Supplementary Material

Mapping dopaminergic projections in the human brain with restingstate fMRI

Marianne Oldehinkel, Alberto Llera, Myrthe Faber, Ismael Huertas, Jan K. Buitelaar, Bastiaan R. Bloem, Andre F. Marquand, Rick C. Helmich, Koen V. Haak, Christian F. Beckmann

Content:

1. Resting-state fMRI data of the Human Connectome Project dataset
2. Connectopic mapping of the striatum in the Human Connectome Project dataset
3. Inter-subject and inter-session variability in the second-order striatal connectivity mode 4
4. Within-subject correspondence between second-order striatal connectivity mode and DaT SPECT scan
5. Investigating the second-order striatal connectivity mode in Parkinson's disease
6. Post-hoc correlations with tobacco and alcohol use for all significant TSM coefficients 11
7. Post-hoc analyses of age and sex
8. Post-hoc analyses using different usage thresholds for tobacco and alcohol use 14
9. References
10. Subject IDs from all HCP and PPMI subjects included in our analyses

1. Resting-state fMRI data of the Human Connectome Project dataset

We used resting-state fMRI data from the Human Connectome Project (HCP), an exceptionally high-quality, publicly available neuroimaging dataset.¹ HCP participants were scanned on a customized 3 Tesla Siemens Skyra scanner (Siemens AG, Erlanger, Germany) and underwent two sessions of two 14.4 minute multi-band accelerated (TR=0.72s) resting-state fMRI scans with an isotropic spatial resolution of 2mm. Here, we included participants from the S1200 release who completed at least one resting-state fMRI session (2x14.4 minutes) and for whom data was reconstructed with the r227 reconstruction algorithm. (The reconstruction algorithm was upgraded in late April 2013 from the original 177 ICE version to the 227 upgraded ICE version. As the reconstruction version has been shown to make a notable signature on the data difference in fMRI that can make а large data analysis (for details see https://wiki.humanconnectome.org/display/PublicData/Ramifications+of+Image+

Reconstruction+Version+Differences), we only included participants with r227 reconstructions). This resulted in the inclusion of 839 participants (aged 22-37 years; 458 females). Resting-state fMRI data were preprocessed according to the HCP minimal processing pipeline² which included corrections for spatial distortions and head motion, registration to the T1w structural image, resampling to 2mm MNI152 space, global intensity normalization and high-pass filtering with a cut-off at 2000s. The data were subsequently denoised using ICA-FIX –an advanced independent component analysis-based artefact removal procedure³–, and smoothed with a 6mm kernel.

2. Connectopic mapping of the striatum in the Human Connectome Project dataset

We estimated connection topographies from the HCP resting-state fMRI data using the first session (2x14.4 minutes) for each subject. To this end, we used connectopic mapping,⁴ a novel method that enables the dominant modes of functional connectivity change within the striatum to be traced on the basis of the connectivity between each striatal voxel and the rest of the brain (see Figure 1). In previous work we showed that the dominant mode (zeroth-order mode) of connectivity in the striatum obtained with connectopic mapping represented its anatomical subdivision into putamen, caudate and NAcc. Since higher-order modes are restricted by lower-order modes, we decided to take the anatomical subdivision in the striatum into account by applying connectopic mapping in the current work to the left and right putamen and caudate-NAcc striatal subregions separately, thereby also increasing regional specificity. When referring

to the second-order mode of connectivity in striatum we thus refer to the combination of the second-order connectivity modes of putamen and caudate-NAcc. We did not apply connectopic mapping to the NAcc and caudate separately as the left NAcc and right NAcc only include 136 voxels and 127 voxels respectively. We expect that this very small region is too homogenous in terms of connectivity with cortex to estimate reliable overlapping connectivity modes. Masks for the striatal regions were obtained by thresholding the respective regions from the Harvard-Oxford atlas at 25% probability.

In brief, we rearranged the fMRI time-series data from each striatal subregion and all grey-matter voxels outside the striatum into two time-by-voxels matrices. Since the latter is relatively large, we reduced its dimensionality using a lossless singular value decomposition (SVD). We then computed the correlation between the voxel-wise striatal time-series data and the SVD-transformed data from outside the striatum, and subsequently used the η^2 coefficient to quantify the similarities among the voxel-wise fingerprints.⁴ Next, we applied the Laplacian eigenmaps non-linear manifold learning algorithm⁵ to the acquired similarity matrix, which resulted in a series of vectors representing the dominant modes of functional connectivity change. Note that this can be done at the group level by using the average of the individual similarity matrices or individually for each subject (as used for statistical analysis). We selected the second-order striatal connectivity mode (both the average and subject-specific modes) for further analyses.

Finally, to enable statistical analysis over these connection topographies, we fitted spatial statistical models to the second-order connectivity mode of each striatal subregion to provide an accurate representation of the topography in a small number of coefficients. For this, we use a 'trend surface modelling' (TSM) approach,⁶ which involves fitting a set of polynomial basis functions defined by the coordinates of each striatal location to predict each individual subject's connection topography. We fit these models using Bayesian linear regression,⁷ where we employed an empirical Bayes approach to set model hyperparameters. Full details are provided elsewhere,⁷ but this essentially consists of finding the model hyperparameters (controlling the noise- and the data variance) by maximizing the model evidence or marginal likelihood. This was achieved using conjugate gradient optimization. For fixed hyperparameters, the posterior distribution over the trend coefficients can be computed in closed form. This, in turn, enables predictions for unseen data points to be computed. We used the maximum a-posteriori estimate

of the weight distribution as an indication of the importance of each trend coefficient in further analyses. To select the degree of the interpolating polynomial basis set, we fit these models across polynomials of degree 2–5 and then compared the different model orders using a Scree plot analysis.⁸ This criterion strongly favoured a polynomial of degree 2 (6 TSM coefficients) for the putamen subregion and a polynomial of degree 4 (12 TSM coefficients) for the caudate-NAcc subregion. The polynomials summarized the connectivity modes well, explaining the following *mean*±*s.d.* of the variance: left putamen: 90.5±4.16%, right putamen: 90.2±4.64%, left caudate-NAcc: 88.6±2.54%, right caudate-NAcc: 89.4±2.15%.

3. Inter-subject and inter-session variability in the second-order striatal connectivity mode

The subject-specific second-order striatal connectivity modes were highly consistent across the two fMRI sessions (*mean*±*s.d.:* ρ =0.98±0.07; averaged across all four subregions), which is in line with what we have demonstrated previously for other brain regions and for the zeroth-order and first-order mode of connectivity in striatum.^{4, 9} Both the variations across subjects and the reproducibility within subjects are illustrated in Figure S1 (819 of the 839 participants completed two resting-state fMRI sessions). Inter-class correlation (ICC(2,k)), which indexes measurement consistency for a putative biomarker^{10, 11} also showed excellent reproducibility of the subject-specific connectivity modes for all four subregions, while still being sensitive to inter-individual differences. This was assessed through a permutation test on the session 1-to session 2 spatial correlations (N=10000) within and between subjects (Table S1).

Striatal subregion	ICC [bootstrapped 95% CI]	Within- subject correlation	Between- subject correlation	Within vs between permutation test
left putamen	0.960 [0.951 - 0.965]	0.9843	0.9641	<i>p</i> <0.0001
left caudate-NAcc	0.974 [0.968 - 0.978]	0.9701	0.9655	<i>p</i> =0.0941
right putamen	0.961 [0.952 - 0.967]	0.9806	0.9760	<i>p</i> =0.0251
right caudate-NAcc	0.974 [0.968 - 0.978]	0.9812	0.9769	<i>p</i> =0.0002

Table S1. Interclass Correlation Coefficients (ICCs) between the two scanning sessions and the session 1-to session 2 within-subject and between-subject spatial correlations. CI=confidence interval.

Figure S1. Inter-subject and inter-session (within-subject) variability in the second-order mode of connectivity in striatum. Individual-subject connectivity modes are shown for 10 randomly selected HCP subjects (from a total of 839). This figure shows variations between subjects as well as variations between sessions for the same subjects.

4. Within-subject correspondence between second-order striatal connectivity mode and DaT SPECT scan

In the main manuscript we demonstrated that the second-order striatal connectivity mode at the group-level (obtained by averaging this mode across all 839 HCP subjects) showed a very high spatial correlation (r=0.884) with the group-level DaT SPECT image of striatum (obtained by averaging the DAT SPECT images across all 209 PPMI controls). We also aimed to demonstrate that this mapping can be replicated at the within-subject level by investigating the within-subject spatial correspondence between this connectivity mode and the DaT SPECT scan acquired in the PPMI dataset. However, while the PPMI dataset has resting-state fMRI data available for a small subsample of its participants (14 controls with one resting-state fMRI dataset each, and 82 Parkinson's disease patients with 130 resting-state fMRI datasets combined (in case of multiple assessments per subject they were separated by at least one year), it is of a relatively low temporal and spatial resolution (TR=2400ms, 210 time points, 3.3mm isotropic resolution compared to the HCP data: TR=720ms, 2400 time points, 2.0mm isotropic resolution). While this resolution is sufficient for typical resting-state fMRI analyses, the precise delineation of the very fine-grained and overlapping connectivity modes using connectopic mapping calls for highresolution data. The single subject connectivity modes in the PPMI dataset (as opposed to the HCP single subject modes and group-level modes) might therefore not be of sufficient quality and reliable for every subject. To address this issue we first computed the spatial correlation of each subject's individual connectivity mode with that of the group-average HCP connectivity mode as well as with the DaT SPECT scan of each subject, see Figure S2. In this analysis, the second-order striatal connectivity mode was modelled separately (and correlations were calculated separately) for the left and right putamen and caudate-NAcc subregions. This revealed highly significant positive correlations (0.68 > r < 0.91, all p < 4.0e21) across both controls and patients, suggesting that if the connectivity mode of a subject resembles the HCP group-average connectivity mode –assumed to be an index of good quality– a high spatial similarity can be observed between the connectivity mode and the DaT SPECT scan of that subject. Next we selected those subjects with good quality connectivity modes as determined by a spatial correlation of r > 0.5 with the group-average connectivity mode in the HCP dataset. Within this sample of 73-86 datasets from Parkinson's disease patients and 6-8 datasets from controls (dependent on the striatal subregion), we not only replicated the spatial correspondence between

the connectivity mode and DaT SPECT scan at the group-level (patients: r=0.714; control group: r=0.721) but also observed *within-subject* spatial correlations of (0.44>r<0.63; mean=0.58, 95% CI = [0.56,0.60]) between the connectivity mode and DaT SPECT scan, see Figure S3. While we were able to replicate the spatial correlation between the second connectivity mode and the DaT SPECT scan at the *within-subject* level, this correlation (r=0.58) is not as high as the spatial correlations observed in the group level (i.e., r=0.721 and r=0.714 for PPMI controls and Parkinson's disease patients respectively, and r=0.884 between the DaT SPECT scan in PPMI controls and the connectivity mode in HCP participants). This is however not surprising given the relatively low temporal and spatial resolution of the resting-state fMRI scan of the PPMI dataset. However to our knowledge, there is currently no dataset available that includes both a high-resolution resting-state fMRI scan and a DAT-SPECT scans from the same participants.

Figure S2. Spatial correlations of the subject-specific second connectivity modes with the mean HCP connectivity mode and the DaT SPECT scan. These plots shows that when the connectivity mode of a subject resembles the HCP group-average connectivity mode –assumed to be an index of good quality– a high spatial similarity can be observed between the connectivity mode and the DaT SPECT scan of that subject. Red dots represent control participants, black dots patients with Parkinson's disease.

Figure S3. Within-subject correlations between the second connectivity mode and DaT SPECT scan. These correlations were obtained in a subsample of the PPMI dataset (6-8 datasets from controls and 73-82 datasets from Parkinson's disease patients) with connectivity modes displaying high spatial correlations (r>0.5) with the mean HCP connectivity mode. Red dots represent control participants, black dots represent patients with Parkinson's disease.

5. Investigating the second-order striatal connectivity mode in Parkinson's disease

Patients with Parkinson's Disease underwent two 10-minute resting-state fMRI sessions, i.e., a placebo session and L-DOPA session, separated by at least a day on a 3T Siemens Magnetom Prisma^{fit} scanner. Resting-state fMRI scans were obtained with an interleaved high-resolution multiband sequence (TR=0.860s, voxel size=2.2mm isotropic, TE=34ms, flip angle=20°, 44 axial slices, multiband acceleration factor=4, volumes=700). Under both conditions, patients were scanned after overnight fasting in a practically defined OFF-state, i.e., more than 12h after intake of their last dose of dopaminergic medication. During one session patients were scanned after administration of L-DOPA, i.e., they received a standardized dose of 200/50 mg dispersible levodopa/benserazide. During the other session patients received placebo (cellulose powder). The cellulose powder and L-DOPA/benserazide were dissolved in water and therefore undistinguishable for the participants. Patients also received 10 mg domperidone to improve gastro-intestinal absorption of levodopa and reduce side effects. The order of sessions was counterbalanced and the resting-state fMRI scan started on average 48 min (range: 25-70 min) after taking L-DOPA or placebo. Symptom severity was assessed during both sessions with part III (assessment of motor function by a clinician) of the Movement Disorders Society Unified Parkinson Disease Rating Scale (UPDRS)¹² and an electromyogram (EMG) of the hand was recorded to monitor tremor-related activity. In light of ethical considerations, control participants did not receive L-DOPA and placebo, they just underwent two typical resting-state fMRI sessions during which the UPDRS was not administered.

Preprocessing of the resting-state fMRI data included removal of the first five volumes to allow for signal equilibration, primary head motion correction via realignment to the middle volume MCFLIRT,¹³ grand mean scaling, and spatial smoothing with a 6mm FWHM Gaussian kernel. The pre-processing pipeline was furthermore designed to rigorously correct for potential tremor-induced head-motion related artefacts. To this end, we used ICA-AROMA,¹⁴ an advanced ICA-based motion correction procedure to identify and remove secondary head motion-related artefacts with high accuracy while preserving signal of interest.^{14,15} Next, any remaining motion artefacts were removed from the data by regressing out the EMG parameters in addition to the white matter and CSF signal.¹⁶ Finally, the data were temporally filtered with a high-pass filter of 0.01Hz before being resampled to 2mm MNI152 space.

We applied connectopic mapping to the pre-processed resting-state fMRI data of each session from every participant and selected the second-order connectivity mode for further analyses, using the same procedure as in the HCP dataset. The subject-specific second-order striatal connectivity modes for control participants were again consistent across the two fMRI sessions *mean*±*s.d.* ρ =0.85±0.11 (individual subregions: left putamen: ρ =0.78±0.10, right putamen: ρ =0.82±0.12, left caudate-NAcc: ρ =0.87±0.14, and right caudate-NAcc: ρ =0.92±0.08). The polynomials also summarized the connectivity modes well, explaining mean±s.d. 78.6±11.8% of the variance across the striatum in controls (individual subregions: left putamen: 67.9±16.2%, right putamen: 65.3±21.2%, left caudate-NAcc: 90.5±4.28%, right caudate-NAcc: 90.8±5.63%), and explaining *mean*±*s.d.* 78.0±10.5% of the variance across striatum in Parkinson's disease patients under placebo (individual subregions: left putamen: 63.6±19.6%, right putamen: 69.5±13.0%, left caudate-NAcc: 88.5±4.69%, right caudate-NAcc: 90.4±4.58%). While these numbers are lower than observed for the connectivity modes obtained from the HCP dataset – which is not surprising given the exceptionally high quality of the HCP dataset— the reproducibility and explained variance of the TSM coefficients is still substantial.

6. Post-hoc correlations with tobacco and alcohol use for all significant TSM coefficients

Figure S4. The second-order mode of connectivity in striatum is associated with the amount of tobacco use. A strong association was observed between the TSM coefficients modelling the connectivity mode in the caudate-NAcc region and the total amount of tobacco use over the past week (GLM omnibus test: X^2 =49.55, p=0.002). To visualize this relationship, Pearson correlations between the individual TSM coefficients and the amount of use were computed and the correlations reaching significance (p<0.05) are shown in this figure.

Figure S5. The second-order mode of connectivity in striatum is associated with the amount of alcohol use. A strong association was observed between the TSM coefficients modelling the connectivity mode in the caudate-NAcc region and the total number of alcoholic drinks over the past week (GLM omnibus test: X^2 =64.45, p<0.001). To visualize this relationship, Pearson correlations between the individual TSM coefficients and the amount of use were computed and the correlations reaching significance (p<0.05) are shown in this figure.

7. Post-hoc analyses of age and sex

For all the analyses described in the main manuscript (effects of diagnosis and L-DOPA in the Parkinson's disease dataset and associations with smoking and drinking in the HCP dataset), we conducted post-hoc sensitivity analyses to rule out that the group differences and behavioural associations revealed by our analyses were dependent on age and sex. To this end, we conducted two types of analyses. First we repeated our main analyses by including covariates for age and sex in our statistical models in addition to the TSM coefficients, to verify that effects remained (close to) significant when including these demographic variables. Next, we only included age and sex in our statistical models (without the TSM coefficients) to verify that effects were not explained by age and/or sex only. The outcomes of these analyses (X^2 and *p*-value) are listed in Table S2 and demonstrate that none of the significant effects observed in our main analyses were dependent on age or sex. However, adding age and sex (age in particular) did increase the significance of findings substantially for the analyses investigating the L-DOPA induced changes. This might be explained by the fact that patients who are older often have more severe Parkinson's disease and do not benefit as much anymore from L-DOPA treatment.

	Original	analysis	Original analysis + Age & sex		Age & sex only	
	X^2	p-value	X^2	p-value	X^2	p-value
PUTAMEN						
Patients vs controls						
right tremor-dominant	27.17	0.007	27.21	0.018	0.48	0.786
Parkinson's disease						
UPDRS symptom severity						
right tremor-dominant	22.28	0.035	23.46	0.053	2.38	0.305
Parkinson's disease						
L-DOPA-placebo						
difference	34.07	0.001	46.14	< 0.001	2 4 2	0.200
left tremor-dominant	54.07	0.001	40.14	<0.001	2.42	0.299
Parkinson's disease						
L-DOPA-placebo						
difference	25 18	0.012	27.52	0.001	7 1 9	0.028
right tremor-dominant	23.40	0.012	57.55	0.001	7.10	0.020
Parkinson's disease						
CAUDATE-NACC						
Tobacco use	40.55	0.002	53 56	0.001	1.04	0.504
HCP dataset	49.33	0.002	33.30	0.001	1.04	0.394
Alcohol use HCP dataset	64.45	<0.001	174.87	<0.001	9.26	0.010

Table S2. Post-hoc analyses of age and sex.

8. Post-hoc analyses using different usage thresholds for tobacco and alcohol use

We also investigated whether the associations of the second-order mode of connectivity in striatum with the amount of tobacco use and alcohol use persisted under different usage thresholds. For both tobacco and alcohol use we chose a daily usage threshold lower ($\geq 2x$ tobacco/ $\geq 1x$ alcoholic drink) and a daily usage threshold higher ($\geq 8x$ tobacco/ $\geq 3x$ alcoholic drink) than the one used in the main analysis ($\geq 5x$ tobacco/ $\geq 3x$ light alcoholic and/or $\geq 1x$ hard liquor drinks a day). Please note that the aim of these analyses is not necessarily to show that effects remain significant as under different usage thresholds the sample size and statistical power will change, but rather that the explained variance remains high. Nevertheless, apart from the low usage threshold for alcohol use, all effects also remained significant, as can be observed in Tables S3 and S4, indicating that the associations with tobacco and alcohol use were not specific to the chosen usage threshold. However, a pattern that is visible is that associations become stronger when only including the highest users in this population-based sample in the analysis.

	Original analysis: ≥5x tobacco use a day N=38		≥2x tobacco use a day N=62		≥8x tobacco use a day N=30	
	X^2	p-value	X^2	p-value	X^2	p-value
Tobacco use HCP dataset <i>caudate-NAcc</i>	49.55	0.002	37.96	0.035	70.54	<0.001

Table S3. Post-hoc analyses using different thresholds for tobacco use.

	Original analysis: ≥3x light alcoholic and/or ≥1x hard liquor drinks a day N=30		≥1x alcoholic drinks a day (light and/or hard liquor) N=103		≥3x alcoholic drinks a day (light and/or hard liquor) * N=26	
	X^2	p-value	X^2	p-value	X^2	p-value
Alcohol use HCP dataset <i>caudate-NAcc</i>	64.45	<0.001	29.94	0.187	196.57	<0.001

Table S4. Post-hoc analyses using different thresholds for alcohol use.

9. References

- 1. Van Essen DC, Smith SM, Barch DM, et al. The WU-Minn human connectome project: an overview. *Neuroimage*. 2013;80:62-79.
- 2. Glasser MF, Sotiropoulos SN, Wilson JA, et al. The minimal preprocessing pipelines for the Human Connectome Project. *Neuroimage*. 2013;80:105-124.
- **3.** Salimi-Khorshidi G, Douaud G, Beckmann CF, Glasser MF, Griffanti L, Smith SM. Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers. *Neuroimage*. 2014;90:449-468.
- 4. Haak KV, Marquand AF, Beckmann CF. Connectopic mapping with resting-state fMRI. *NeuroImage*. 2018/04/15/ 2018;170:83-94.
- **5.** Belkin M, Niyogi P. Laplacian eigenmaps and spectral techniques for embedding and clustering. Paper presented at: Advances in neural information processing systems, 2002.
- 6. Gelfand AE, Diggle P, Guttorp P, Fuentes M. *Handbook of spatial statistics*: CRC press; 2010.
- 7. Bishop CM. Graphical models. *Pattern recognition and machine learning*. 2006;4:359-422.
- **8.** Cattell RB. The scree test for the number of factors. *Multivariate behavioral research*. 1966;1(2):245-276.
- **9.** Marquand AF, Haak KV, Beckmann CF. Functional corticostriatal connection topographies predict goal-directed behaviour in humans. *Nature human behaviour*. 2017;1:s41562-41017-40146.
- **10.** Shrout PE, Fleiss JL. Intraclass correlations: uses in assessing rater reliability. *Psychological bulletin.* 1979;86(2):420.
- **11.** Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. *Journal of chiropractic medicine*. 2016;15(2):155-163.
- 12. Goetz CG, Tilley BC, Shaftman SR, et al. Movement Disorder Society-sponsored revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. *Movement disorders: official journal of the Movement Disorder Society.* 2008;23(15):2129-2170.
- **13.** Jenkinson M, Bannister P, Brady M, Smith S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. *Neuroimage*. 2002;17(2):825-841.
- 14. Pruim RH, Mennes M, Buitelaar JK, Beckmann CF. Evaluation of ICA-AROMA and alternative strategies for motion artifact removal in resting state fMRI. *Neuroimage*. 2015;112:278-287.
- **15.** Parkes L, Fulcher B, Yu M, Fornitod A. An evaluation of the efficacy, reliability, and sensitivity of motion correction strategies for resting-state functional MRI. *NeuroImage*. 2017.
- **16.** Helmich RC, Bloem BR, Toni I. Motor imagery evokes increased somatosensory activity in Parkinson's disease patients with tremor. *Human Brain Mapping*. 2012;33(8):1763-1779.

10. Subject IDs from all HCP and PPMI subjects included in our analyses

100206	129129	155635	181636	212823	385450	580044	784565
100610	129331	155938	182032	213017	386250	580347	788674
101006	129533	156031	182436	213421	387959	580650	789373
101107	129634	156435	183034	213522	389357	580751	792766
101309	129937	156536	183337	214524	391748	581450	792867
101410	130114	157437	183741	214625	392447	583858	793465
101915	130316	157942	185341	214726	392750	585256	800941
102008	130417	158136	185442	217126	393247	587664	802844
102109	130619	158338	185846	219231	393550	588565	803240
102311	130720	158843	185947	220721	394956	589567	804646
102513	130821	159138	186040	221218	395251	590047	809252
102614	131217	159340	186141	223929	395756	592455	810439
102715	131419	159441	186545	227432	395958	594156	810843
103010	131722	159744	186848	227533	397154	597869	812746
103111	131823	159845	187143	228434	397861	599065	814548
103212	132017	159946	187345	231928	406432	599469	814649
104012	132118	160729	187547	233326	406836	599671	815247
104416	133019	160830	187850	236130	412528	601127	816653
104820	134021	160931	188145	237334	413934	604537	818455
105014	134223	161630	188347	238033	419239	609143	818859
105620	134425	161832	188448	239136	421226	611938	820745
105923	134627	162026	188549	248339	422632	613235	822244
106016	134829	162228	188751	250932	424939	613538	825048
106521	135124	162733	189349	255740	432332	615441	825553
106824	135225	162935	189450	256540	436239	615744	825654
107018	135528	163129	191033	257542	436845	616645	826454
107220	135629	163331	191235	257845	441939	617748	827052
107321	135730	163836	191336	257946	445543	618952	828862
107422	136126	164030	191841	263436	449753	620434	832651
107725	136227	164131	191942	268749	453441	622236	833148
108020	136631	164636	192035	268850	453542	623137	833249
108121	136732	164939	192136	270332	454140	623844	835657
108222	137027	165032	192237	274542	456346	626648	837560
108323	137229	165234	192641	275645	459453	627852	837964
108525	137431	165436	192843	280739	461743	633847	841349
108828	137532	165638	193441	280941	463040	634748	843151
109123	137633	165941	193845	281135	467351	635245	844961
109325	137936	166438	194443	283543	468050	644044	845458
109830	138130	166640	194645	285345	473952	645450	849264
110007	138332	167036	194746	285446	475855	647858	849971
111211	138837	167238	194847	286347	479762	654350	852455
111413	139233	167440	195041	286650	480141	654552	856463
112112	139435	168240	195445	287248	481042	656253	856968
112314	139839	168341	195950	289555	481951	657659	867468
112516	140117	168745	196346	290136	486759	660951	869472
112920	140319	168947	196851	295146	492754	662551	870861
113316	140824	169040	196952	297655	495255	663755	871762

Table S5: Subject IDs from the 839 HCP subjects used in our connectoppic mapping analysis.

113922	140925	169444	197348	298455	497865	664757	872562
114116	141119	169545	197651	299154	500222	667056	873968
114217	141422	169747	198047	299760	506234	668361	877269
114318	141826	169949	198249	300618	510225	671855	878776
114419	142424	170631	198350	300719	510326	673455	878877
114621	143224	170934	198653	303119	512835	675661	880157
114823	143426	171128	198855	303624	513130	677766	882161
115017	144125	171330	199352	304727	513736	679568	884064
115219	144731	171431	199453	305830	516742	679770	886674
115724	144832	171532	200008	308129	517239	680250	888678
115825	144933	171633	200109	308331	518746	680452	891667
116221	145127	171734	200311	309636	519647	683256	894067
116423	145531	172029	200513	310621	519950	686969	894774
116524	145632	172130	200917	311320	520228	687163	898176
116726	145834	172433	201414	314225	521331	689470	901038
117021	146129	172534	201717	316633	522434	690152	901442
117728	146331	172635	201818	316835	523032	692964	902242
117930	146432	172938	202113	317332	524135	693764	905147
118023	146533	173132	202719	318637	525541	694362	907656
118124	146634	173334	203418	320826	529549	695768	908860
118225	146735	173435	203923	321323	529953	698168	910241
118528	146937	173536	204016	322224	531536	700634	910443
118831	147030	173637	204319	325129	536647	701535	911849
119025	147636	173738	204420	329844	540436	706040	912447
119126	147737	173839	204521	330324	541640	707749	917558
119732	148133	173940	204622	333330	545345	715041	919966
120414	148335	174841	205220	334635	547046	715950	922854
120515	148436	175136	206222	339847	548250	720337	923755
120717	148941	175237	206323	341834	549757	724446	926862
121315	149236	175338	206525	342129	550439	725751	927359
121416	149741	175540	206727	346137	552241	727553	929464
121618	149842	175742	206828	346945	553344	727654	930449
121921	150625	176037	206929	348545	555348	728454	933253
122317	150726	176441	207123	349244	555651	729254	942658
122418	150928	176744	207426	350330	555954	731140	947668
122620	151021	176845	208024	352132	557857	734247	952863
122822	151324	177140	208125	352738	558657	735148	953764
123420	151425	177241	208327	353740	558960	737960	955465
123521	151728	177342	208428	355239	559457	742549	957974
123723	151829	177645	208630	356948	561444	744553	958976
123824	151930	178142	209127	358144	561949	748662	962058
123925	152225	178243	209228	360030	562345	749058	965771
124220	152427	178647	209329	361234	562446	751550	966975
124624	152831	178748	209531	361941	565452	753150	970764
124826	153025	178849	209834	362034	566454	757764	971160
125222	153126	178950	210011	365343	567052	759869	972566
125424	153227	179245	210112	366042	567961	760551	973770
126426	153631	179346	210415	368551	568963	763557	978578
126628	153732	179952	211114	368753	569965	765864	979984
127226	153833	180129	211215	376247	571144	766563	983773
127327	153934	180230	211316	377451	571548	769064	987074
12/630	154229	180432	211619	378756	572045	770352	989987
127731	154330	180533	211821	378857	573249	771354	990366
127832	154532	180735	211922	379657	573451	773257	991267

128026	154734	180836	212015	380036	576255	774663	992673
128127	154835	180937	212116	381038	578057	779370	993675
128329	154936	181131	212217	381543	578158	782561	996782
128935	155231	181232	212419	382242	579867	783462	788674

PPMI	Image ID	PPMI	Image ID	PPMI	Image ID
Subject ID	DaT SPECT	Subject ID	DaT SPECT	Subject ID	DaT SPECT
3000	323662	3350	339901	3637	388521
3004	341194	3351	339902	3639	388523
3008	341195	3353	339904	3651	339008
3009	341196	3355	341236	3651	355956
3011	341198	3357	339907	3656	339014
3013	341200	3358	339908	3658	339016
3016	341202	3361	339911	3662	355221
3029	388468	3362	339912	3668	388528
3053	341207	3363	338780	3750	388535
3055	341209	3368	339917	3754	360616
3057	341211	3369	339918	3756	360617
3064	341217	3370	339919	3759	363950
3069	341221	3389	388504	3765	363951
3070	341222	3390	388505	3767	388536
3071	341223	3401	340345	3768	363952
3072	341224	3404	340346	3769	360618
3073	341225	3405	340347	3779	453700
3074	341226	3410	340351	3794	388545
3075	341227	3411	340352	3796	388147
3085	388470	3414	340354	3803	355230
3087	388472	3424	340363	3804	354344
3100	341230	3438	340388	3805	354345
3103	341233	3450	340398	3806	354346
3104	339536	3452	339923	3807	355231
3106	340418	3453	339924	3811	360620
3109	340423	3457	339928	3812	355232
3112	340426	3458	339929	3813	355233
3114	340430	3460	341243	3816	363953
3115	340431	3464	341245	3817	388148
3151	341018	3466	339932	3850	337832
3156	341021	3468	339934	3851	337833
3157	341022	3478	360613	3852	337834
3160	341023	3479	363945	3853	337835
3161	341024	3480	388509	3854	337836
3165	341027	3481	388510	3855	337445
3169	341031	3503	340400	3857	337837
3171	341033	3515	340408	3859	337839
3172	341034	3517	341248	3907	388556
3188	388483	3518	339537	3908	363957
3191	388486	3521	339539	3917	388563
3200	341036	3523	339541	3950	341083
3201	341037	3524	339542	3952	341085
3202	341038	3525	339543	3955	388565
3204	341040	3526	339544	3959	355241
3206	341042	3527	339545	3965	388573
3208	341044	3541	355215	3966	388574

Table S6: The 209 PPMI controls with DaT SPECT data used in our analysis.

3213	341049	3543	363946	3967	388576
3215	341051	3544	388514	3968	388577
3216	341052	3551	339550	3969	388578
3217	341053	3554	339552	4004	339032
3219	341055	3554	358138	4007	339035
3221	341057	3555	339553	4008	339036
3222	341058	3563	339559	4009	339037
3235	388488	3565	339561	4010	339038
3237	388490	3569	339564	4014	389268
3257	341067	3570	339565	4018	339045
3260	341068	3571	389245	4032	388583
3264	341070	3572	338781	4063	355246
3270	341074	3576	338785	4067	388593
3271	341075	3600	338788	4079	388596
3274	341077	3611	338797	4090	343886
3276	341079	3613	338799	4095	354353
3277	388491	3614	338800	4100	360623
3286	388494	3615	338801	4104	363963
3300	339889	3619	339001	4105	388600
3301	339890	3620	339002	4116	388613
3310	339896	3624	341251	4118	388615
3316	342187	3627	342204	4139	388627
3318	342189	3635	388519	4140	388628
3320	342191	3636	388520		

PPMI Subject ID	Image ID DaT SPECT	Image ID MRI	Diagnosis
3310	339896	369414	Control
3318	342189	374882	Control
3350	339901	515208	Control
3351	339902	508245	Control
3353	339904	515216	Control
3361	339911	581042	Control
3369	339918	544617	Control
3389	388504	367349	Control
3551	339550	548987	Control
3563	339559	548989	Control
3565	339561	560369	Control
3769	360618	362609	Control
4018	339045	365285	Control
4032	388583	367390	Control
3107	419849	378215	PD
3108	419850	378223	PD
3116	418649	366137	PD
3116	419854	417052	PD
3118	418470	362555	PD
3118	446107	430138	PD
3119	418650	382277	PD
3119	446108	430147	PD
3120	418651	374854	PD
3122	419241	382284	PD
3123	418652	382289	PD
3123	449008	440114	PD
3124	418653	387304	PD
3124	449009	440118	PD
3125	418654	387314	PD
3125	449010	440128	PD
3126	418655	397752	PD
3126	449011	440131	PD
3128	419553	395434	PD
3128	504427	466848	PD
3130	360608	355962	PD
3130	419554	417000	PD
3132	436066	423718	PD
3132	504428	498892	PD
3134	388480	369013	PD
3134	436067	436351	PD
3327	389212	362478	PD
3327	486550	412180	PD
3332	388500	378540	PD
3352	418905	372319	PD
3354	418906	372327	PD
3359	419866	397593	PD
3360	419867	393662	PD
3364	419868	393672	PD
3365	419659	397597	PD

Table S7: Patients with Parkinson's disease and controls with resting-state fMRI data & DaT SPECT datafrom the PPMI dataset used in our analysis.

			1
3366	419869	397624	PD
3367	419870	393674	PD
3371	418673	365166	PD
3372	436070	369487	PD
3372	446121	420330	PD
3373	418674	387316	PD
3373	449019	440174	PD
3374	418675	393614	PD
3374	446122	430165	PD
3377	418677	393628	PD
3377	449020	440186	PD
3378	418678	387324	PD
3380	418679	393636	PD
3380	468270	449575	PD
3383	355208	351070	PD
3383	419560	415707	PD
3385	360612	353398	PD
3385	436861	415713	PD
3386	388502	369048	PD
3387	389214	357590	PD
3387	436071	417033	PD
3392	388507	372995	PD
3392	442969	436390	PD
3552	418922	378354	PD
3556	418923	372348	PD
3556	504848	482323	PD
3557	504849	482329	PD
3559	418926	372359	PD
3559	504850	491605	PD
3574	419676	414623	PD
3575	419677	581115	PD
3575	418690	365225	PD
3585	449026	440198	PD
3586	468275	449581	PD
3587	468276	449584	PD
3591	388516	373018	PD
3591	504435	491626	PD
3592	388517	373035	PD
3592	442973	436404	PD
3593	388518	369096	PD
3593	436073	430199	PD
3593	504436	507400	PD
3758	418698	374893	PD
3758	419880	402067	PD
3760	418499	362591	PD
3787	419576	412194	PD
3800	389258	393684	PD
3808	419885	402071	PD
3815	419886	581145	PD
3818	446139	440242	PD
3819	419270	395448	PD
3822	419271	382366	PD
3822	449035	440262	PD
3823	419272	395585	PD

3823	449036	440267	PD
3824	419579	395592	PD
3824	468279	449614	PD
3825	419273	393639	PD
3825	504450	549048	PD
3826	419274	395600	PD
3826	468280	449625	PD
3828	419580	395605	PD
3828	468281	449661	PD
3829	419581	395614	PD
3830	419582	412202	PD
3830	495006	468929	PD
3831	419583	402267	PD
3832	419584	412209	PD
3832	495007	468935	PD
3834	419585	415724	PD
3834	504454	473094	PD
3835	436875	415731	PD
3838	436075	423748	PD
3838	504456	515249	PD
3869	436077	415744	PD
3870	363956	395313	PD
3870	486557	415751	PD
4005	419890	397646	PD
4011	418504	402285	PD
4019	418710	362640	PD
4019	446143	417057	PD
4021	419277	430178	PD
4022	418712	365294	PD
4022	446145	417065	PD
4029	468288	468943	PD
4030	363959	356036	PD
4030	419596	415756	PD
4030	495322	468949	PD
4034	388585	367425	PD
4034	436083	423755	PD
4035	388587	369183	PD
4035	436084	423762	PD
4035	504466	475680	PD
4038	388590	367446	PD
4038	436085	430210	PD