An updated molecular diagnostic for surveillance of tetM in Neisseria gonorrhoeae ================================================================================= * Samantha G. Palace * Jordan A. Reyes * Eric Neubauer Vickers * Aishani V. Aatresh * Wei Shen * Zamin Iqbal * Yonatan H. Grad ## Abstract Doxycycline post-exposure prophylaxis (doxy-PEP) for sexually transmitted bacterial infections reduces the risk of syphilis and chlamydia, but effectiveness against gonorrhea is variable, likely attributable to varying resistance rates. As doxy-PEP is incorporated into clinical practice, an urgent unanswered question is whether increased doxycycline use will drive tetracycline-class resistance in *Neisseria gonorrhoeae*. Here, we report an updated RT-PCR molecular diagnostic to detect the *tetM* gene that confers high-level tetracycline resistance in *N. gonorrhoeae*. ## Text Doxycycline post-exposure prophylaxis (doxy-PEP) for sexually transmitted bacterial infections reduces the risk of syphilis and chlamydia, while effectiveness against gonorrhea is variable (1-3), likely attributable to varying resistance rates. High-level resistance to tetracycline in *Neisseria gonorrhoeae*, the agent of gonorrhea, is estimated at 10% prevalence in the United States (4) and up to 70-100% in some populations (5-7). As doxy-PEP is incorporated into clinical practice, an urgent unanswered question is whether increased doxycycline use will drive tetracycline-class resistance in *N. gonorrhoeae*. However, current culture-based surveillance of *N. gonorrhoeae* antimicrobial susceptibility may not be sufficient to quickly detect changes in the prevalence of tetracycline resistance because surveillance programs collect and test a modest number of isolates (e.g. (8)). By contrast, molecular diagnostics for tetracycline resistance would enable the use of remnants from nucleic acid amplification tests (NAATs), the most widely used diagnostic, and can confidently detect changes in population-level resistance more quickly. An accurate molecular diagnostic for high-level tetracycline resistance thus has public health value (9). High-level tetracycline resistance in *N. gonorrhoeae* is conferred by TetM, a plasmid-encoded ribosomal protection protein. Although primers for PCR-based detection of the *tetM* gene have been reported (10, 11), the existing reverse primer, originally designed from the *Ureaplasma urealyticum tetM* sequence, has poor predicted sensitivity for *N. gonorrhoeae tetM* sequences: only 992 of 2223 *N. gonorrhoeae tetM* sequences deposited in PubMLST (Supplemental File S1) (12) contain an exact match for this primer. We designed a new reverse primer (Supplemental Materials, Table S1) that recognizes all 2223 *N. gonorrhoeae tetM* sequences tested, and that, when used in combination with the reported forward primer from Ison *et al*., is predicted to successfully amplify 2221 of 2223 *N. gonorrhoeae tetM* sequences (or all 2223 sequences if tolerating a single nucleotide mismatch). To test this primer set, we assembled a panel of 13 diverse clinical isolates comprising 6 *tetM*+ and 7 *tetM*-strains (Supplemental Materials, Figure S1, Table S2). Genomic DNA was extracted, and *tetM* primers were tested for specific and sensitive amplification against this panel (Supplemental Materials, Methods), using *porA* as a reference amplicon (13). As expected, *tetM* amplification segregates clearly with the presence or absence of *tetM* in all strains (Figure 1A). Accurate discrimination was maintained over a range of template concentrations (Figure 1B) to a limit of approximately 28 copies of the gonococcal genome per reaction, at which point the reaction approaches its sensitivity limit (Supplemental Materials, Figure S2). ![Figure 1.](http://medrxiv.org/http://medrxiv.stage.highwire.org/content/medrxiv/early/2024/08/28/2024.08.26.24312240/F1.medium.gif) [Figure 1.](http://medrxiv.org/content/early/2024/08/28/2024.08.26.24312240/F1) Figure 1. RT-PCR-based detection of *tetM* in a diverse strain panel. Mean cycle threshold (Ct) of *tetM* amplification, baseline corrected by *porA* amplification, for **(A)** 2.5 ng genomic DNA purified from strains with *tetM* (n=6, left) and without *tetM* (n=7, right); and **(B)** over a variety of template concentrations for one representative strain each with *tetM* and without *tetM*. Amplification was monitored via SYBRGreen fluorescence on a QuantStudio™ 7 Flex Real-Time PCR system (see Supplemental Methods). Shown: mean ΔCt from three technical replicates per reaction; data representative of at least two independent experiments. The sensitivity and specificity of this test for clinical samples, and importantly for GC-positive NAAT remnants, requires further characterization. Because *tetM* in *N. gonorrhoeae* originated from a streptococcal transposon (14), highly similar *tetM* sequences are found in other organisms, creating a risk of false positive *tetM* detection. Comparing *tetM* positivity rates in GC-positive and GC-negative NAAT specimens will be an important step in characterizing the expected false positive rate. The use of *porA* primers for normalization may also mitigate this issue. Although the data here were generated using dye-based (SYBR Green) RT-PCR detection, probe-based detection may also improve specificity. ## Supporting information Supplemental File S1 [[supplements/312240_file04.txt]](pending:yes) Supplemental materials [[supplements/312240_file05.docx]](pending:yes) ## Data Availability All data produced in the present work are contained in the manuscript ## Ethics statement Clinical isolates were obtained from the CDC and FDA Antimicrobial Resistance Isolate Bank, NCIP panel (15) and from previously published studies (16, 17). The original collection of these isolates was deemed not human subjects research by the Center for Disease Control and Prevention’s Office of the Associate Director for Science for the Gonococcal Isolate Surveillance Program (GISP/eGISP) (16, 18) or by the institutional review boards at the University of California San Diego, University of Washington, and Harvard T.H. Chan School of Public Health (17). ## Funding This study was supported by R01AI132606 (to Y. H. G.), R01AI153521 (to Y. H. G.), contract 200-2016-91779 with the Centers for Disease Control and Prevention, and by the Pathogen Genomics Centers of Excellence Network. Wei Shen is supported by grants from the National Natural Science Foundation of China (32000474, 82341112), Chinese Scholarship Council scholarship (202308500105), and EMBL Visitor/Sabbatical Programme fellowship. * Received August 26, 2024. * Revision received August 26, 2024. * Accepted August 28, 2024. * © 2024, Posted by Cold Spring Harbor Laboratory This pre-print is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), CC BY-NC 4.0, as described at [http://creativecommons.org/licenses/by-nc/4.0/](http://creativecommons.org/licenses/by-nc/4.0/) ## References 1. 1.Molina JM, Charreau I, Chidiac C, Pialoux G, Cua E, Delaugerre C, Capitant C, Rojas-Castro D, Fonsart J, Bercot B, Bebear C, Cotte L, Robineau O, Raffi F, Charbonneau P, Aslan A, Chas J, Niedbalski L, Spire B, Sagaon-Teyssier L, Carette D, Mestre SL, Dore V, Meyer L, Group AIS. 2018. Post-exposure prophylaxis with doxycycline to prevent sexually transmitted infections in men who have sex with men: an open-label randomised substudy of the ANRS IPERGAY trial. Lancet Infect Dis 18:308–317. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S1473-3099(17)30725-9&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F08%2F28%2F2024.08.26.24312240.atom) 2. 2.Luetkemeyer AF, Donnell D, Dombrowski JC, Cohen S, Grabow C, Brown CE, Malinski C, Perkins R, Nasser M, Lopez C, Vittinghoff E, Buchbinder SP, Scott H, Charlebois ED, Havlir DV, Soge OO, Celum C, Doxy Pepst. 2023. Postexposure Doxycycline to Prevent Bacterial Sexually Transmitted Infections. N Engl J Med 388:1296–1306. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1056/NEJMoa2211934&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=37018493&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F08%2F28%2F2024.08.26.24312240.atom) 3. 3.Molina JM, Bercot B, Assoumou L, Rubenstein E, Algarte-Genin M, Pialoux G, Katlama C, Surgers L, Bebear C, Dupin N, Ouattara M, Slama L, Pavie J, Duvivier C, Loze B, Goldwirt L, Gibowski S, Ollivier M, Ghosn J, Costagliola D, Group ADS. 2024. Doxycycline prophylaxis and meningococcal group B vaccine to prevent bacterial sexually transmitted infections in France (ANRS 174 DOXYVAC): a multicentre, open-label, randomised trial with a 2 × 2 factorial design. Lancet Infect Dis doi:10.1016/S1473-3099(24)00236-6. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S1473-3099(24)00236-6&link_type=DOI) 4. 4.Reimche JL, Chivukula VL, Schmerer MW, Joseph SJ, Pham CD, Schlanger K, St Cyr SB, Weinstock HS, Raphael BH, Kersh EN, Gernert KM, Antimicrobial-Resistant Neisseria gonorrhoeae Working G. 2021. Genomic Analysis of the Predominant Strains and Antimicrobial Resistance Determinants Within 1479 Neisseria gonorrhoeae Isolates From the US Gonococcal Isolate Surveillance Project in 2018. Sex Transm Dis 48:S78–S87. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1097/olq.0000000000001471&link_type=DOI) 5. 5.Fayemiwo SA, Muller EE, Gumede L, Lewis DA. 2011. Plasmid-mediated penicillin and tetracycline resistance among Neisseria gonorrhoeae isolates in South Africa: prevalence, detection and typing using a novel molecular assay. Sex Transm Dis 38:329–33. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1097/OLQ.0b013e3181fc695a&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=21042234&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F08%2F28%2F2024.08.26.24312240.atom) 6. 6.Maduna LD, Kock MM, van der Veer B, Radebe O, McIntyre J, van Alphen LB, Peters RPH. 2020. Antimicrobial Resistance of Neisseria gonorrhoeae Isolates from High-Risk Men in Johannesburg, South Africa. Antimicrob Agents Chemother 64. 7. 7.Soge OO, Issema R, Bukusi E, Baeten JM, Mujugira A, Celum C, McClelland RS, Stewart J, Partners Pr EPST. 2023. Predominance of High-Level Tetracycline-Resistant Neisseria gonorrhoeae in Kenya: Implications for Global Implementation of Doxycycline Postexposure Prophylaxis for Prevention of Sexually Transmitted Infections. Sex Transm Dis 50:317–319. 8. 8.Centers for Disease Control and Prevention. 2024. Gonococcal Isolate Surveillance Project (GISP) Profiles, 2022. [https://www.cdc.gov/std/statistics/gisp-profiles/default.htm](https://www.cdc.gov/std/statistics/gisp-profiles/default.htm). Accessed 12 August 2024. 9. 9.Roster KIO, Mittelstaedt R, Reyes J, Aatresh AV, Grad YH. 2024. Modelling molecular and culture-based surveillance of tetracycline resistance in Neisseria gonorrhoeae. Lancet Infect Dis 24:806–808. 10. 10.Ison CA, Tekki N, Gill MJ. 1993. Detection of the tetM determinant in Neisseria gonorrhoeae. Sex Transm Dis 20:329–33. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1097/00007435-199320060-00005&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=8108755&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F08%2F28%2F2024.08.26.24312240.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=A1993MH99800005&link_type=ISI) 11. 11.Starnino S, Neri A, Stefanelli P, Neisseria gonorrhoeae Italian study g. 2008. Molecular analysis of tetracycline-resistant gonococci: rapid detection of resistant genotypes using a real-time PCR assay. FEMS Microbiol Lett 286:16–23. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1111/j.1574-6968.2008.01244.x&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=18565123&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F08%2F28%2F2024.08.26.24312240.atom) 12. 12.Jolley KA, Bray JE, Maiden MCJ. 2018. Open-access bacterial population genomics: BIGSdb software, the [PubMLST.org](http://PubMLST.org) website and their applications. Wellcome Open Res 3:124. 13. 13.Hjelmevoll SO, Olsen ME, Sollid JU, Haaheim H, Unemo M, Skogen V. 2006. A fast real-time polymerase chain reaction method for sensitive and specific detection of the Neisseria gonorrhoeae porA pseudogene. J Mol Diagn 8:574–81. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.2353/jmoldx.2006.060024&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=17065426&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F08%2F28%2F2024.08.26.24312240.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000241811800009&link_type=ISI) 14. 14.Morse SA, Johnson SR, Biddle JW, Roberts MC. 1986. High-level tetracycline resistance in Neisseria gonorrhoeae is result of acquisition of streptococcal tetM determinant. Antimicrob Agents Chemother 30:664–70. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiYWFjIjtzOjU6InJlc2lkIjtzOjg6IjMwLzUvNjY0IjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjQvMDgvMjgvMjAyNC4wOC4yNi4yNDMxMjI0MC5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 15. 15.Liu H, Tang K, Pham CD, Schmerer M, Kersh EN, Raphael BH. 2022. Characterization of a Neisseria gonorrhoeae Ciprofloxacin panel for an antimicrobial resistant Isolate Bank. PLoS One 17:e0264149. 16. 16.Grad YH, Kirkcaldy RD, Trees D, Dordel J, Harris SR, Goldstein E, Weinstock H, Parkhill J, Hanage WP, Bentley S, Lipsitch M. 2014. Genomic epidemiology of Neisseria gonorrhoeae with reduced susceptibility to cefixime in the USA: a retrospective observational study. Lancet Infect Dis 14:220–6. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S1473-3099(13)70693-5&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=24462211&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F08%2F28%2F2024.08.26.24312240.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000332821100027&link_type=ISI) 17. 17.Bristow CC, Mortimer TD, Morris S, Grad YH, Soge OO, Wakatake E, Pascual R, Murphy SM, Fryling KE, Adamson PC, Dillon JA, Parmar NR, Le HHL, Van Le H, Ovalles Urena RM, Mitchev N, Mlisana K, Wi T, Dickson SP, Klausner JD. 2023. Whole-Genome Sequencing to Predict Antimicrobial Susceptibility Profiles in Neisseria gonorrhoeae. J Infect Dis 227:917–925. 18. 18.St. Cyr S, Kreisel K, Pham C. 2022. Gonococcal Isolate Surveillance Project (GISP) and Enhanced GISP (eGISP) protocol. Centers for Disease Control and Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention (U.S.), Division of STD Prevention, Surveillance & Data Management Branch and Laboratory Reference & Research Branch, [https://stacks.cdc.gov/view/cdc/125949](https://stacks.cdc.gov/view/cdc/125949).