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SUPPLEMENTARY TABLE I: IMPUTATION AND CLASSIFICATION WORKFLOWS ADDITIONAL RESULTS 

 Training 
dataset 

imputation 

Test dataset 
treatment 

Classifier Imputa-
tion time 

(s) 

Classificat
ion time 

(s) 

AUC Accuracy Sensitivity 
(positive class 

MCI/AD) 

Specificity 
(positive class 

MCI/AD) 

Sensitivity 
(positive class AD) 

Specificity 
(positive class 

AD) 

A mean mean RF 0.002 1.974 0.871 0.680 0.786 0.824 0.839 0.878 

B class mean reduced 
feature 

RF 0.010 1.297 0.878 0.709 0.792 0.826 0.839 0.904 

C RF RF RF 11.520 1.950 0.889 0.743 0.864 0.795 0.828 0.913 

D mean reduced 
feature 

RF 0.002 2.029 0.867 0.632 0.767 0.818 0.914 0.831 

E RF reduced 
feature 

RF 11.444 1.860 0.876 0.716 0.839 0.789 0.839 0.896 

F PMM5 
multiple 

PMM5 
multiple 

modal imputed 
outcome 

3.179 0.021 0.839 0.740 0.833 0.743 0.548 0.976 

G PMM5 
multiple 

PMM5 
multiple 

RF ensemble 3.179 14.566 0.885 0.738 0.851 0.797 0.806 0.918 

H none none NB 0.000 0.003 0.885 0.713 0.699 0.900 0.796 0.945 

I PMM5 
multiple 

reduced 
feature 

RF ensemble 3.179 10.100 0.891 0.736 0.836 0.822 0.860 0.905 

J Mean Mean SVM 0.002 1.717 0.867 0.674 0.784 0.774 0.806 0.902 

K RF RF SVM 11.520 2.313 0.882 0.729 0.849 0.789 0.806 0.913 

L RF reduced 
feature 

SVM 11.520 1.694 0.893 0.727 0.823 0.845 0.871 0.895 

M PMM15 
mean 

RF RF 10.315 2.150 0.887 0.751 0.859 0.799 0.796 0.927 

N PMM15 
mean 

Reduced 
feature 

RF 10.315 0.318 0.884 0.712 0.843 0.772 0.860 0.899 

O PMM15 
mean 

RF SVM 10.315 0.122 0.888 0.749 0.868 0.787 0.817 0.920 

P PMM15 
mean 

Reduced 
feature 

SVM 10.315 0.142 0.874 0.714 0.857 0.743 0.828 0.907 

Ground truth with no missing data 

- - - RF - 0.862 0.9101 0.784 0.883 0.851 0.871 0.918 

- - - SVM - 0.125 0.9119 0.783 0.874 0.864 0.903 0.913 
- - - NB - 0.007 0.8944 0.722 0.706 0.939 0.838 0.929 
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Supplementary Fig. 1. Multiple Imputation by Chained Equations (MICE) using Predictive Mean 
Matching (PMM).  See [1]–[3] for further details.  
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Supplementary Fig. 2. MissForest imputation algorithm. See [4] for further details. 
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Supplementary Fig. 3. Imputation by Bayesian Principal Component 
Analysis (BPCA). The goal is to estimate the weights, loadings and 
noise (denote collectively as !) of a principal component analysis 
(PCA) of the data in the presence of missing values. Simultaneously, 
use the estimated PCA,	!, to generate imputed values for the values that 
are missing -Ymiss..	An iterative estimation method is used, where Ymiss	
is imputed first, then !	is estimated, followed by imputation	of	Ymiss	, 
etc. This series of alternating iterative steps is similar to the well-known 
Expectation Maximisation algorithm, but here the computation is on the 
posterior distribution (i.e. likelihood adjusted for prior) of !,	q(!),	and 
the posterior distribution of Ymiss	,	q(Ymiss,), rather than the likelihood. 
This method of missing value imputation is developed in [5], which is 
based on prior work in [6] and [7]. The version used in the paper was 
implemented in the pcaMethods package [8] in R [9].  
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