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Distribution

Marginalizing over

PN (n) = (β − 1)
aβ−1

(a+ n)β
(1)

PZi(z) =
(αn)ze−αn

z!
(2)

gives

PZ(z) =
(β − 1)aβ−1

z!

∫ ∞
0

(αn)ze−αn

(a+ n)β
dn ≡ (β − 1)aβ−1

z!
f(z, β). (3)

We only need the integral for integer values of z, so we may do the calculation recursively:

f(z + 1, β) =

∫ ∞
0

(αn)z+1e−αn

(a+ n)β
(4)

= α

∫ ∞
0

n(αn)ze−αn

(a+ n)β

= α

[∫ ∞
0

(a+ n)(αn)ze−αn

(a+ n)β
− a

∫ ∞
0

(αn)ze−αn

(a+ n)β

]
= α

[∫ ∞
0

(αn)ze−αn

(a+ n)β−1
− a

∫ ∞
0

(αn)ze−αn

(a+ n)β

]
= α [f(z, β − 1)− af(z, β)] .

With this recursion, all values 0 ≤ z ≤ n can be calculated in O(n2) evaluations if we know f(0, β). Luckily this
integral is much simpler:

f(0, β) = eaα αβ−1 Γ(1− β, aα) = eaα a1−β Eβ(aα), (5)

where Γ(·, ·) is the incomplete gamma function and En(·) is the exponential integral function. Finally we solve the
recursion to obtain the result of the main text.

Exponential Distribution

When the method of disease transmission is by physical touch, the exponential distribution becomes more relevant.
Taking

PN (n) = s−1e−n/s (6)

we find

PZi(z) = (αs)z (1 + αs)−(z+1). (7)

In this case we can directly solve for the distribution for any M . Calculating the probability generating function, we
find

GZi(ζ) =
1

1 + αs(1− ζ)
. (8)
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We raise this to the M -th power and take z derivatives to find

PZ(z) =

(
M + z − 1

z

)
(αs)z

(1 + αs)M+z
. (9)

This has average αMs, which for fixed R0 implies α = R0/(sM). Thus the distribution is independent of s for
fixed R0:

PZ(z) =

(
M + z − 1

z

)
(R0/M)z

(1 +R0/M)M+z
. (10)

This is a negative binomial distribution, NB(M, (1 + R0/M)−1). It corresponds to the superspreading distribution
of Ref. [1] if one identifies their dispersion parameter k with M . The correspondence arises because the sum of M
exponentially distributed random numbers is gamma distributed and the sum of Poisson distributed random numbers
is itself Poisson distributed.

Since the distribution is independent of s, so be its output statistics. In particular, the above distribution gives
f20 ≈ 0.60 for M = 1 and R0 = 2.0, whereas we have f20 ≈ 0.65 for R0 = 1.0. For M = 5 the fractions fall to
f20 ≈ 0.46 (R0 = 2.0) and f20 ≈ 0.54 (R0 = 1.0). Since these are valid for all s, we conclude that extreme statistics
such as 20 % infecting 80 % can never be achieved from exponential distributions.

Mitigation

For mitigation we redistribute people below a maximum n = x. So we have

PN (n) =
1∫ x

0
1

(a+n)β
dn

1

(a+ n)β
≡ 1

N(a, β, x)

1

(a+ n)β
(11)

where the normalization is a simple, but ugly integral. We now need

PZ(z) =
1

z!N(a, β, x)

∫ x

0

(αn)ze−αn

(a+ n)β
dn ≡ 1

z!N(a, β, x)
fx(z, β). (12)

By the exact same argument as above, we have

fx(z + 1, β) = α [fx(z, β − 1)− afx(z, β)] . (13)

Again we need the value for z = 0, which in this case is

fx(0, β) = eaα αβ−1 (Γ(1− β, aα)− Γ(1− β, (a+ x)α)) . (14)

.

Exponential Cutoff

We use a power law for the distribution of sizes of location. This creates two problems: (1) the model becomes
invalid as β → 2 and (2) higher order moments diverge. To fix these issues an exponential cutoff must be included.
In this case we consider

PN (n) =
aβ−1

Eβ(a/s)

e−
a+n
s

(a+ n)β
, (15)

where s denotes the (soft) cutoff value. Now we have

PZ(z) =
aβ−1

z!Eβ(a/s)

∫ ∞
0

(αn)ze−αne−
a+n
s

(a+ n)β
dn ≡ aβ−1

z!Eβ(a/s)
fs(z, β), (16)

and again

fs(z + 1, β) = α [fs(z, β − 1)− afs(z, β)] , (17)
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FIG. 1. Same as main text, but with exponential cutoff s = 1,000.
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FIG. 2. Same as main text, but with exponential cutoff s = 1,000.

where now

fs(0, β) = eaα a1−β Eβ(aα+ as−1). (18)

Solving this recursion leads to

PZ(z) =
(−aα)zeaα

z!Eβ(a/s)

z∑
j=0

(−1)j
(
z

j

)
Eβ−j(aα+ as−1). (19)

For β ≥ 1, we have 1/Eβ(0) = (β − 1), confirming that this result reduces to that of the main text for s→∞. Note
that for s finite, we no longer need to require β > 2.0. Fig. 3 shows the plot f20 with an exponential cutoff. We note
that the values of β = 2.5 are virtually unchanged. Interestingly, the curves now yield a maximum. Thus, with a
cutoff, the superspreading statistics emerging from spatial heterogeneity can be bounded even if β is unknown.

Mitigation & Exponential Cutoff

We now have

PN (n) =
1∫ x

0
e−n/s

(a+n)β
dn

e−n/s

(a+ n)β
≡ 1

N(a, β, x)

e−n/s

(a+ n)β
. (20)

As before this leads us to

PZ(z) =
1

z!N(a, β, x)

∫ x

0

(αn)ze−n/se−αn

(a+ n)β
dn ≡ 1

z!N(a, β, x)
fx(z, β). (21)
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FIG. 3. Same as main text, but with exponential cutoff s = 1,000.
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FIG. 4. Same as main text, but with exponential cutoff s = 1,000.

By the exact same argument as above, we have

fx(z + 1, β) = α [fx(z, β − 1)− afx(z, β)] . (22)

Again we need the value for z = 0, which in this case is

fx(0, β) =
s (α+ s−1)βeaα+as

−1

1 + αs

[
Γ(1− β, aα+ as−1)− Γ(1− β, (a+ x)(1 + sα)s−1)

]
. (23)

.
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