
Supplementary Materials 

Supplementary Table 1. Impact of Dataset Split on Observed Outcomes 
 Schaefer 200 Nodes Schaefer 300 Nodes 
 

Sample 1 Sample 2 
Consensus 
between 
samples 

Sample 1 Sample 2 
Consensus 
between 
samples 

Static FC       
Q-metric 

0.97 0.96 0.93 0.94 0.94 0.88 

Number of Partitions 
0.95 0.93 0.88 0.99 0.99 0.98 

Time-Varying FC       
Mean Q-metric 0.90 0.92 0.83 0.89 0.88 0.77 

Standard Deviation of the Q-
metric 0.88 0.88 0.76 0.83 0.83 0.66 

Data are shown as a fraction of times that a dataset split (out of a total of 500 random splits) was 
consistent with results obtained in the original split. Consensus between samples is the fraction of times 
results from both samples in a single split were consistent with the original split. FC: Functional 
Connectivity  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Supplementary Figure 1. A detailed overview of age (A, D), education (B, E), and sex (C, F) for the 
Discovery (Top) and Validation (Bottom) samples. Individual points in scatter plots represent 
individual subjects while the group means are denoted by the solid black line. Stacked boxplots (C, F) 
show sex distributions (female: orange and male: blue) for each sample. CN: Cognitively Normal; 
SCD: Subjective Cognitive Decline; MCI: Mild Cognitive Impairment; AD: Alzheimer’s disease. 

Supplementary Figure 2. Modularity outcomes of static (sFC; A-B) and time-varying functional 
connectivity (tvFC; C-D) in 300 node parcellation networks. Data are plotted as mean (solid lines) ± 
standard deviation (shaded fill) by group. CN: Cognitively Normal; SCD: Subjective Cognitive Decline; 
MCI: Mild Cognitive Impairment; AD: Alzheimer’s disease; st.dev.: standard deviation. 



 

 

 

 

Supplementary Figure 3. Temporal stability averaged for within and between resting state network 
(RSN) blocks for (A-B) Discovery and (C-D) Validation samples. As expected within RSN values are 
greater than between RSN. Temporal stability versus gamma (γ) resolution curves are similar in 
shape, which allows for area under curve comparisons. Data are plotted for the 200 node 
parcellation as mean (solid lines) ± standard deviation (shaded fill) by group. CN: Cognitively Normal; 
SCD: Subjective Cognitive Decline; MCI: Mild Cognitive Impairment; AD: Alzheimer’s disease. 

Supplementary Figure 4. Temporal stability of each node averaging over (A) all connections of that 
node, (B) only the within resting state network (RSN) connections, and (C) only the between RSN 
connections for each node in the Validation sample 200 node networks. CN: Cognitively Normal; 
SCD: Subjective Cognitive Decline; MCI: Mild Cognitive Impairment; AD: Alzheimer’s disease. 



 

 

Supplementary Figure 5. Temporal stability of each node averaging over (A, D) all connections of 
that node, (B, E) only the within resting state network (RSN) connections, and (C, F) only the 
between RSN connections for each node in the (A-C) Discovery and (D-F) Validation sample 300 node 
networks. CN: Cognitively Normal; SCD: Subjective Cognitive Decline; MCI: Mild Cognitive 
Impairment; AD: Alzheimer’s disease. 



 

 

 

Supplementary Figure 6. Group differences in resting state network blocks in the (A) Discovery and 
(C) Validation samples in the 300 node parcellation. (B) Permutation analysis of covariance (age, sex, 
and education adjusted) main effects of group within and between resting state networks at 
uncorrected p<0.05 were similar to the 200 node networks. None of the blocks were significant in 
both samples and none survived false discovery rate adjustment for the 28 network blocks tested. 
CN: Cognitively Normal; SCD: Subjective Cognitive Decline; MCI: Mild Cognitive Impairment; AD: 
Alzheimer’s disease. 



  

Supplementary Figure 7. Modularity outcomes for time-varying functional connectivity (tvFC) with a 
95-time point (~111 second) window. (A-B) Mean and standard deviation of average modularity Q-
metric across gamma (γ) resolution over windows in the 200 node parcellation and (C-D) 300 node 
parcellation. (E-F) Matrix representations of significant (p<0.05 uncorrected) differences temporal 
stability (one-way permutation ANCOVA at each network block). These results, with a longer 
window, are largely consistent with the ~1-minute window results reported in the main text. CN:  
Cognitively Normal; SCD: Subjective Cognitive Decline; MCI: Mild Cognitive Impairment; AD: 
Alzheimer’s disease. 



 

Supplementary Figure 8. Correlations of neuropsychological domains and resting state network 
block temporal stability in the Discovery sample. Colors and corresponding values denote 
strength/direction of the relationship (partial Spearman’s rho, adjusted for age, sex, and education). 
The diagonal line separated data for the 200 (upper triangular) and 300 (lower triangular) node 
parcellation networks. *Significant at p<0.05, uncorrected.  



 Supplementary Figure 9. Relationship of general cognition and temporal stability of the ventral 
attention resting state network in the (A-B) ~1 min window 300 node parcellation data and (C-F) ~2 
min window (C-D) 200 node and (E-F) 300 node parcellation tvFC data. Individual points represent 
individual participants colored by diagnostic group. CN: Cognitively Normal; SCD: Subjective 
Cognitive Decline; MCI: Mild Cognitive Impairment; AD: Alzheimer’s Disease. rho: Partial Spearman’s 
rho (age, sex, and education adjusted). * denoted FDR-significant correlation in the Validation 
sample. 

 

Supplementary Figure 10. Significant within diagnostic group relationships between cognitive scores 
and temporal stability in 300 node parcellation data. Data are consistent with 200 node parcellation 
data presented in Figure 7. Correlations are significant at pFDR<0.05. CN: Cognitively Normal, MCI: 
Mild Cognitive Impairment, rho: partial Spearman’s rho (age, sex, and education adjusted). 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 11. Robustness of network block temporal stability (area under the curve of 
co-assignment across windows) of the original dataset split, compared to 500 additional random 
dataset splits, for the 200 node (lower triangle) and 300 node (upper triangle) parcellations. Rows 
and columns are labeled according to the canonical resting-state networks. Data are shown as the 
fraction of times (out of 500) a significant group difference was observed (p<0.05, uncorrected) for 
both samples in a split. 



Supplementary Methods 

Image Processing 

Overview. The image processing pipeline was developed at Indiana University School of Medicine, 
following best practices guidelines in the neuroimaging field (Satterthwaite et al., 2013, Power et al., 
2015, Parkes et al., 2018, Lindquist et al., 2019). It is a Matlab-based set of scripts, which utilize FSL 
(Jenkinson et al., 2012), AFNI (Cox, 1996), and ANTS (http://stnava.github.io/ANTs/) to take data from 
raw neuroimaging format to connectivity matrices, while maintaining the data in native participant 
space. The following sections describe each preprocessing section in detail with supporting references. 

T1 preprocessing 

Dicom Import: Data are first converted from raw dicom (.dcm) format to nifti (.nii) with the dcm2niiX 
tool (Li et al., 2016)( https://github.com/rordenlab/dcm2niix). 

Denoising: For each dataset, the T1 nifti image is then denoised using an optimized nonlocal means filter 
for 3D MRI implemented in Matlab (Coupé et al., 2010, Coupé et al., 2008), to improve subsequent brain 
extraction, tissue segmentation, and registration steps. 

Bias Field Correction: Bias field correction is done within the FSL’s FAST tool (Zhang et al., 2001) with 
robustfov field-of-view cropping. 

Brain Extraction: Across the whole sample, first pass brain extraction was carried out with ANTS 
(https://github.com/ANTsX/ANTs) using an openly available OASIS data template 
(https://figshare.com/articles/ANTs_ANTsR_Brain_Templates/915436). All brain masks were then 
visually checked for quality in Matlab by visualizing 5 evenly spaced slices of the T1 with the mask as a 
semi-transparent overlay. For any participant with a poor quality mask, brain extraction was repeated 
with an alternative template from the same source that was derived from the Nathan Kline Institute 
(http://dx.doi.org/10.15387/fcp_indi.corr.nki1). For any remaining participants for which a suitable 
brain mask was still not attained, FSL bet with -B option was used to derive a mask, by tuning the 
fractional intensity and vertical gradient in fractional intensity parameters independently for each 
participant to obtain a suitable mask. Finally, any gaps/holes in the mask were filled with fslmaths -fillh 
option and a final brain masked image was extracted. 

Standard Space Registration: In order to apply parcellations in native space, linear and nonlinear 
transformations were generated for each participant T1 to/from Montreal Neurological Institute (MNI) 
standard space via the following: 

1. FSL FLIRT (Jenkinson and Smith, 2001) linear 6 degrees of freedom registration (dof6) to 
MNI. 

2. FSL FLIRT affine 12 degrees of freedom registration (dof12) of dof6 to MNI. 
3. FSL FNIRT (Andersson et al., 2010) nonlinear warp of dof12 to MNI 

The 2 transformation matrices and warp field were then inverted with the convert_xfm and invwarp FSL 
utilities, respectively. Quality of spatial transformations was visually assessed by overlay of the contour 
of standard space participant T1 onto the MNI152 template. 

Tissue-Type Segmentation: Tissue-probability maps (gray matter (GM), white matter (WM), and 
cerebrospinal fluid (CSF)) and a tissue-type segmentation were generated with FSL FAST. Additionally, a 

http://stnava.github.io/ANTs/
https://github.com/rordenlab/dcm2niix
https://github.com/ANTsX/ANTs
https://figshare.com/articles/ANTs_ANTsR_Brain_Templates/915436
http://dx.doi.org/10.15387/fcp_indi.corr.nki1


subcortical segmentation/mask was generated with FIRST (Patenaude et al., 2011). The following steps 
then utilized fslmaths to ‘clean-up’ the segmentation and generate images necessary for subsequent 
preprocessing: 

1. Erroneous CSF voxels were removed from the subcortical mask by removing those voxels that 
were present in the CSF mask. 

2. The ‘cleaned-up’ subcortical mask added into the tissue-type segmentation as GM. 
3. A single erosion was performed on GM and CSF masks. 
4. An eroded WM mask was generated by eroding WM mask 3 times. 
5. An MNI template dilated CSF ventricle mask was transformed into participant space and 

intersected with the eroded CSF mask to create a participant-specific eroded CSF ventricle mask. 
[Masks generated in steps 3-5 were used in fMRI Nuisance Regression] 

6. The WM/CSF boundaries of the ventricles (which often get erroneously segmented as GM) were 
removed from the GM mask via the following: 

a. An interface of WM/CSF was generated as the overlap of the dilated versions of the two 
masks. 

b. The interface was then masked by the dilated template CSF mask from (5) to isolate the 
interface around the ventricles. 

c. FSL’s cluster tool was then used to take the largest contiguous element of that mask (the 
area around the ventricles), thus removing any residual small clusters that may not have 
been caught by the masking in (b). 

d. Finally, the inverse of the WM/CSF ventricle mask was applied to the GM mask to 
remove any GM misclassified voxels at the WM/CSF boundary. 

Registering Parcellations into Native Space: Cortical brain parcellations were registered into participant 
native space via the transformations generated in [Standard Space Registration] section. These images 
were then masked by the participant’s GM mask. Further, to ensure complete coverage of participants’ 
GM by parcellation an iterative procedure of dilation followed by GM re-masking was carried out 3 
times. The cortical GM parcellations were then masked by the inverses of the dilated subcortical mask 
and the native space-generated cerebellar mask (generated with FSL FIRST) to remove any erroneously 
assigned voxels that may have resulted from the spatial transformations or iterative dilation/re-masking 
procedure. The final GM parcellations were then dilated once (to be used in fMRI preprocessing). 

fMRI preprocessing 

Dicom import: See [T1 preprocessing: Dicom Import]. 

Distortion Correction: FSL’s topup and was used for correction of susceptibility induced distortions, by 
utilizing 3 pairs of opposite phase-encoding (AP-PA) spin-eco field maps to estimate a susceptibility-
induced off-resonance field (Andersson et al., 2003) that was used to correct the fMRI data via 
applytopup. 

Motion Correction: FSL’s mcFLIRT was used to correct for motion via affine registration to the mean 
volume (Jenkinson et al., 2002).  

Registration of T1 to fMRI: A mean volume was created from the motion corrected data and nonbrain 
tissue was removed via FSL bet -R. The following steps describe the stepwise registration of each 
participant’s T1 to his/her brain-extracted mean fMRI volume: 



1. FSL FLIRT linear 6 degrees of freedom registration of T1 to mean fMRI. 
2. Apply transformation from (1) to the WM mask. 
3. The fMRI mean is then registered to the T1 and WM mask from (1) and (2) with FLIRT boundary-

based registration cost function.  
4. The transformations from (1) and (3) are then concatenated to produce a single affine 

transformation from native T1 to native fMRI. 
Registration of Other Images: The transformation generated in the previous step is then used to register 
the following onto fMRI native space: brain mask, tissue-type masks, and parcellations. 

Intensity Normalization: fMRI data were normalized to a global 4D mean of 1000 using fslmaths -ing 
option. 

Nuisance Regression: For these data a 3-step nuisance regression procedure was utilized. First, the 
Independent Component Analysis-Automatic Removal of Motion Artifacts (ICA_AROMA) (Pruim et al., 
2015) was used to regress out motion related signal while preserving the temporal degrees of freedom 
in the data, which is necessary for the time-varying analyses employed. Second, the anatomical 
component-based noise correction method (aCompCor) (Behzadi et al., 2007) was implemented in 
Matlab and was used to regress out the first 5 principal components of WM and of ventricular CSF signal 
obtained from the fMRI space-eroded masks. Finally, global signal was regressed from the fMRI data. 

Demean and Detrend: Each voxel across time was mean-centered and a linear trend was removed with 
the Matlab detrend function. 

Bandpass Filtering: A first order Butterworth filter (0.009 – 0.08 Hz) was applied to the data via the 
Matlab butter and filtfilt functions.  

Parcellation timeseries: The final fMRI voxel time courses were then averaged for each region of interest 
(ROI) in the parcellation, to obtain the timeseries that were used to generate static and time-varying 
functional connectivity matrices.   
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