
Supplementary Information 

Attenuation  
The basic model is described by   
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where subscript 𝑖 stands for the strains 𝑖 = 1,2 and superscript p, s, and a stand for 

presymptomatic, symptomatic, and asymptomatic infections. We assume that individuals 

exhibiting clinical symptoms (𝐼𝑠) are isolated and therefore do not transmit the virus. 

Basic reproduction number. We applied the next-generation approach1,2 to compute the basic 

reproduction number of the epidemic. The infected compartments are 𝐸1, 𝐼1
𝑝, 𝐼1

𝑠 , 𝐼1
𝑎, 𝐸2, 𝐼2

𝑝, 𝐼2
𝑠 , 𝐼2

𝑎. 

The next-generation (i.e., transition) matrix is defined as 𝐹𝑉−1, where F describes the production 

of new infected and V describes transitions between infected states. 
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We used Matlab R2020b (eig function) to find the eigenvalues of the matrix 𝐹𝑉−1. The matrix 

has two nonzero eigenvalues, corresponding to the reproductive numbers for each strain: 𝑅0
𝑖 =

𝛼𝑖 ⋅ 𝐷𝑝 ⋅ 𝛽⏟      
𝑝𝑟𝑒𝑠𝑦𝑚𝑝𝑡𝑜𝑚𝑎𝑡𝑖𝑐

+ (1 − 𝛼𝑖) ⋅ 𝐷𝑎 ⋅ 𝜇 ⋅ 𝛽⏟            
𝑎𝑠𝑦𝑚𝑝𝑡𝑜𝑚𝑎𝑡𝑖𝑐

. 

Initial conditions. We initialize the epidemic timeline at 𝑡 = 0 with 𝐼1
𝑎 = 𝐼2

𝑎 = 750, 𝐸1 = 𝐸2 =

250. We examined the effect of initial conditions (Fig. S1) to show that the initial conditions do 

not have a significant effect on the evolution of the attenuated strain. 

Impact of NPIs. Throughout the main text, we use the term “Impact of NPIs” (x-axis in Fig. 2, 

Fig. 3, Fig. 5). It is defined as 1 −
𝛽𝑚𝑖𝑛

𝛽𝑚𝑎𝑥
, where 𝛽𝑚𝑖𝑛 and 𝛽𝑚𝑎𝑥 are given in the figure captions. 

Equilibria. Our system cannot reach an endemic equilibrium (steady positive 𝐸 and/or 𝐼 

compartments) because we neglect host recruitment (
𝑑𝑆

𝑑𝑡
≤ 0 always). To compute the disease-

free equilibrium (𝐸 = 𝐼 = 0), we set the rate of change of all state variables to zero. Solving the 

system of algebraic equations, we find a disease-free equilibrium,  

(𝑆∗, 𝐸1
∗, 𝐸2

∗, 𝐼1
𝑝∗, 𝐼2

𝑝∗, 𝐼1
𝑠∗, 𝐼2

𝑠∗, 𝐼1
𝑎∗, 𝐼2

𝑎∗, 𝑅1
∗, 𝑅2

∗) = (𝑆∗, 0,0,0,0,0,0,0,0,𝑁 − 𝑆∗), 

where 𝑆∗, the number of susceptible individuals at equilibrium, can take values within the range 

0 ≤ 𝑆∗ ≤ 𝑁 depending on the initial conditions and disease dynamics. 

Test-evasion 
We add an additional compartment, 𝑄 for quarantined, for infected individuals that are isolated 

after receiving a positive test result. We note that symptomatic cases (𝐼𝑠) are isolated due to 

clinical symptoms, regardless of testing. Quarantined individuals (𝑄) are treated as if they are 

symptomatic, hence leave quarantine after 𝐷𝑠 days. We assume the test-evasive strain incurs a 



cost of infectiousness, 𝑐 > 0, such that 𝛽2 = (1 − 𝑐) ⋅ 𝛽1. We assume a proportion 𝑝 of the 

population (except for the 𝑄 compartment) is tested daily and that 𝑑1, 𝑑2 are the sensitivities 

(true positive rates) of the test for the detectable and the test-evasive strain, respectively. We 

neglect false-positive results, assuming 100% test specificity (FPR=0). Exposed (𝐸) and infected 

(𝐼𝑠, 𝐼𝑎, 𝐼𝑝) compartments are likely tested after exposure to an infected or due to symptoms (mild 

for 𝐼𝑝, more severe for 𝐼𝑠). However, we neglect early detection and assume only infected may 

test positive, as most of those exposed individuals test negative3. Susceptible individuals (𝑆) may 

also be tested due to exposure to infecteds, or due to symptoms similar to but independent of 

COVID-19. Susceptible individuals may also be tested to obtain a clean bill of health (e.g., for 

travel purposes) or as part of a testing effort for individuals not exhibiting symptoms. Individuals 

in the removed compartment (𝑅) are also tested, because they may not be aware they were 

previously infected.  

The model with testing is described by (changed from Eq. S1 are in bold)   
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Epidemiological metrics used in Fig. 6 in the main text, and Fig. S4 and Fig. S5 in the SI are  

Daily actual cases  𝐸1
𝑍
+
𝐸2
𝑍

 

Daily confirmed cases 𝑝 ⋅ 𝑑1 ⋅ (𝐼1
𝑎 + 𝐼1

𝑝+𝐼1
𝑠) + 𝑝 ⋅ 𝑑2 ⋅ (𝐼2

𝑎 + 𝐼2
𝑝+𝐼2

𝑠) 

Daily % positive tests 𝑝 ⋅ 𝑑1 ⋅ (𝐼1
𝑎 + 𝐼1

𝑝+𝐼1
𝑠) + 𝑝 ⋅ 𝑑2 ⋅ (𝐼2

𝑎 + 𝐼2
𝑝+𝐼2

𝑠)

𝑝 ⋅ (𝑁 − 𝑄1 −𝑄2)
 

 

Basic reproduction number with testing. We computed the basic reproduction number of the 

epidemic using the next-generation approach similarly to the attenuation model. The infected 

compartments are 𝐸1, 𝐼1
𝑝, 𝐼1

𝑠, 𝐼1
𝑎, 𝑄1, 𝐸2, 𝐼2

𝑝, 𝐼2
𝑠, 𝐼2

𝑎 , 𝑄2. The next-generation (i.e., transition) matrix is 

defined as 𝐹𝑉−1, where F describes the production of new infected and V describes transitions 

between infected states. 
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We used Matlab R2020b (eig function) to find the eigenvalues of the matrix 𝐹𝑉−1. The matrix 

has two nonzero eigenvalues, corresponding to the reproductive numbers for each strain: 𝑅0
𝑖 =

𝛼𝑖⋅𝛽

(𝑝⋅𝑑𝑖 +
1

𝐷𝑝
)

⏟    
𝑝𝑟𝑒𝑠𝑦𝑚𝑝𝑡𝑜𝑚𝑎𝑡𝑖𝑐

+
(1−𝛼𝑖)⋅𝜇⋅𝛽

(𝑝⋅𝑑𝑖 +
1

𝐷𝑎
)⏟    

𝑎𝑠𝑦𝑚𝑝𝑡𝑜𝑚𝑎𝑡𝑖𝑐

. 

See parameter Table 1 in the main text. The numerators are the expected number of secondary 

infections per day. The denominators are the sums of removal rates from each compartment, 

where 𝑝 ⋅ 𝑑𝑖 is the daily detection rate. 

 

 

  



Supplementary Figures 
 

                           (a)                                                                            (b) 

  

Figure S1: Effective NPIs allow for the evolution of the attenuated virus from rarity. The 

evolution of the attenuated strain is defined by its frequency increasing from the initial 

frequency. In the main text, we set the number of individuals initially infected with each of the 

strains to be equal (infected with attenuated strain are 50% of total infected). Here we examine 

the evolution of the attenuated strain when the initial number of individuals infected with the 

attenuated strain is 0.05% of the total infected. (a) These results demonstrate that the attenuated 

strain can evolve from rarity under a wide range of conditions. (b) To allow the evolution of the 

attenuated strain from rarity, stronger and earlier NPIs should be applied (compare to Fig. 3 in 

the main text). Here, 𝛽max = 1.2, 𝛼1 = 0.6, 𝛼2 = 0.05. Initial conditions: 𝐼1
𝑎 = 1500, 𝐼2

𝑎 = 0 , 
𝐸1 = 499, 𝐸2 = 1. 

  



                           (a)                                                                            (b) 

 

Figure S2: The effect of symptomatic rate (𝜶𝟐) on the evolution of the attenuated strain. (a) 

For a given 𝜇 (relative infectiousness of the attenuated strain), if the impact of NPIs is such that 

the virulent strain would evolve (Fig. S2a, orange), the relative fitness of the attenuated strain 

increases with 𝛼2 (larger fraction of symptomatic). However, if the impact of NPIs is such that 

attenuated strain would evolve (Fig. S2a, purple), the relative fitness of the attenuated strain 

decreases with 𝛼2. Nevertheless, these results show that for a given 𝜇, the threshold for the 

evolution of the attenuated strain (contour line) is independent of 𝛼2 and depends only on the 

impact of NPIs. (b) Evolution of attenuated strain with 𝛼2 = 0.5. Comparing to Fig. 2 in the main 

text (𝛼2 = 0.05), the relative fitness of the attenuated strain decreases while the relative fitness of 

the virulent strain increases throughout the range of parameters. However, the threshold of 

evolution for the attenuated strain does not change (contour line). Here, (a) 𝜇 =  0.6. (b) 𝛼2 = 

0.5. 

  



 

                           (a)                                                                            (b) 

 

Figure S3: The effect of the cost of infectiousness on the evolution of the test-evasive strain. 

(a) Without a cost of infectiousness, and with all else being equal, the test-evasive strain will 

always evolve. (b) Increased testing rate selects for test-evasive strains despite an increased cost 

of infectiousness. Effective NPIs and low detectability select for test-evasive strains. However, 

here we further increase the cost of infectiousness (compare to Fig. 5 in main text) and show that 

a higher cost of infectiousness reduces the range of conditions for the evolution of the test-

evasive strain. Here, 𝛼1 = 0.6, 𝛼2 = 0.6, 𝜇 = 0.6, 𝑑1 = 0.9. (a) 𝑐 = 0, 𝑝 =
10.9

103
. (b) 𝑐 = 0.02.  

 

 

 

  



 

Figure S4: Effects of decreased detectability without cost of infectiousness on 

epidemiological metrics. These results demonstrate the outcomes of two separate epidemic 

outbreaks: (i) exclusively by a detectable strain (black lines) and (ii) exclusively by a test-evasive 

strain (green lines), under three testing regimes (solid, dashed, dotted lines). We consider 

decreased detectability without cost of infectiousness (𝑐 = 0). These results are similar to Fig. 6 

in the main text. However, in this case, the number of actual cases for the test-evasive scenario is 

always higher than for the detectable strain (compare panel a here with panel a in Fig. 6 of the 

main text). 𝛽 = 0.42 (Impact of NPI = 0.65), 𝜇 = 0.6, 𝛼1 = 0.6, 𝛼2 = 0.6, 𝑑1 = 0.9, 𝑐 = 0. 

  



 

Figure S5: Effect of decreased detectability on daily percent of positive tests. These results 

demonstrate the outcomes of two separate epidemic outbreaks: (i) exclusively by a detectable 

strain (black lines) and (ii) exclusively by a test-evasive strain (green lines), under three testing 

regimes (solid, dashed, dotted lines). Daily % of positive tests increases with testing rate, 

however only mildly when detectability is low (compare solid, dashed, dotted lines). Daily % of 

positive tests also increases with detectability (green lines). Here, 𝛽 = 0.42 (Impact of NPI = 

0.65), 𝜇 = 0.6, 𝛼1 = 0.6, 𝛼2 = 0.6, 𝑑1 = 1, 𝑐 = 0.01. 
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