0.6318 0.7383 0.6683 0.7099 

Boost DT  0.7619 0.6956 0.6404 0.7420 0.6738 0.7138 

1D CNN  0.7699 0.7030 0.6425 0.7543 0.6894 0.7131 

RNN  0.7583 0.6897 0.6060 0.7560 0.6628 0.7079 

LSTM 0.7590 0.7043 0.6602 0.7395 0.6692 0.7317 
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Figure 1. ROC curve of machine learning models. 
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Figure 2. ROC curves of Deep learning models. 
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Figure 3. SHAP beeswarm plot of 1D CNN. 
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Figure 4. Scatter plots for SHAP values: (a) Age, and (b) APS-III score. 
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Figure 5. Waterfall plots for two individual cases: (a) True positive case, and (b) True negative 

case. 
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Supplemental Table 1. Bivariate association between outcome and predictors. 

Variable odd ratio p-value 95% CI 

Sex    

   Male (1) 0.972 0.224 [0.929, 1.018] 

   Female (0) ref ref ref 

Race    

   African American ref ref ref 

   White 0.745 < 0.001 [0.688, 0.806] 

   Hispanic 0.552 < 0.001 [0.478, 0.639] 

   Other 0.663 < 0.001 [0.578, 0.693] 

Age, years 1.029 < 0.001 [1.027, 1.031] 

Minimum creatinine  1.259 < 0.001 [1.236, 1.282] 

Maximum creatinine 1.201 < 0.001 [1.182, 1.219] 

Maximum heart rate  1.011 < 0.001 [1.010, 1.013] 

Mean heart rate  1.007 < 0.001 [1.006, 1.009] 

Minimum systolic bp  0.983 < 0.001 [0.982, 0.985] 

Mean systolic bp 0.990 < 0.001 [0.989, 0.992] 

Minimum diastolic bp  0.968 < 0.001 [0.966, 0.970] 

Mean diastolic bp  0.980 < 0.001 [0.978, 0.982] 

Minimum SpO2 0.996 0.222 [0.989, 1.003] 

Mean SpO2  0.993 0.263 [0.980, 1.006] 

Minimum hemoglobin 0.894 < 0.001 [0.885, 0.903] 

Minimum prothrombin 1.062 < 0.001 [1.057, 1.066] 

Maximum prothrombin 1.030 < 0.001 [1.027, 1.033] 

Minimum respiratory rate 1.036 < 0.001 [1.031, 1.042] 

Maximum respiratory rate 1.016 < 0.001 [1.013, 1.019] 

Mean respiratory rate 1.062 < 0.001 [1.056, 1.069] 

Maximum glucose 1.001  [1.001, 1.001] 

Minimum platelet count 1.000 0.382 [1.000, 1.000] 

Minimum calcium 0.959 0.003 [0.932, 0.986] 

Minimum bicarbonate 1.009 0.001 [1.004, 1.015] 

Maximum potassium 1.122 < 0.001 [1.089, 1.156] 

Maximum blood urea nitrogen 1.025 < 0.001 [1.023, 1.026] 

Maximum red blood cell count 0.594 < 0.001 [0.574, 0.615] 

Minimum red blood cell count 0.730 < 0.001 [0.708, 0.753] 

Mean red blood cell count 0.640 < 0.001 [0.619, 0.662] 

Maximum white blood cell count 1.003 0.002 [1.001, 1.006] 

Maximum sodium 1.000 0.964 [0.996, 1.004] 

Minimum sodium  0.995 < 0.001 [0.994, 0.995] 

Mean sodium 0.988 < 0.001 [0.985, 0.990] 

Length of ICU stay (days) 1.136 < 0.001 [1.128, 1.144] 

SOFA score 1.037 < 0.001 [1.035, 1.038] 

APS-III score 1.034 < 0.001 [1.030, 1.038] 
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Supplemental Table 2. Multivariable logistic regression of backward selection. 

Variables Adjusted Odds ratio P-value 95% confidence interval 

Sex    

   Male (1) 0.0586 0.028 [0.006, 0.111] 

   Female (0) ref ref ref 

Race    

   African American ref ref ref 

   White -0.3904 < 0.001 [-0.482, -0.299] 

   Hispanic -0.4724 < 0.001 [-0.634, -0.311] 

   Other -0.4935 < 0.001 [-0.597, -0.390] 

Ag, years 1.5370 < 0.001 [1.494, 1.582] 

Minimum creatinine  1.1579 0.006 [1.043, 1.286] 

Maximum creatinine  0.7360 < 0.001 [0.662, 0.818] 

Mean heart rate 1.0414 0.005 [1.012, 1.072] 

Minimum systolic bp  0.8688 < 0.001 [0.836, 0.904] 

Mean systolic bp  1.0605 0.004 [1.019, 1.104] 

Minimum hemoglobin 0.8545 < 0.001 [0.807, 0.905] 

Minimum prothrombin 1.1912 < 0.001 [1.156, 1.227] 

Minimum respiratory rate 1.0771 < 0.001 [1.043, 1.113] 

Maximum respiratory 

rate 

0.9295 < 0.001 [0.898, 0.962] 

Mean respiratory rate 1.0900 < 0.001 [1.046, 1.135] 

Maximum glucose 1.0479 0.001 [1.019, 1.077] 

Minimum calcium 1.0327 0.027 [1.004, 1.063] 

Minimum bicarbonate 1.1297 < 0.001 [1.098, 1.162] 

Maximum blood urea 

nitrogen 

1.2297 < 0.001 [1.184, 1.277] 

Maximum red blood cell 

count 

0.5673 < 0.001 [0.534, 0.601] 

Minimum red blood cell 

count 

1.7058 < 0.001 [1.571, 1.852] 

SOFA Score 1.0711 < 0.001 [1.032, 1.112] 

APS-III Score 1.6294 < 0.001 [1.565, 1.696] 

Length of ICU stay 1.1565 < 0.001 [1.126, 1.188] 
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Supplemental Table 3. Multivariable logistic regression AUC 

Feature selection AUC 

 mean Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10 

Initial selection 0.7503 0.7529 0.7540 0.7489 0.7503 0.7506 0.7502 0.7473 0.7495 0.7513 0.7505 

Backward selection 0.7498 0.7473 0.7525 0.7498 0.7498 0.7503 0.7411 0.7468 0.7469 0.7499 0.7578 
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