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Abstract 

Lower respiratory tract infections (LRTIs) are a leading cause of mortality worldwide. Despite 

this, diagnosing LRTI remains challenging, particularly in the intensive care unit, where non-

infectious respiratory conditions can present with similar features. Here, we tested a new 

method for LRTI diagnosis that combines the transcriptomic biomarker FABP4 with assessment 

of text from the electronic medical record (EMR) using the large language model Generative 

Pre-trained Transformer 4 (GPT-4). We evaluated this methodology in a prospective cohort of 

critically ill adults with acute respiratory failure, in which we measured pulmonary FABP4 

expression and identified patients with LRTI or non-infectious conditions using retrospective 

adjudication. A diagnostic classifier combining FABP4 and GPT-4 achieved an area under the 

receiver operator curve (AUC) of 0.92 ± 0.06 by five-fold cross validation (CV), outperforming 

classifiers based on FABP4 expression alone (AUC 0.83) or GPT-4 alone (AUC 0.84). At the 

Youden’s index within each CV fold, the combined classifier achieved a mean sensitivity of 92% 

± 7%, specificity of 90% ± 17% and accuracy of 91% +/- 8%. Taken together, our findings 

suggest that combining a host transcriptional biomarker with interpretation of EMR data using 

artificial intelligence is a promising new approach to infectious disease diagnosis. 
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Brief Communication 

Lower respiratory tract infections (LRTIs) are a leading cause of death worldwide, yet 

remain challenging to diagnose1. This is especially true in the intensive care unit (ICU), where 

non-infectious acute respiratory illnesses can have similar clinical manifestations. Further 

complicating accurate diagnosis is the inability to identify a causative pathogen in most clinically 

recognized cases of LRTI2. The resulting diagnostic uncertainty drives the overuse of empiric 

antibiotics, leading to adverse outcomes ranging from Clostridioides difficile infection to the 

development of antimicrobial-resistance3,4. 

Host transcriptomic biomarkers have emerged as a promising approach to LRTI 

diagnosis that can overcome several limitations of traditional microbiologic tests5,6. While best 

studied in the peripheral blood of patients with mild to moderate infection5, recent work 

demonstrates that lower airway transcriptomic signatures can also enable accurate LRTI 

diagnosis in critically ill patients6,7. Pulmonary FABP4, for instance, was recently identified as a 

LRTI diagnostic biomarker in critically ill patients with acute respiratory failure, achieving an area 

under the receiver operating characteristic curve (AUC) of 0.90 ± 0.07 in children, and 0.85 ± 

0.12 in adults7. FABP4, which encodes a lipid chaperone that modulates inflammatory signaling, 

is expressed in an alveolar macrophage subpopulation specifically depleted during LRTI8-10. 

Although FABP4 exhibits respectable diagnostic performance, we recognized that improving it 

could boost the biomarker’s practical clinical utility. 

Large language model (LLM)-based artificial intelligence (AI) chatbots such as 

Generative Pre-trained Transformer 4 (GPT-4)11 have shown promise in diversity of medical 

applications. These include image interpretation12, patient risk stratification13, and assisting with 

clinical reasoning14,15. Whether the performance of an infectious disease diagnostic biomarker 

could be augmented by an AI chatbot, however, had not been previously explored.  

Here, we investigated whether GPT-4 could improve the LRTI diagnostic performance of 

FABP4 in critically ill adults with acute respiratory failure. We hypothesized that incorporating AI 
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interpretation of electronic medical record (EMR) text data available to clinicians at the time of 

ICU admission, using a Health Insurance Portability and Accountability Act (HIPAA)-compliant 

GPT-4 platform, could boost the accuracy of FABP4 for diagnosing LRTI. 

 

Figure 1. Flow diagram and study overview. Abbreviations: LRTI = lower respiratory tract 
infection; RNA-seq = RNA sequencing; CXR = chest X ray, FABP4 = gene encoding fatty acid 
binding protein 4; CDC = U.S. Centers for Disease Control and Prevention; GPT-4 = 
Generative Pre-trained Transformer 4. 

 

We studied a recently described cohort of 202 adults with acute respiratory failure16 who 

had FABP4 measured by endotracheal aspirate RNA sequencing within 72 hours of intubation 

(Fig. 1, Supp. Table 1). We evaluated the performance of four different diagnostic approaches 

(FABP4 classifier, GPT-4 classifier, integrated FABP4/GPT-4 classifier, and admission diagnosis 
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by the ICU care team) against a gold-standard of retrospective LRTI adjudication performed by 

≥2 physicians with access to all EMR data, based on the U.S. Centers for Disease Control and 

Prevention (CDC) PNEU1 definition17. This adjudication process identified 44 patients with LRTI 

and 56 with no evidence of infection and a clear alternative explanation for respiratory failure 

(No LRTI group). Patients with indeterminate LRTI status were not further evaluated (Fig. 1). 

We provided GPT-4 with practical clinical summary information from the EMR that would 

be available to a treating physician on the day of ICU admission: a chest X-ray (CXR) radiology 

report and a note written by the medical team from the day prior (Fig. 1). Notes and radiology 

reports from five patients were utilized for GPT-4 prompt engineering and optimization 

(Methods). Seven patients did not have a clinical note from the day prior to study enrollment 

(within 72 hours of ICU admission), leaving a total of 39 LRTI and 49 No-LRTI cases available 

for analysis.  

We first compared the accuracy of the medical team’s ICU admission diagnosis against 

the gold-standard retrospective LRTI adjudication described above. We considered antibiotic 

administration within one day of study enrollment as a proxy for LRTI diagnosis by the medical 

team, excluding antibiotics given for established non-pulmonary infections or for prophylaxis. 

The medical team correctly identified 38/39 LRTI cases but unnecessarily administered 

antibiotics for suspected LRTI in 26/49 No LRTI cases, equating to a sensitivity of 97%, 

specificity of 53%, and accuracy of 73% (Fig. 2a, Supp. Table 1). 

We next assessed the diagnostic performance of FAPB4 expression alone, and found 

that it achieved an AUC of 0.83 ± 0.04 by five-fold cross validation (Fig. 2b). Considering an 

out-of-fold probability of 50% as LRTI-positive, FABP4 had a sensitivity of 79%, specificity of 

78%, and accuracy of 78% (Fig. 2b). We then assessed the performance of GPT-4 alone to 

diagnose LRTI, repeating in triplicate.  Considering ≥1 chatbot diagnosis as positive for LRTI, 

we found that GPT-4 yielded a sensitivity of 82%, specificity of 73%, and accuracy of 77% (Fig. 

2a), and achieved an AUC of 0.84 (Fig. 2b). 
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We then combined FAPB4 and GPT-4 in a logistic regression model, and found that this 

integrated classifier achieved an AUC of 0.92 ± 0.06 (Fig. 2b), outperforming both FABP4 (P = 

0.02, one-sided paired t-test) and GPT-4 alone (P = 0.02, one-sided one-sample t-test). 

Considering an out-of-fold probability of 50% as LRTI-positive, the integrated FABP4/GPT-4 

classifier reached a sensitivity of 85%, specificity of 88%, and accuracy of 86% (Fig. 2a). 

Assessment of the integrated classifier’s performance at the Youden’s index within each CV fold

demonstrated a mean sensitivity of 92% ± 7%, specificity of 90% ± 17% and accuracy of 91% 

+/- 8%. We noted that the FABP4, GPT-4, and integrated FABP4/GPT-4 classifiers all correctly 

identified LRTI in the single patient whose LRTI diagnosis was missed by the clinical team, and 

who ultimately did not survive to hospital discharge (Fig. 2a). 

 
Figure 2. Comparison of LRTI diagnostics from initial ICU diagnosis, FABP4-based host
classifier, GPT4, and FABP4/GPT-4 classifier. a, Heatmaps showing the confusion matrices for
initial ICU diagnosis, FABP4 classifier, GPT-4 classifier, and FABP4/GPT-4 integrated classifier. For
the FABP4 and FAPB4/GPT-4 classifiers, patients with predicted LRTI probability of 50% or higher
are classified as LRTI. b, Receiver operating characteristic curves from GPT-4 classifier, FABP4
classifier, and FABP4/GPT-4 integrated classifier. The area under the curves (AUCs) are presented
as mean ± standard deviation. 
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To gain insight into how GPT-4 makes diagnostic estimations based on limited 

information, we compared the chatbot against the decision making of three comparison 

physicians provided identical input. From the same limited EMR data and prompt provided to 

GPT-4, we asked the comparison physicians to assign a diagnosis of LRTI or no evidence of 

LRTI for each patient. Considering a threshold of at least one LRTI diagnosis per patient across 

the three physicians as LRTI-positive, we found a sensitivity of 79%, specificity of 88%, and 

accuracy of 84% (Supp. Fig. 1a). Finally, we sought to identify potential biases in GPT-4 logic 

by comparing chatbot results to those of the comparison physicians (Supp. Fig. 1b), focusing 

on cases with two or more discordant LRTI diagnoses. Of the nine patients more frequently 

diagnosed with LRTI by GPT-4 versus the comparison physicians (Supp. Fig 1b), six had 

clinical notes with no mention of LRTI, but explicit concern for LRTI in the CXR report. This 

suggested that GPT-4 may have placed more weight on CXR reads relative to physicians. Of 

the two patients disproportionately diagnosed with LRTI by comparison physicians versus GPT-

4 (Supp. Fig. 1b), one had a final diagnosis of e-cigarette/vaping associated lung injury (GPT-4 

correct) and the other had LRTI attributed to rhinovirus. 

Taken together, our findings demonstrate that the combination of a host transcriptomic 

biomarker with AI assessment of EMR text data can improve LRTI diagnosis in critically ill 

patients. We found that an integrated FABP4/GPT-4 classifier achieved higher LRTI diagnostic 

accuracy than FABP4 alone, GPT-4 alone, or the treating medical team. Previous studies have 

found that GPT-4 is influenced by the precise language used in a prompt, leading to a need for 

prompt engineering15. By iterating our prompt on a subset of patients, and through direct 

comparison to physicians provided identical EMR data, we identified possible blind spots of 

GPT-4 and gained insights that may help guide future optimization of LLMs for infectious 

disease diagnosis.  

In this critically ill cohort, we found that the initial treating physicians unnecessarily 

prescribed antibiotics in almost half of patients ultimately found to have non-infectious causes of 
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acute respiratory failure. Had our integrated classifier results been theoretically available at time 

of ICU admission, we estimate that inappropriate antibiotic use could have been prevented in 

21/23 (91.3%) of No LRTI patients who were unnecessarily treated. Acute respiratory illness is a 

leading reason for inappropriate antibiotic use18, and our results suggest a potential role for 

biomarker/AI classifiers in antimicrobial stewardship, a major goal of the U.S. CDC19 and the 

World Health Organization20.  

A primary strength of this study is the novel combination of a host transcriptional 

biomarker with AI interpretation of EMR text data to advance infectious disease diagnosis. We 

address one of the most common and challenging diagnostic dilemmas in the ICU, leverage a 

deeply characterized cohort, and employ a rigorous post-hoc LRTI adjudication approach 

incorporating multiple physicians. Importantly, clinicians with access to a HIPAA-compliant GPT-

4 interface can readily use our prompt without any prior bioinformatics expertise. Weaknesses 

of this study include a relatively small sample size, restriction to mechanically ventilated patients, 

and the need for an independent validation cohort. Future work can test whether GPT-4 can 

improve the marginal performance of widely available clinical biomarkers such as C-reactive 

protein, assess FABP4/GPT-4 classifier performance in a larger independent cohort, and 

evaluate these methods for the diagnosis of other infectious disease syndromes.  
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Methods 

Patient cohort and adjudication of LRTI  

We evaluated patients from a prospective observational cohort study of critically ill adults 

with acute respiratory failure. Patients were enrolled within 72 hours of intubation under 

University of California Institutional Review Board protocol #10-0270116. Adjudication of LRTI 

status was performed retrospectively following ICU discharge by ≥2 physicians using all 

available information in the EMR, and based on the CDC PNEU117 criteria including positive 

microbiologic testing. Patients with a clear alternative reason for their acute respiratory failure 

besides pulmonary infection were also identified (No LRTI group). Any adjudication 

discrepancies were resolved by a third physician, and patients with indeterminate LRTI status 

were excluded. 

 

Extrapolation of clinical team initial LRTI diagnosis  

Diagnosis of LRTI by the clinical treatment team at the time of study enrollment (within 

72 hours of intubation) was extrapolated based on receipt of antibiotics for empiric treatment of 

respiratory infection within 1 day of enrollment. Antibiotics administered exclusively for purposes 

other than empiric LRTI treatment were excluded, including post-operative or peri-operative 

prophylaxis (n = 8), post-transplant opportunistic infection prophylaxis (n = 4), continued home 

suppressive therapy (n = 1), antibiotics for a local oropharyngeal infection (n = 2), and treatment 

of a culture-confirmed non-pulmonary infection (n = 7).  

 

Chart data extraction  

For GPT-4 and GPT-4 comparison physician analysis, we extracted from the EMR one 

clinical note from one day prior to study enrollment and one CXR radiology read from the day of 

enrollment. Seven patients enrolled on the same day of hospital admission were excluded 

because no note from the day prior was available (Fig. 1). In eight cases, no primary medical 
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team note was available; therefore a note from consulting intensivists was substituted. In three 

patients, no note was written on the day prior to enrollment, so a note from two days prior was 

used instead. In 24 cases, no CXR was performed on the day of enrollment and so the next 

closest CXR read prior to the date of enrollment was used instead (Supp. Table 1).  

 

FABP4 classifier 

Host gene counts were obtained from tracheal aspirate RNA-sequencing data using 

Kallisto as previously described7. The gene counts were then analyzed in R v4.3.2. FABP4 

expression was normalized using the varianceStabilizingTransformation function from DESeq2 

package (v1.42.1)21, and used to train a logistic regression classifier. The performance of the 

FABP4 classifier was tested using 5-fold cross-validation. For each test fold, the remaining four 

training folds were filtered to retain only genes with at least 10 counts across 20% of the 

samples. Each test fold’s data was then filtered to retain only these genes from the filtered 

training folds. The test fold’s FABP4 expression level was normalized using 

varianceStabilizingTransformation and the dispersions of the training folds, and input to the 

trained logistic regression classifier to assign LRTI or No LRTI status for each patient in the test 

fold. The performance and receiver-operating characteristic ROC curve for each of the five folds 

was evaluated using the package pROC v1.18.522. The mean AUC and standard deviation were 

calculated from the average AUC derived from each test fold. The sensitivity and specificity at 

the Youden’s index were extracted for each test fold separately using the function coords from 

the pROC package, and the average and standard deviation were calculated across the 5 

cross-validation folds. 

 

GPT-4 input, scoring, and prompt engineering  

We used the GPT-4 turbo model with 128k context length and a temperature setting of 

0.2, implemented in Versa, a University of California San Francisco (UCSF) chatbot interface 
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developed through a partnership with partnership with Azure OpenAI, which is Health Insurance 

Portability and Accountability Act-compliant. For each patient, compiled clinical notes and CXR 

reads were input into the GPT-4 chatbot interface. Using the same prompt (Supp. Data 1), 

GPT-4 was asked to diagnose LRTI three times for each patient, each time restarting the LLM 

(i.e. no iterative learning was performed). A per-patient GPT-4 score was calculated based on 

the total number LRTI-positive diagnoses made by GPT-4. 

Prior to testing GPT-4 performance, we carried out prompt engineering. This involved 

iteratively testing various versions of diagnostic prompts on clinical notes and CXR reads from 

five randomly selected patients, who were excluded from further analyses. We employed a 

chain-of-thought prompt strategy23 that simply involved asking GPT-4 to analyze the note and 

CXR step-by-step. The prompt engineering and optimization exercise allowed us to realize the 

need to ask GPT-4 to ignore antibiotic treatment plans in the clinical note to avoid making LRTI 

diagnoses simply based on documented antibiotic administration. We initially trialed asking 

GPT-4 to answer in terms of probability that a patient had LRTI. However, we found that GPT-4 

frequently answered either 40% or 60% LRTI probability. We then tried asking GPT-4 to choose 

one of three adjudications: LRTI, no LRTI, or indeterminate LRTI status, and found that GPT-4 

favored “indeterminate” in most patient cases. As a result, in our final version of the prompt 

(Supp. Data 1), we asked GPT-4 to choose either LRTI or no LRTI. A deidentified example of 

GPT-4 LRTI diagnosis output is provided in Supp. Data 2. 

 

FABP4/GPT-4 integrated classifier  

The integrated classifier’s performance was tested using 5-fold cross-validation. FABP4 

expression level was normalized as above. For each test fold, a logistic regression classifier 

was trained on the remaining four folds using both the normalized FABP4 level and the GPT-4 

score. The performance and ROC curve for each fold was evaluated using the package pROC22 

v1.18.5. The mean ROC curve (Fig. 2b) was calculated from the average of ROC curves, one 
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from each test fold. The sensitivity and specificity at the Youden’s index were extracted for each 

test fold separately using the function coords from the pROC package, and the average and 

standard deviation were calculated across the 5 cross-validation folds. 

 

GPT-4 comparison physician control group 

We compared LRTI diagnosis by GPT-4 against LRTI diagnosis made by three 

physicians trained in internal medicine (ADK) or additionally subspecializing in infectious 

diseases (AC, NLR). The physicians were provided identical information and prompt as GPT-4, 

and they were asked to assign each patient as either LRTI or No LRTI. The comparison 

physician group score (0 to 3) was calculated based on the total number of LRTI-positive 

diagnoses made by the comparison physicians. 

 

Data availability 

The gene count data are available at https://github.com/infectiousdisease-langelier-

lab/LRTI_FABP4_classifier. Source data are provided in the source data file. 

 

Code availability 

The code is available at https://github.com/infectiousdisease-langelier-

lab/LRTI_FABP4_GPT4_classifier. 
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Supplementary Materials 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Supplementary Table 1. Demographic features of cohort, initial ICU diagnoses, and 
data collection by LRTI status.  P values are comparing LRTI to No LRTI patients with chi 
square tests for categorical variables and Wilcoxon rank-sum test for continuous variables 
(age). IQR = interquartile range. *One patient was adjudicated as having both neurologic 
and non-LRTI infection as indications for intubation and is included in both fields.  
 

  

 LRTI No LRTI P value  
N 39 49  
Age, years (Median, IQR) 65.0 (51.5 – 74.5) 62.0 (53.0-73.0) 0.12 
Female Sex  12 (30.8%) 30 (61.2%) 0.0086 
Race   0.76 

White 20 (51.3%) 24 (49.0%) - 
Black/African American 4 (10.3%) 5 (10.2%) - 
Asian 8 (20.5%) 9 (18.4%)  - 
Native Hawaiian/Pacific Islander 1 (2.6%) 0 (0.0%) - 
Other/Unknown 6 (15.4%) 11 (22.4%) - 

Hispanic ethnicity 5 (12.8%)  11 (22.4%) 0.38 
Comorbidities  38 (97.4%) 45 (91.8%)   0.51 
Immunosuppressed 9 (23.1%) 6 (12.2%) 0.29 
Non-LRTI causes of intubation    - 

Surgery   14 (28.6%) - 
Neurologic*  12 (24.5%) - 
Cardiovascular   8 (16.3%) - 
Non-LRTI infection*  5 (10.2%) - 
Other   11 (22.4%) - 

Initial ICU diagnosis   <0.0001 
LRTI  38 (97.4%) 26 (51.1%) - 
No LRTI  1 (2.6%) 23 (46.9%) - 

Clinical service writing note   0.18 
Medicine  16 (41.0%) 9 (18.4%) - 
Critical Care  5 (12.8%) 7 (14.3%) - 
Neurosurgery  3 (7.7%) 9 (18.4%) - 
Cardiology  3 (7.7%) 6 (12.2%)  - 
Liver Transplant  1 (2.6%) 4 (8.2%) - 
Neurology  1 (2.6%) 4 (8.2%) - 
Other  10 (25.6%) 10 (20.4%) - 

Time from note to enrollment   0.05 
1 day  36 (92.3%) 49 (100.0%) - 
2 days  3 (7.7%) 0 (0.0%) - 

Time from CXR to enrollment    0.21 
0 days  31 (79.5%) 33 (67.3%) - 
1 day 8 (20.5%) 13 (26.5%) - 
2 days  0 (0.0%) 3 (6.1%) - 
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Supplementary Figure 1. Comparison of GPT-4 performance to physicians provided the same
EMR data. a, Heatmap confusion matrix of diagnosis by three GPT-4 comparison physicians who
received the same prompt and data as GPT-4. b, Comparison of GPT-4 LRTI scores as compared to
physicians. In b, X-axis depicts the number of times GPT-4 diagnosed LRTI out of 3, Y-axis shows
the number of times the physicians called LRTI out of 3. Blue boxes indicate instances in which
GPT-4 diagnoses were most discordant with comparison physicians (difference in scores of  ≥2). 
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