Supplementary Information

Attenuation
The basic model is described by
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where subscript i stands for the strains i = 1,2 and superscript p, s, and a stand for
presymptomatic, symptomatic, and asymptomatic infections. We assume that individuals

exhibiting clinical symptoms (I°) are isolated and therefore do not transmit the virus.

Basic reproduction number. We applied the next-generation approach®? to compute the basic
reproduction number of the epidemic. The infected compartments are Ey, IV, I§, I3, E,, 17,15, 1.
The next-generation (i.e., transition) matrix is defined as FV ~1, where F describes the production

of new infected and V describes transitions between infected states.
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We used Matlab R2020b (eig function) to find the eigenvalues of the matrix FV~1. The matrix

has two nonzero eigenvalues, corresponding to the reproductive numbers for each strain: R} =

ai'Dp'ﬁ +(1_ai)'Da'ﬂ'ﬁ-

_—/ -
presymptomatic asymptomatic

Initial conditions. We initialize the epidemic timeline at t = 0 with I = I = 750, E; = E, =
250. We examined the effect of initial conditions (Fig. S1) to show that the initial conditions do

not have a significant effect on the evolution of the attenuated strain.

Impact of NPIs. Throughout the main text, we use the term “Impact of NPIs” (x-axis in Fig. 2,

Fig. 3, Fig. 5). Itis defined as 1 — gm—i", where B, and Bqx are given in the figure captions.

max

Equilibria. Our system cannot reach an endemic equilibrium (steady positive E and/or [
compartments) because we neglect host recruitment (% < 0 always). To compute the disease-

free equilibrium (E = I = 0), we set the rate of change of all state variables to zero. Solving the

system of algebraic equations, we find a disease-free equilibrium,
(S*Ey, E3 177 IV I5*, I3, 18, 18, R}, R3) = (5%,0,0,0,0,0,0,0,0, N — S*),

where S*, the number of susceptible individuals at equilibrium, can take values within the range

0 < §* < N depending on the initial conditions and disease dynamics.

Test-evasion
We add an additional compartment, Q for quarantined, for infected individuals that are isolated

after receiving a positive test result. We note that symptomatic cases (/°) are isolated due to
clinical symptoms, regardless of testing. Quarantined individuals (Q) are treated as if they are

symptomatic, hence leave quarantine after D, days. We assume the test-evasive strain incurs a



cost of infectiousness, ¢ > 0, such that 8, = (1 — ¢) - B,. We assume a proportion p of the
population (except for the Q compartment) is tested daily and that d,, d, are the sensitivities
(true positive rates) of the test for the detectable and the test-evasive strain, respectively. We
neglect false-positive results, assuming 100% test specificity (FPR=0). Exposed (E) and infected
(I%, 1%, 1P7) compartments are likely tested after exposure to an infected or due to symptoms (mild
for IP, more severe for I5). However, we neglect early detection and assume only infected may
test positive, as most of those exposed individuals test negative®. Susceptible individuals (S) may
also be tested due to exposure to infecteds, or due to symptoms similar to but independent of
COVID-19. Susceptible individuals may also be tested to obtain a clean bill of health (e.g., for
travel purposes) or as part of a testing effort for individuals not exhibiting symptoms. Individuals
in the removed compartment (R) are also tested, because they may not be aware they were

previously infected.

The model with testing is described by (changed from Eqg. S1 are in bold)

ds S S S2.1
=By WHm )= Q=05 +u, (21
15)
dE; S o Ei (82.2)
@ =y Wit =7
arr E;, IP (S2.3)
b
i K g (s24
dt D, Dy ‘
dIf E, I? . (S2.5)
dt:(l_ai 7—D_a_pdlll
dQ; Q: (S2.6)
ar =~ P do U+ I+ — 5
dr; I* I¥ Q; (S2.7)

—_— e — 4=
dt D, D D



Epidemiological metrics used in Fig. 6 in the main text, and Fig. S4 and Fig. S5 in the Sl are

Daily actual cases B B2
Z Z
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Basic reproduction number with testing. We computed the basic reproduction number of the
epidemic using the next-generation approach similarly to the attenuation model. The infected
compartments are E;, I?, I§,I¢, Q,, E,, I}, I3, I£, Q,. The next-generation (i.e., transition) matrix is
defined as FV~1, where F describes the production of new infected and V describes transitions

between infected states.

F =
Ei| I} 1 17 Q| Ex| I 2 2 Q;
E,| 0| S|oO STolo] o o] 0o |o

By Bou-y
I’l’ 0 0 0 0 0| O 0 0 0 0
510 0 0 0 0| O 0 0 0 0
410 0 0 0 0| O 0 0 0 0
Q.10 0 0] o Jo|o] o o] o |o
E, | O 0 0 0 00 S0 S| 0
BN Buy

112) 0 0 0 0 0| O 0 0 0 0
510 0 0 0 0| O 0 0 0 0
910 0 0 0 0| O 0 0 0 0
Q,| O 0 0 0 0| O 0 0 0 0




E, 4 1 1 |Q1 E, 4 2 2 | Q2
E4 1 0 0 0 0 0 0 0 0 0
Z
Ii’ ! i+p 0 0 0 0 0 0 0 0
Z D,
- d,
I3 0 1 1 0 0 0 0 0 0 0
D, | D
+p
-d,
| (d-ay| 0 0o | 1 |o 0 0 0 0 |0
- B
+p
-d,
Q1 0 —p —p —p 1 0 0 0 0 0
dy | dy | -dy | D
E, 0 0 0 0 0 1 0 0 0 0
Z
IZ 0 0 0 0 0 _Q i+p 0 0 0
Z D,
- d,
I3 0 0 0 0 0 0 1 1 0 0
5 | B
+p
- d,
I £ 0 0 0 0 0 (1 —ay 0 0 i 0
Z D,
+p
-d,
Q, 0 0 0 0 |0 0 | —p | —p |1
cdy | +dp | -dy |Ds




We used Matlab R2020b (eig function) to find the eigenvalues of the matrix FV 1. The matrix

has two nonzero eigenvalues, corresponding to the reproductive numbers for each strain: R} =
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See parameter Table 1 in the main text. The numerators are the expected number of secondary
infections per day. The denominators are the sums of removal rates from each compartment,

where p - d; is the daily detection rate.



Supplementary Figures
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Figure S1: Effective NPIs allow for the evolution of the attenuated virus from rarity. The
evolution of the attenuated strain is defined by its frequency increasing from the initial
frequency. In the main text, we set the number of individuals initially infected with each of the
strains to be equal (infected with attenuated strain are 50% of total infected). Here we examine
the evolution of the attenuated strain when the initial number of individuals infected with the
attenuated strain is 0.05% of the total infected. (a) These results demonstrate that the attenuated
strain can evolve from rarity under a wide range of conditions. (b) To allow the evolution of the
attenuated strain from rarity, stronger and earlier NPIs should be applied (compare to Fig. 3 in
the main text). Here, finax = 1.2, a; = 0.6, @, = 0.05. Initial conditions: It = 1500, 1§ =0,
E, = 499,E, = 1.



(a) (b)

1.5 £ 0.9 2.0
o
0.55 c e -
o © S ated ©
= E £ 0.8 evolves 7
£ - 0451 O & r157
2 ® © =
Q= S u—
€2 T 207 g
39 0.351 2 gv 2
“5 Jr—u' \ﬂru!ent Atte_nuated t1.0 f c | JIE
c 3 strain evolves strain evolves Yo g 1.0u5
S g w D
T & 0.25] g Hoe g
g © £ & 5
=i = c £
= O - Virulent
I S v . L0.5 ©
S 0.154 5 205 strain evolves 2
S o © ©
g 2 g
]
0.05 M 0.5 2047 . : . ‘ ‘ 0.0
00 01 02 03 04 05 06 07 00 01 02 03 04 05 06 07
Impact of NPIs Impact of NPIs

Figure S2: The effect of symptomatic rate (a;) on the evolution of the attenuated strain. (a)
For a given u (relative infectiousness of the attenuated strain), if the impact of NPIs is such that
the virulent strain would evolve (Fig. S2a, orange), the relative fitness of the attenuated strain
increases with a, (larger fraction of symptomatic). However, if the impact of NPIs is such that
attenuated strain would evolve (Fig. S2a, purple), the relative fitness of the attenuated strain
decreases with a,. Nevertheless, these results show that for a given y, the threshold for the
evolution of the attenuated strain (contour line) is independent of a, and depends only on the
impact of NPIs. (b) Evolution of attenuated strain with a, = 0.5. Comparing to Fig. 2 in the main
text (a, = 0.05), the relative fitness of the attenuated strain decreases while the relative fitness of
the virulent strain increases throughout the range of parameters. However, the threshold of
evolution for the attenuated strain does not change (contour line). Here, (8) u = 0.6. (b) a, =
0.5.
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Figure S3: The effect of the cost of infectiousness on the evolution of the test-evasive strain.
(a) Without a cost of infectiousness, and with all else being equal, the test-evasive strain will
always evolve. (b) Increased testing rate selects for test-evasive strains despite an increased cost
of infectiousness. Effective NPIs and low detectability select for test-evasive strains. However,
here we further increase the cost of infectiousness (compare to Fig. 5 in main text) and show that
a higher cost of infectiousness reduces the range of conditions for the evolution of the test-
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evasive strain. Here, a; = 0.6, @, = 0.6,u = 0.6,d; =0.9.(8) c =0,p = sl (b) c = 0.02.
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Figure S4: Effects of decreased detectability without cost of infectiousness on
epidemiological metrics. These results demonstrate the outcomes of two separate epidemic
outbreaks: (i) exclusively by a detectable strain (black lines) and (ii) exclusively by a test-evasive
strain (green lines), under three testing regimes (solid, dashed, dotted lines). We consider
decreased detectability without cost of infectiousness (¢ = 0). These results are similar to Fig. 6
in the main text. However, in this case, the number of actual cases for the test-evasive scenario is
always higher than for the detectable strain (compare panel a here with panel a in Fig. 6 of the
main text). § = 0.42 (Impact of NPl = 0.65), u = 0.6, = 0.6, a, = 0.6,d; = 0.9,c = 0.
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Figure S5: Effect of decreased detectability on daily percent of positive tests. These results
demonstrate the outcomes of two separate epidemic outbreaks: (i) exclusively by a detectable
strain (black lines) and (ii) exclusively by a test-evasive strain (green lines), under three testing
regimes (solid, dashed, dotted lines). Daily % of positive tests increases with testing rate,
however only mildly when detectability is low (compare solid, dashed, dotted lines). Daily % of
positive tests also increases with detectability (green lines). Here, § = 0.42 (Impact of NPI =
0.65),u =0.6,a; =0.6,a, =0.6,d; =1,c = 0.01.
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