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ABSTRACT 

Central nervous system diseases are a prevailing cause of morbidity and mortality worldwide, and are 

influenced by environmental and biological factors including genetic risk. Here we generated genome-wide 

genetic data on a large cohort of brain tissue donors with in-depth clinical and neuropathological 

phenotyping, allowing for broad investigations into the risk and mechanisms of these neurological, 

neurodevelopmental, and psychiatric conditions. This resource consists of 9,663 donors with array-based 

genotyping and 9,543 donors with whole-genome sequencing completed. The clinical diagnoses of these 

donors include 148 central nervous system diseases clustered in 15 broad categories by ICD-10 coding. 

These donors were collected by six repositories comprising the NIH NeuroBioBank, with an average 

participant age of 60 years. While primarily older individuals of European descent, the cohort also contains 

younger donors and individuals from non-European backgrounds. Variants detected by Whole-Genome 

Sequencing (WGS) were called genome-wide and annotated to describe their functional impact, resulting 

in 171,121,209 unique mutations and 1,078,774 non-silent mutations. This whole-genome resource has 

been made available in the NIMH Data Archive (nda.nih.gov) and accompanying deep demographic and 

phenotypic descriptions are available at the NeuroBioBank Portal (neurobiobank.nih.gov). To illustrate an 

application of this resource, we replicated the strong association observed in previous studies between 

pathogenic CAG repeat expansions in the HTT gene with the clinical diagnosis of Huntington’s disease.  

 

INTRODUCTION 

Biorepositories are a vital resource for cross-sectional and longitudinal studies of diseases (1). The 

National Institutes of Health NeuroBioBank (NIH NBB) is a broad effort to collect central nervous system 

tissue from a diverse spectrum of neurological and psychiatric diseases, to carefully process, characterize 

and store these biospecimens, and to distribute samples for use in biomedical research studies across the 

world (2). The NBB operates a federated model involving six biobank locations to maximize geographic 

coverage and sample quantity while preserving sample quality through common protocols and procedures 

(3). Together, these locations collect tissue samples and clinical data that contribute to a central collection 

for use in scientific research. 

Central nervous system illnesses affect a large number of individuals worldwide and are 

intrinsically linked to many environmental and biological factors (4, 5). Association studies utilizing 

genotype, exome- and whole-genome sequencing datasets have explored the genetics of specific diseases 

and identified many common and few rare genetic variants that contribute to their development (6). 

Advancing our collective knowledge of neurological and psychiatric diseases will require large sample 

sizes, diverse populations of individuals, and deep phenotyping of disease among patients to identify 

variation which may contribute to their development (7-9). By embarking on a deep cataloging of rare 
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variation using whole-genome sequence paired with bio-banked tissue, we can extend the characterization 

of each of these central nervous system diseases (10) 

Cohorts with large sample sizes power hypothesis-driven investigations, and it is the mission of 

tissue repositories to curate these large collections of post-mortem central nervous system tissue (11). As 

tissue requests are increasing to conduct large-scale -omic analyses of brain tissue, it has become desirable 

to pro-actively annotate these brain samples with genome-wide genotyping or sequencing data as a resource 

for the scientific community (12). Initiatives such as this study provide an efficient means for providing 

germline genomic variation to a wide variety of researchers, as the genomic variation needs only to be 

assessed one time and then be made available with the tissue specimen. Here, we conduct genome-wide 

genotyping and sequencing of samples within the NBB cohort, collected prior to the end of 2021, to add 

genetic annotation to the extensive neuropathologic and clinical annotation available on these brain tissue 

donors, thus increasing the utility of this resource to the scientific community. This manuscript describes 

the selection of samples, generation of called genotypes from whole-genome sequencing, integration of 

genomic and phenotypic annotation, and illustrates utility through analysis of an exemplar monogenic 

disease with a known genetic basis, Huntington’s disease.  

 

METHODS 

 

Subjects, phenotypes, brain tissue sampling and DNA extraction 

The six NIH NeuroBioBank sites include the University of Miami Brain Endowment Bank, the 

Harvard Brain Tissue Resource Center, The Human Brain and Spinal Fluid Resource Center (Sepulveda), 

the Mount Sinai NeuroBioBank, the University of Maryland Brain and Tissue Bank, and the Brain Tissue 

Donation Program at the University of Pittsburgh. These Brain Tissue Repositories (BTRs) reviewed 

existing collections and identified 10,270 frozen tissue samples with sufficient quantity and 

neuropathologic/clinical annotation for genotyping and whole-genome sequencing. All samples were 

obtained from individuals with appropriate consent from the local institutional review boards. While each 

NeuroBioBank BTR follows local protocols for clinical and neuropathological assessment ante- and post-

mortem, in general, phenotyping of both kinds was conducted retrospectively through semi-structured 

interviews of knowledgeable informants, review of available medical records, and neuropathological 

assessment of brain tissue. 

Within the publicly accessible NIH NBB phenotype database, diagnoses are organized into four 

different categories: Clinical Brain, Neuropathology, Genetic and Non-Brain. The data field of “Clinical 

brain diagnosis” reports consensus psychiatric and neurologic diagnoses made based on review of clinical 

data, including medical records, interview or questionnaires administered to knowledgeable informants, 
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and/or self-reported diagnoses at registration. The data field of “Neuropathology diagnosis” reports 

diagnoses made based on the results of neuropathological examination by a qualified neuropathologist. The 

data field of “Genetic diagnosis” reports diagnoses made based on genetic testing. The data field of “Non-

brain diagnosis” reports clinical diagnoses that do not primarily affect brain structure or function, but could 

have some effects on the brain. Because BTRs follow local protocols for clinical brain diagnostic 

procedures, the level of evidence used to determine a clinical brain diagnosis is captured with the data field 

“Basis of clinical brain diagnosis.” A basis of “Confirmed” reflects that sufficient evidence existed to 1) 

make a diagnosis based on medical history review, 2) make a diagnosis by the consensus of expert 

clinicians, and/or 3) confirm the absence of a clinical diagnosis. A basis of “Investigator impressions” 

reflects that the diagnosis is based on the clinical impressions of the clinician(s) reviewing the available 

information, but that information was insufficient to refer a Confirmed diagnosis. The data field 

“Insufficient data” reflects that the available information was insufficient to form a reasonable impression 

of, or to exclude, any clinical brain-related diagnoses. Subjects may have multiple diagnoses of unrelated 

diseases within and across diagnostic categories.  

A diagnosis may meet criteria for multiple categorizations. Individuals that had no clinical brain 

diagnosis are indicated with a custom NBB000 “no clinical brain diagnosis found” code, and subjects that 

had no neuropathological diagnosis are indicated with a custom NBB222 “diagnostic pathology not 

present” code. When diagnostic information was not captured effectively by ICD-10 coding, the NBB 

generated additional custom labels. Other custom codes included in the phenotype database describe 

categories of missing or pending information. Finally, due to the small numbers of individuals of advanced 

age, all participants with an age >89 were further de-identified by setting the field of age to 89+. 

At each BTR, flash frozen tissue aliquots were dissected and maintained at -80°C until DNA 

extraction. For all BTRs, samples of frozen brain tissue were primarily taken from the occipital pole, 

Brodmann area 17 (BA17), but other areas such as frontal pole (BA10) or cerebellum were used when 

BA17 was not available. High molecular weight DNA was extracted from approximately 60-80 mg of tissue 

using the QIASymphony DSP DNA Midi Kit on the QiaSymphony SP platform following manufacturer’s 

standard protocols. DNA concentrations were determined using spectrophotometry and extraction quality 

was measured using agarose gel analysis, using 0.8% agarose gels and ~0.5ug of DNA, to score Extraction 

Quality (EQ) on a scale of 0 to 5. A total of 245 samples were removed from the cohort prior to DNA 

extraction. DNA was successfully obtained from 10,025 brain tissue samples, with each passing sample 

having an EQ score of 3 or better and DNA quantity >= 2 ug.  
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Genotype analysis  

DNA from samples meeting quality and quantity metrics underwent genotyping at the HIHG Center 

for Genome Technology. Samples were organized on 96-well plates and processed in minimum batches of 

96 samples. 200ng of DNA from each sample was normalized to 50ng/ul and used for genome-wide 

genotyping using Illumina’s Infinium Global Screening Array-24 v3.0 (GSAv3) that interrogates 

approximately 650,000 markers. Each sample preparation followed the Infinium HTS Assay procedures. 

In brief, 200ng of DNA per sample was amplified, fragmented, and hybridized to a beadchip. The beadchips 

were then scanned on the Illumina iScan System and processed using the Illumina GenomeStudio v2.0.0 

software package. Genotypes were called using the Illumina Genome Studio software and the Illumina 

iScan System. Samples with call rates below 98% were excluded from analysis and a GenCall cutoff score 

of 0.15 was used for all Infinium II products. Genotype calls were exported to VCF format from Illumina 

GenomeStudio for further analysis. 

Genotypes were examined for: concordance with biological sex provided by each site, genotype 

call rate across all markers ≥98%, pairwise genotype matching across samples indicating potential sample 

duplications and sample swaps. Samples with mismatched reported biological sex (n=172), duplication 

with another genotyped sample (n=81), low (<98%) genotype call rate (n=68), or other technical issue 

(n=24) were removed from analysis. A total of 9,680 samples were considered of sufficient quality for 

attempting library preparation for whole-genome sequencing, including 17 related individuals which were 

later struck from inclusion. Genotyping results were successfully generated for 9,663 samples and were 

combined into a VCF file which is available to researchers through the NDA portal (nda.nih.gov, collection 

number 3917, experiment ID 2206). 

 

Whole-genome sequencing of 9,680 individuals 

A total of 9,680 extracted DNA samples contained sufficient quantity and quality of DNA to 

conduct WGS and samples were shipped at -80 °C to The American Genome Center at Uniformed Services 

University in Bethesda Maryland on 96-well plates, with one sample per well. Per-plate quality was 

assessed by checking visual plate integrity for unsealed wells, and DNA quantification was performed and 

compared to the manifest for agreement. All passing samples were required to have an extracted DNA 

concentration of at least 30ng/μl. Sequencing libraries were prepared from genomic DNA using 9,680 

samples and sequenced using PCR-free tagmentation-based library preparation as previously described (13, 

14). Whole-genome sequencing was conducted on the NovaSeq 6000 (Illumina) System, during the data 

generation period of this study.  Sequencing libraries were generated using unique dual indexes for 

multiplex pooling of 24-32 libraries for sequencing on the NovaSeq 6000 System using the S4 flowcell 

with 300 cycle SBS kits.  All sequencing runs conducted generated 2x150bp reads. A mean coverage 
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threshold of >=30x coverage was used for each unique sample. Sequencing libraries that did not meet this 

threshold coverage during the first pooled sequencing were re-queued for additional sequencing and data 

was merged until 30x genome coverage was reached, or excluded from the study if the threshold was not 

met. 

 

Summary statistics and variant calling for 9,543 passing genomes 

A total of 9,543 unique samples completed sequencing and met all coverage and quality metrics. 

Reads from individual flowcells were demultiplexed using bcl2FASTQ 2.20 and converted to ORA 

compressed files using DRAGEN Server 4.0. The resulting sequencing reads were processed using Illumina 

DRAGEN (Dynamic Read Analysis for Genomics) 4.0 software, a specialized pipeline tool designed for 

rapid and accurate processing of genomic data and identification of single nucleotide variants (SNVs), small 

insertions/deletions (INDELs), and structural variants from Illumina sequencers (15-17). DRAGEN 

alignments and variant calling outputs are cross-compatible with the Genome Analysis Tool Kit (GATK). 

Default DRAGEN parameters, pre-tuned to human genome alignment and variant calling, were used for 

mapping, base quality score recalibration, and variant calling.  

Each sample was individually aligned using Illumina’s DRAGEN pipeline version 4.0 to produce 

a CRAM alignment file, and alignment quality statistics. The subsequent CRAM was used for variant calls 

(SNVs, INDELs, CNVs, and SVs), using the DRAGEN server pipeline as described above. This pipeline 

produced 16 files for each sample, including the alignment CRAM file, genome VCF, VCF, SV VCF, and 

their associated metrics, indexes and checksums. Alignment was performed using the GRCh38 genome 

reference including decoys and alternative haplotypes (ALT contigs) optimized for DRAGEN v4.0, with 

ALT-aware read mapping. Individual variant call files were post-processed using Illumina’s default 

Germline Variant Small Hard Filtering parameters.  

Using variants from the genotyping analysis described above, 163,249 variants (25% of the GSA 

variants) were randomly selected from the set of 9,663 genotyped individuals. A subset of 34,328 

independent variants (R2 < 0.5), from the set of 163,249 variants, on autosomal chromosomes, with 

genotyping call rate > 90%, and minor allele frequency > 0.2 was then used to calculate concordance 

between genotype and WGS data for the overlapping 9,520 samples between the genotyping and WGS. 

 

NeuroBioBank Cohort VCF creation 

Whole-genome sequenced samples were evaluated for quality using several metrics. A coverage 

threshold of >=30x mean genome coverage per sample was used, as calculated by the statistic “Average 

alignment coverage over genome” as listed in the DRAGEN 4.0 statistics. Contamination per sample was 

evaluated using VerifyBamID (18). Duplicate or related samples were identified by calculating genomic 
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similarity using a binary distance matrix between variants detected within samples. Biological sex was 

inferred by coverage of the X and Y chromosomes and matched the self-reported assigned sex at birth in 

all samples.  

Genome-wide short nucleotide variants, including single-nucleotide variants and short insertions 

and deletions, were combined using the DRAGEN implementation of Illumina's gvcf-genotyper software, 

packaged within the DRAGEN 4.0 software suite, which merged individual genome VCF files into a 

combined ‘cohort VCF’. Loci with multiple different alleles, Multi Nucleotide Polymorphisms (MNPs), 

were split into Single Nucleotide Polymorphisms (SNPs) in every case, with one line per allele to 

disambiguate subsequent filtering and annotation steps. Individual gVCFs were joined into gene-aware 

chunks of up to 10Mb in size, spanning all autosomes, X and Y chromosomes, and the mitochondrial 

genome (M). Splits between chunks did not fall within annotated genes. Low complexity regions were 

excluded from joint-calling, based on the DRAGEN hg38 blacklist regions. Chunks were later joined into 

chromosomes after variant filtering and annotation steps described below.  

Variant Quality Score Recalibration (VQSR) was used according to the GATK Best Practices 

recommendations to filter jointly-called variants to keep true genetic variants and remove sequencing 

artifacts, resulting in a high-confidence cohort of variants (19, 20). Variants exhibiting excess 

heterozygosity were labeled using variant filtration, and variants with > 54.69 scores were excluded from 

further analysis. We used VariantRecalibrator to calculate VQSLOD tranches for INDELs and SNPs using 

the recommended population resources and priors including dbSNP138 (21), 1000genomes gold standard 

INDELs (22), 1000genomes phase 1 high confidence SNPs (23), and Hapmap 3.3 SNPs (24). Specifically, 

our pipeline followed the parameters and steps listed in the 1.1.1 version of the “broad-prod-wgs-germline-

snps-indels” pipeline. This pipeline provided VariantRecalibrator with several per-site metrics from the 

NBB cohort, including depth of coverage, mapping quality, Fisher strand, rank sum test for relative 

positioning, and strand odds ratio. The resulting INDEL and SNP models were used to conduct score 

recalibration genome-wide. 

Variants were annotated by ANNOVAR using data from refGene and dbSNP150 (21, 25, 26). The 

final cohort VCF contained 162,836,196 jointly-called variants. Genomic ancestry was broadly mapped to 

one of five 1000genomes reference panel super-populations using Peddy (27). Principal component analysis 

of population structure was performed on 220,819 autosomal variants from the VQSR filtered cohort VCF 

(MAF  5%, linkage disequilibrium pruned at 0.2) using SNPrelate (28).  

 

Huntington’s Disease association analysis 

Variants were reduced to variants at or below 5% minor allele frequency (MAF) and those having 

a non-silent consequence on the protein sequence comprising: mis-sense, frameshift, stopgain, stoploss, or 
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within the splice site of coding exons. Gene-collapsed optimal sequence kernel association testing (SKAT-

O) and single variant testing was performed using EPACTS (https://github.com/statgen/EPACTS). Single 

variant testing and gene-collapsed testing was performed using covariates for biological sex, age, and the 

first 10 principal components. For single variant testing, tests were limited to non-silent variants with an 

allele frequency less than 0.05 and a minor allele count of 10 or greater.  In addition, SKAT-O testing was 

restricted to genes with at least 3 different rare non-silent variants. The positive controls were comprised of 

615 clinically diagnosed Huntington’s disease cases. Samples not labeled as Huntington’s by any diagnosis 

method were used as negative controls. A genome-wide significance threshold of less than 5×10-8 was used 

for all tests. 

 

RESULTS 

 

Sequencing of a large whole-genome cohort of central nervous system tissue donors 

We generated whole-genome sequencing data from post-mortem brain tissue donors collected at 

six NeuroBioBank tissue repositories, collected prior to the end of 2021, to median 32x depth of coverage 

across the genome (Table 1, Supplemental Table 1).  The cohort consisted of 9,543 individuals, some of 

whom were related, that passed all quality metrics from a starting set of 9,680 samples submitted for 

sequencing from the six BTRs (Supplemental Figure 1). All of the 9,543 WGS samples correctly matched 

their counterpart present in the genotyping experiment as described in the methods. Whole genome 

sequencing showed robust quality metrics, which were consistent across samples received from different 

BTRs (Supplemental Table 1).  The population structure of the NeuroBioBank cohort had populations of 

ancestry similar to the underlying demographics observed in the United States population (29). This 

includes individuals who have ancestry which broadly matches the super-populations of European, African, 

East Asian, South Asian, and Admixed American, with the predominate cluster within this cohort most 

similar to European ancestry.  

Neurodegenerative disease (and, death, in general) occurs most frequently later in life and as a 

result older individuals are over-represented in the NeuroBioBank cohort (30). The average age is 60.8 

across six BTRs. Four of the six BTRs skew towards older individuals, with an average age of 69.2, with 

samples collected at Mount Sinai being the oldest at 76.2 on average. Two BTRs, Maryland and Pittsburgh, 

historically have focused on collecting post-mortem brain tissue samples from younger individuals, with 

an average age of 41.2 and 46.9 respectively.  
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Table 1. Cohort statistics for samples within the NeuroBioBank whole-genome sequencing cohort. 

Sample statistics are displayed for samples that passed QA thresholds and are binned according to 

site. Demographic super-populations are abbreviated for those most similar to ancestry from Europe 

(EUR-Like), Africa (AFR-Like), South Asia (SAS-Like), East Asian (EAS-Like), and the Americas 

(AMR-Like). Individuals who displayed admixed ancestry were not categorized by most-similar ancestry.   

 

We used principal component analysis to assess genetic ancestry and population structure to help 

detect biases due to batching, sequencing, preparation and computational processing. After labeling 

individuals based on closest genetically-inferred super-population, pairs of principal components (PCs) 

were plotted up to PC6 (Supplemental Figure 2 A-D). Plots revealed no PC clusters based on sequencing 

batch, repository, or other categories besides ancestry. A full listing of PCs 1-32 per sample are listed in 

Supplemental Table 1.  

 

Phenotypes of the NeuroBioBank cohort 

There is a broad set of neurological and psychiatric phenotypes related to the brain tissues collected 

at each of the BTRs and paired with genotypes. These phenotypes are grouped into 15 different ICD disease 

categories. To better understand the distribution of these phenotypes, we tabulated the number of disease 

diagnoses and their ICD-10 codes (Supplemental Table 2). The disease diagnoses represented within the 

database are a one-to-many relationship, and one individual may have multiple unrelated diagnoses. For 

diagnoses not labeled by ICD-10 coding NBB custom labels were applied as described in the methods. 

These include NBB000 “no clinical brain diagnosis found” (n=1286) and NBB222 “diagnostic pathology 

not present” (n=2320). The overlap of these two labels is a set of 996 individuals who are coded with both 

“NBB000; no clinical brain diagnosis found” and “NBB222; diagnostic pathology not present”. Together 

this subset of individuals, collected and sequenced using the same methodology as individuals with 

diagnoses of brain disease, provides a high-quality sub-cohort absent of diagnosed brain-related disease. 
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Figure 1. Disease distribution in the NeuroBioBank cohort for clinical diagnoses. A. Plot showing the most 

prevalent ICD-10 codes among clinical diagnoses, highlighting codes G and F as the primary components 

of the NeuroBioBank cohort. B. Prevalence of codes listing individual diseases and disease categories from 
ICD-10 G, diseases of the nervous system. C. Prevalence of codes listing individual diseases and disease 

categories from ICD-10 F, mental, behavioral, and neurodevelopmental disorders. Total number of 

diagnoses for each ICD-10 code are listed for each bin for the major components of each category. 

 

The most prevalent categories of disease within ICD-10 labeled clinical brain diagnoses are 

represented by codes G00-G99 “Diseases of the nervous system”, and F00-F99 “Mental, Behavioral and 

Neurodevelopmental disorders”.  G codes accounts for 6312 individual clinical brain diagnoses, and F 

codes account for 4952 individual clinical brain diagnoses (Figure 1A). Other prevalent categories of 

disease include I codes “Diseases of the circulatory system” with 471 diagnoses, and Q codes “Congenital 

malformations, deformations and chromosomal abnormalities” with 226 clinical diagnoses. The exact 

number of diagnoses for a disease or category of disease presented in Figure 1 are not definitive, as updates 

to the NeuroBioBank phenotype portal are ongoing and new donors and new diagnoses to existing donors 

may be added. 

The top three most prevalent clinical brain diagnoses among individuals within the NBB collection 

fall within the ICD-10 “G” category, diseases of the nervous system, and are of the neurodegenerative type. 

This includes Alzheimer’s disease (G30 n=1865), Parkinson’s disease (G20 n=809), and code G31 n=801 

which encompasses “Other degenerative diseases” but is primarily composed of G31.0 Frontotemporal 

dementia (Figure 1B). Clinical diagnosis of Huntington’s disease (G10) was also highly prevalent with 

n=617 cases and is often accompanied by a corresponding genetic diagnosis. Other notable neurological 

diseases with more than 50 cases within the cohort are multiple sclerosis (G35; n=492), Epilepsy (G40; 

n=352), dystonia (G24; N=143), and migraine (G43; n=81). 

The ICD-10 F category encompassing mental, behavioral, and neurodevelopmental disorders, is 

the second most prevalent set of diagnoses. Major depressive disorder (MDD; F33) was found to be the 

most commonly observed disorder among the F category of diseases (n=674) (Figure 1C). Other 

psychiatric diseases, such as schizophrenia (F20; n=470), and bipolar disorder (F31; n=313) were also 

highly represented in this cohort. Developmental disorders (F84) such as autism spectrum disorder (F84.0; 
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n=120) and Rett’s syndrome (F84.2; n=101) are less common compared to MDD and schizophrenia, but 

still number in the hundreds of cases within the cohort. Lastly, in the ICD-10 F category there is a diverse 

set of substance abuse disorder diagnoses represented, with sample sizes ranging from a few dozen to 

hundreds, including opioid, nicotine, alcohol, and other substances of abuse. 

Other notable prevalent diseases outside of the G and F ICD categories include cerebral infarction 

(I63 n=194), malignant neoplasm of the brain (C71; n=172), and sphingolipid disorders (E75; n=116). 

These three examples highlight the diversity of other nervous system disorders represented in the cohort, 

including metabolic disorders that impact the nervous system, congenital malformations which alter normal 

brain anatomy, and diseases whose origin is outside the nervous system but that can directly impact the 

brain. Within the phenotype database are multiple other diseases which can result in mortality that results 

in eligibility for brain donation and may only indirectly impact the brain. While the NBB sources data from 

central nervous system tissue, the recorded life histories and whole-genome nature of this data may record 

systemic conditions which is available for use by researchers.  

 

Variation in the NeuroBioBank cohort 

To measure associations between phenotype and genetics, variants must be jointly called, filtered, 

annotated and combined into a cohort VCF. Specifically, this cohort VCF is an aggregation of the individual 

DRAGEN-produced gVCFs into one combined file, available per-chromosome from the NIMH Data 

Archive. After combining and jointly calling variants across the subset of 9,543 included samples, there 

were a total of 206,429,754 called variants (Table 2). Variants with excess heterozygosity were removed 

prior to variant recalibration. After filtering variants by Variant Quality Score Recalibration, the total 

number of variants was reduced to a passing set of 171,121,209 SNPs and INDELs across all autosomes, 

and chromosomes X, Y and M. A total of 35,308,545 SNPs and INDELs were identified as low quality and 

excluded from further analysis. The final set of 171,121,209 passing variants included 140,469,680 SNPs, 

16,359,171 short deletions and 14,292,358 short insertions. This passing variant count is comparable to 

other studies with similar sample size and demographic characteristics (31). The concordance rate between 

WGS and genotyping array data was calculated to be 99.7% across 325,246,554 genotypes assessed. 
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Table 2. Counts by type of included and removed variants from the NeuroBioBank whole genome 

sequencing cohort joint calls. 

 

 After annotation, we identified the number of exonic variants as 1,695,544 SNPs, insertions and 

deletions, with exonic being defined as any genomic element falling within the borders of an annotated 

exon and excluding UTRs, introns, and intergenic regions. This set of exonic SNPs and INDELs included 

thousands of non-silent sites that have the potential to disrupt protein function and alter phenotype. This 

included 1,011,388 nonsynonymous mutations, 27,259 frameshift deletions, 13,271 frameshift insertions, 

25,773 stop-gain mutations, and 1083 stop-loss mutations. While these non-silent changes are the most 

likely cause of changes in phenotype, the cohort also contains 170,042,435 non-exonic variants which may 

also contribute to disease. Together there is a wealth of high-quality variants, both within and between 

genes. 

 

Association of genes and variants to Huntington’s disease 

To evaluate how successful the multi-institute pipeline of tissue collection, sequencing, and 

phenotype data collection was in producing associations between genetics and disease, we conducted a 

positive control association experiment to confirm the ability to detect robust links between sequence and 

neuropsychiatric disease. We tested records of individuals clinically diagnosed or clinically suspected of 

having Huntington’s disease (N=615), to replicate the known association of disease to repeat expansions in 

the HTT gene and its genetic markers. Of 620 individuals with Huntington’s disease in the NBB database, 

617 had a clinical diagnosis of Huntington’s disease, and 615 had WGS available for testing. We compared 

these cases to a set of 8920 individuals with no history or no suspected history of Huntington’s disease. 

Exact case/control counts may differ depending on inclusion criteria per site tested. Using both the 

optimized Sequence Kernel Association Test (SKAT-O) and the single variant test as implemented in 

EPACTS using b.score, we tested genome-wide for association to the Huntington’s Disease phenotype.  
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Figure 2. Manhattan plot of a rare single-variant genome-wide association to Huntington’s disease within 

the NeuroBioBank cohort VCF. Plotted are all exonic variants with an allele frequency between 0.0001 

and 0.05. Huntington’s cases were defined as any individual with and ICD-10 clinical diagnosis of 

Huntington’s disease N=615. Individuals without a diagnosis of Huntington’s Disease were used as 

controls N=8920. The peak observed on chromosome 4 is centered on the HTT gene and the most 

associated site is the repeat expansion implicated in Huntington’s disease. 

 

The single variant association test identified a total of 12 loci that exceeded the Bonferroni 

corrected genome-wide significance threshold of p < 5×10-8, with the top 4 sites within the HTT gene on 

chromosome 4. The top 4 associated markers are large CAG repeats called as insertions into the HTT gene 

at the previously identified pathogenic site. These insertions range from 22 – 24 additional repeats added 

to the 21 CAG repeats normally present in the hg38 reference genome. Huntington’s disease patients 

typically have 40-50 repeats (32). The top site which contained an insertion of a 23 CAG repeats listed had 

a nominal p-value of 2.26×10-109 with the next highest and overlapping site having a nominal p-value of 

4.61×10-102. Together the top 4 sites, plus a SNP in the nearby UVSSA gene, form a peak around the HTT 

gene (Figure 2). The remaining 7 loci outside of chromosome 4 which reached genome-wide significance 

were only marginally significant compared to the strength of association seen on chromosome 4. The HTT 

gene was found to be significantly associated with Huntington’s disease using the SKAT-O test with a 

nominal p-value of 8.51×10-147. The next nearest gene (RGS12), and only other SKAT-O significant gene, 

was directly adjacent to HTT, and reached significance due to the strength of association seen in HTT 

(Supplemental Table 3). Limiting the controls to N= 986 samples categorized as both NBB000 and 

NBB222 which describe individuals with no clinical brain or neuropathologic diagnoses, showed similar 

results with four single variants within the HTT repeat region being significant p < 5×10-8 and the HTT gene 

itself identified by SKAT-O with p = 1.66×10-44. Together, these results show an extremely robust positive 

association to Huntington’s disease, using both assumed Huntington’s-negative controls and controls with 

no neurological or psychiatric diagnosis, validating the quality and accuracy of the cohort sample collection, 

sequencing, and analysis.  

 

DISCUSSION 
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The National Institutes of Health (NIH) NeuroBioBank repository is a combined effort of six brain 

tissue repositories to curate clinical data and biological samples to provide a unique resource to researchers 

who wish to advance knowledge about central nervous system diseases/disorders. Here we expand this 

resource by adding array genotypes and whole-genome sequencing data from a large cohort of high-quality 

samples and pair that with an extensive database of disease phenotypes. This data is made available to 

qualified researchers for a broad range of investigations into nervous system disease through the application 

process described on the NeuroBioBank website (https://nda.nih.gov/nda/access-data-info). 

 Collected from sites located across the United States, the NBB cohort contains a population of 

individuals that reflects the underlying demographics of that country. We acknowledge that the cohort is 

enriched for older individuals and individuals of European descent, but it also encompasses a wide variety 

of neurological diseases and psychiatric disorders. These diagnoses are focused on common brain-related 

disorders such as Alzheimer’s disease and related dementias, but the broad collection strategies of these 

BTR sites have also obtained many tissues diagnosed with rare clinical, neuropathologic and/or genetic 

diseases. We encourage researchers to explore the variety of diagnoses associated with tissue samples listed 

on the NeuroBioBank website. Included with the release of the NBB cohort are a variety of data types 

including the array-based genotype calls, and several single sample WGS result files: a per-sample genome-

VCF, a structural variant VCF, CRAM alignment file, each with their associated metrics. In addition, a 

cohort VCF containing the filtered variants from 9,543 high-quality samples is available and accessible via 

the NIMH Data Archive.  

 The logistical challenges of any multi-site effort to sequence a large cohort may introduce sample 

swaps, duplicates, contaminations and other unknown sources of error. Evaluating for discrepancies in 

genetically determined biological sex and nearest ancestry showed results consistent with the self-reported 

values, when such self-reports were available. To demonstrate the quality and integrity of the WGS cohort 

for hypothesis testing, we conducted the validation experiment described above, that shows the reliability 

of our end-to-end workflow. Using a neurological disease with a well-described mechanism, Huntington’s 

disease, we were able to robustly identify known disease-causing repeats within the HTT gene using only 

genetic data and clinical diagnoses from this cohort. This validates the methodologies used at each step and 

supports future investigations of neurologic and psychiatric diseases. We hope that this reliable integration 

of genetic data with hundreds of disease diagnoses, and a network of bio-banked tissue, provides a robust 

resource for researchers for years to come. 

While our study is comprehensive, it is crucial to acknowledge certain limitations inherent to this 

study. The nature of post-mortem brain tissue collection poses limitations as tissue represents a snapshot in 

time of the available population willing to donate brain tissue, resulting in biases in demography, disease 

etiology, and disease severity. In addition, environmental factors play a critical role in disease that whole-
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genome sequencing cannot capture. Our study and resource contribute to the broader understanding of the 

genetic aspects of central nervous system disorders, paired with tissue which can be used for 

complementary research methods to paint a more complete picture of each of those diseases. 

It is also noteworthy that the WGS data described here represents a snapshot of the available donor 

samples collected at the time of  sequencing. The NIH NBB is an ongoing effort, and the BTRs have banked 

additional tissue samples which are not included in this study but are available to researchers. It is also 

important to note that the study cohort described here does not represent an epidemiologically valid 

population study since each of the contributing brain banks has a history of special disease emphasis where 

different diseases are disproportionately represented in their collections. 

 The goal of this deep whole-genome sequencing project is to accelerate discovery of biological 

features and mechanisms which impact neurological and psychiatric diseases/disorders by providing a 

broad resource to the research community. By making available both the sequence, and the paired brain-

tissue from which each sample was drawn, we hope to simplify access to the variation and material that 

will uncover the mechanisms that cause neuropathological and psychiatric diseases/disorders.  

 

Data Access 

Data from this study is available in the NIMH Data Archive, accessible at the following URL 

(https://nda.nih.gov/edit_collection.html?id=3917). To access, search and analyze this dataset, apply for 

access using the following URL (https://nda.nih.gov/nda/access-data-info). Tutorials further describing 

data access are available at the following URL (https://nda.nih.gov/nda/webinars-and-tutorials#tutorials). 

For further questions about data access, contact NDAHelp@mail.nih.gov. 
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Supplemental Material 
 

 

Supplemental Table 1 (Attached XLS). Detailed statistics about per sample performance for all samples 

within the NeuroBioBank cohort.  

 

Supplementary Table 2 (Attached XLS). Counts of ICD-10 categories observed in individuals included 

in the cohort and plotted in Figure 1. 

 

Supplementary Table 3 (Attached XLS). Results from testing the NeuroBioBank cohort for genetic 

associations to Huntington’s Disease based on 615 clinical diagnoses. 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 30, 2024. ; https://doi.org/10.1101/2024.08.29.24312734doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.29.24312734
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Supplemental Figure 1. A flowchart of the sample collection, processing and analysis across six 

NeuroBioBank sites and two analysis working groups. Processes are placed within rectangle, decisions 

for adding/removing samples are within diamonds, removed sample counts are placed within flags, and 

databases and data storage are within cylinders. Final datasets can be found at the NDA URL under the 

collection number 3917. 
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Supplementary Figure 2A (Figures A-D in Attached PDF). Principal component analysis of the cohort 

of 9543 samples sequenced from the NeuroBioBank. Samples are colored by genetically inferred closest 

similarity to one of five 1000genomes superpopulations. These five categories consist of individuals most 

similar to a population of African descent (labeled as AFR-Like), European descent (EUR-Like), East 

Asian descent (EAS-Like), South Asian descent (SAS-Like), and admixed American (AMR-Like) as 

called by Peddy. Individuals where Peddy did not assign a superpopulation are colored in black. A. PCA 

of components 1 and 2. B. PCA of components 2 and 3. C. PCA of components 3 and 4. D. PCA of 

components 5 and 6  
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