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SUPPLEMENTARY TABLE [: IMPUTATION AND CLASSIFICATION WORKFLOWS ADDITIONAL RESULTS

Training Test dataset Classifier Imputa- Classificat AUC Accuracy Sensitivity Specificity Sensitivity Specificity
dataset treatment tion time ion time (positive class (positive class (positive class AD) (positive class
imputation (s) (s) MCI/AD) MCI/AD) AD)
mean mean RF 0.002 1.974 0.871 0.680 0.786 0.824 0.839 0.878
class mean reduced RF 0.010 1.297 0.878 0.709 0.792 0.826 0.839 0.904
feature
RF RF RF 11.520 1.950 0.889 0.743 0.864 0.795 0.828 0.913
mean reduced RF 0.002 2.029 0.867 0.632 0.767 0.818 0.914 0.831
feature
RF reduced RF 11.444 1.860 0.876 0.716 0.839 0.789 0.839 0.896
feature
PMM5 PMM5 modal imputed 3.179 0.021 0.839 0.740 0.833 0.743 0.548 0.976
multiple multiple outcome
PMM5 PMM5 RF ensemble 3.179 14.566 0.885 0.738 0.851 0.797 0.806 0.918
multiple multiple
none none NB 0.000 0.003 0.885 0.713 0.699 0.900 0.796 0.945
PMM5 reduced RF ensemble 3.179 10.100 0.891 0.736 0.836 0.822 0.860 0.905
multiple feature
Mean Mean SVM 0.002 1.717 0.867 0.674 0.784 0.774 0.806 0.902
RF RF SVM 11.520 2.313 0.882 0.729 0.849 0.789 0.806 0.913
RF reduced SVM 11.520 1.694 0.893 0.727 0.823 0.845 0.871 0.895
feature
PMM15 RF RF 10.315 2.150 0.887 0.751 0.859 0.799 0.796 0.927
mean
PMM15 Reduced RF 10.315 0.318 0.884 0.712 0.843 0.772 0.860 0.899
mean feature
PMM15 RF SVM 10.315 0.122 0.888 0.749 0.868 0.787 0.817 0.920
mean
PMM15 Reduced SVM 10.315 0.142 0.874 0.714 0.857 0.743 0.828 0.907
mean feature
Ground truth with no missing data
- - RF - 0.862 0.9101 0.784 0.883 0.851 0.871 0.918
- - SVM - 0.125 0.9119 0.783 0.874 0.864 0.903 0.913
- - NB - 0.007 0.8944 0.722 0.706 0.939 0.838 0.929
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Supplementary Fig. 1. Multiple Imputation by Chained Equations (MICE) using Predictive Mean
Matching (PMM). See [1]-[3] for further details.
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Supplementary Fig. 2. MissForest imputation algorithm. See [4] for further details.
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Supplementary Fig. 3. Imputation by Bayesian Principal Component
Analysis (BPCA). The goal is to estimate the weights, loadings and
noise (denote collectively as 8) of a principal component analysis
(PCA) of the data in the presence of missing values. Simultaneously,
use the estimated PCA, 6, to generate imputed values for the values that
are missing -Ymiss. An iterative estimation method is used, where Ymiss
is imputed first, then 8 is estimated, followed by imputation of Ymiss,
etc. This series of alternating iterative steps is similar to the well-known
Expectation Maximisation algorithm, but here the computation is on the
posterior distribution (i.e. likelihood adjusted for prior) of 8, q(8), and
the posterior distribution of Ymiss, q(Ymiss,), rather than the likelihood.
This method of missing value imputation is developed in [5], which is
based on prior work in [6] and [7]. The version used in the paper was
implemented in the pcaMethods package [8] in R [9].
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