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1 BASE MODEL CONSTRUCTION

1 Base model construction

1.1 Platform for infectious disease dynamics simulation

We developed a deterministic compartmental model of COVID-19 transmission using the AuTuMN plat-

form, publicly available at https://github.com/monash-emu/AuTuMN/. Our repository allows for the rapid

and robust creation and stratification of models of infectious disease epidemiology and includes plug-

gable modules to simulate heterogeneous population mixing, demographic processes, multiple circulating

pathogen strains, repeated stratification and other dynamics relevant to infectious disease transmission. The

platform was created to simulate TB dynamics, being an infectious disease whose epidemiology differs

markedly by setting, such that considerable flexibility is desirable [1]. We have progressively developed

the structures of our platform over recent years, and further adapted it to be sufficiently flexible to permit

simulation of other infectious diseases for the purpose of this project.

1.2 Base COVID-19 model

Using the base framework of an SEIR model (susceptible, exposed, infectious, removed), we split the ex-

posed and infectious compartments into two sequential compartments each (SEEIIR). The two sequential

exposed compartments represent the non-infectious and infectious phases of the incubation period, with

the latter representing the “presymptomatic” phase such that infectiousness occurs during three of the six

sequential phases. For this reason, “active” is a more accurate term for the two sequential “I” compartments

and is preferred henceforward. The two infectious compartments represent early and late phases of active

disease, during which symptoms occur if the disease episode is symptomatic, and allow explicit represen-

tation of notification, case isolation, hospitalisation and admission to ICU. The “active” compartment also

includes some persons who remain asymptomatic throughout their disease episode, such that these com-

partments do not map directly to either persons who are infectious or those who are symptomatic (Figure

1).

The latently infected and infectious presymptomatic periods together comprise the incubation period,

with the incubation period and the proportion of this period for which patients are infectious defined by
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1 BASE MODEL CONSTRUCTION

input parameters described below. In general, two sequential compartments can be used to form a gamma-

distributed profile of transition to infectiousness following exposure if the progression rates for these two

compartments are equal, although in implementing this model the relative sojourn times in the two sequen-

tial compartments usually differed. Nevertheless, the profiles implemented are broadly consistent with the

empirically observed log-normal distribution of individual incubation periods [2].

The transition from early active to late active represents the point at which patients are detected (for

those persons for whom detection does eventually occur) and isolation then occurs from this point forward

(i.e. applies during the late disease phase only, see Section 2). This transition point is also intended to

represent the point of admission to hospital or transition from hospital ward to intensive care for patients

for whom this occurs (see Section 1.4).

Figure 1 – Unstratified compartmental model structure. S = susceptible, E = exposed, I =

active, R = recovered/removed. Depth of pink/red shading indicates the infectiousness of the

compartment.

1.3 Age stratification

All compartments of this base compartmental structure were stratified by age into five-year bands from 0-4

years of age through to 70-74 years of age, with the final age group being those aged 75 years and older.

Heterogeneous baseline contact patterns by age were incorporated using age-specific contact rates estimated

by Prem et al. 2017 [3], who combined survey response data with information on national demographic

characteristics to produce age-structured mixing matrices with these age groupings. These are then modified

by non-pharmaceutical interventions as described in Section 3. Our modelled age groups were chosen to

match these mixing matrices. The automatic demographic features of AuTuMN that can be used to simulate
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1 BASE MODEL CONSTRUCTION

births, ageing and deaths were not implemented, because the issues considered pertain to the short- to

medium-term and the immediate implementation of control strategies, for which population demographics

are less relevant.

1.4 Clinical stratification

The age-stratified late exposed/incubation and both the early and late active disease compartments were fur-

ther stratified into five “clinical” categories: 1) asymptomatic, 2) symptomatic ambulatory, never detected,

3) symptomatic ambulatory, ever detected, 4) ever hospitalised, never critical and 5) ever critically unwell

(Figure 2). The proportion of new infectious persons entering stratum 1 (asymptomatic) is age-dependent

(as described in Table 5). The proportion of symptomatic patients (strata 2 to 5) ever detected (strata 3

to 5) is set through a parameter that represents the time-varying proportion of all symptomatic patients

who are ever detected (the case detection rate, see Section 2). Of those ever symptomatic (strata 2 to 5), a

time-constant but age-specific proportion is considered to be hospitalised (entering strata 4 or 5). Of those

hospitalised (entering strata 4 or 5), a fixed proportion was considered to be critically unwell (entering

stratum 5, Figure 3).

1.5 Hospitalisation

For COVID-19 patients who are admitted to hospital, the sojourn time in the early and late active compart-

ments is modified, superseding the default values of the sojourn times for these compartments, as indicated

in Table 4. The point of admission to hospital is considered to be the transition from early to late active

disease, such that the sojourn time in the late disease represents the period of time admitted to hospital. For

patients admitted to ICU, admission to ICU occurs at this same transition point. For this group, the period

of time hospitalised prior to ICU admission is estimated as a proportion of the early active period, such that

the early active period represents both the period ambulatory in the community and the period in hospital

prior to ICU admission.
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1 BASE MODEL CONSTRUCTION

Figure 2 – Illustration of the implementation of the clinical stratification. Depth of pink/red

shading indicates the infectiousness of the compartment. Typical parameter values presented,

although the infectiousness of asymptomatic persons is varied in calibration.
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1 BASE MODEL CONSTRUCTION

Figure 3 – Illustration of the rationale for the clinical stratification.
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1 BASE MODEL CONSTRUCTION

1.6 Infectiousness

Asymptomatic persons are assumed to be less infectious per unit time active than symptomatic persons not

undergoing case isolation (typically by around 50%, although this is varied in calibration/uncertainty anal-

ysis). Infectiousness is also decreased for persons who have been detected to reflect case isolation, and for

those admitted to hospital or ICU to reflect infection control procedures (by 80% for both groups). Presymp-

tomatic individuals are presumed to have equivalent infectiousness to those with early active COVID-19.

1.7 Application of COVID-19-related death

Age-specific infection fatality rates (IFRs) were applied and distributed across strata 4 and 5, with no deaths

typically applied to the first three strata. A ceiling of 50% is set on the proportion of those admitted to ICU

(entering stratum 5) who die. If the infection fatality rate is greater than this ceiling, the proportion of

critically unwell persons dying was set to 50%, with the remainder of the infection fatality rate then applied

to the hospitalised proportion. Otherwise, if the infection fatality rate is less than half of the absolute

proportion of persons critically unwell, the infection fatality rate is applied entirely through stratum 5 (such

that the proportion of critically unwell persons dying in that age group becomes <50% and the proportion

of stratum 4 dying is set to zero). In the event that the infection fatality rate for an age group is greater

than the total proportion hospitalised (which is unusual, but could occur for the oldest age group under

certain parameter configurations), the remaining deaths are assigned to the asymptomatic stratum. This

approach was adopted for computational ease and is valid because the duration active for persons entering

this stratum is the same as for the other non-hospitalised strata, such that the dynamics are identical to

assigning the deaths to any of the first three strata. We used the age-specific IFRs previously estimated

from age-specific death data from 45 countries and results from national-level seroprevalence surveys [4]

as indicated in Table 5. We allowed IFRs to vary around the previously published point estimates in order

to incorporate uncertainty and to allow the IFRs to differ from the settings in which they were estimated

(see Calibration section).
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2 CASE DETECTION

Clinical stra-
tum

Stratum name Pre-symptomatic Early Late

1 Asymptomatic 0.5 0.5 0.5

2 Symptomatic ambulatory never detected 1 1 1

3 Symptomatic ambulatory ever detected 1 1 0.2

4 Hospitalised never critical 1 1 0.2

5 Ever critically unwell 1 1 0.2

Table 1 – Illustration of the relative infectiousness of disease compartments by clinical stratification
and stage of infection. Typical parameter values displayed.

1.8 Seasonal forcing

Seasonal forcing is implemented through a simple sinusoidal function that is multiplied by the contact

probability of the form:

contact probability(time) = cos((time− peak time)×2×π÷365)

× f orcing÷2

+average contact rate,

(1)

such that time is the time in days from the 31st December 2019 and peak time is the date of the win-

ter solstice (=173). forcing is the relative magnitude of peaks compared to troughs in the probability of

transmission per contact induced by seasonal forcing. This notation is consistent with that of others [5],

except that previous similar formulas present the minimum (summer) contact rate added to the seasonal

variation, whereas we consider the average (or equinox) contact rate to be a more intuitive parameter (i.e.

average contact rate = minimum contact rate+ f orcing ÷ 2 [5]).

2 Case detection

2.1 General approach

We calculate a time-varying case detection rate, being the proportion of all symptomatic cases (clinical

strata 2 to 5) that are detected (clinical strata 3 to 5). This proportion is informed by the number of tests

performed using the following formula:
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2 CASE DETECTION

CDR(time) = 1− e−shape×tests(time)

time is the time in days from the 31st December 2019 and tests(time) is the number of tests per capita

done on that date. To determine the value of the shape parameter, we solve this equation based on the

assumption that a certain daily testing rate tests(t) is associated with a certain CDR(t). Solving for shape

yields:

shape =
−log(1−CDR(t))

tests(t)

That is, if it is assumed that a certain daily per capita testing rate is associated with a certain proportion

of symptomatic cases detected, we can determine shape. As this relationship is not well understood and

unlikely to be consistent across all settings, we vary the CDR that is associated with a certain per capita

testing rate during uncertainty/calibration. Given that the CDR value can be varied widely, the purpose of

this is to incorporate changes in the case detection rate that reflect the empirical historical profile of changes

in testing capacity over time.

2.2 Testing data

Statewide daily testing data by date of test were provided by DHHS and applied to all health system clusters

to provide a broad profile of the variation in testing capacity over time, including the lower testing num-

bers in early June compared to at the peak of the epidemic (Figure 4). Data sparseness precluded us from

implementing separate functions for each individual health service cluster. For this application to Victoria,

the case detection proportion corresponding to a per capita rate of testing of one test per thousand popu-

lation per day was varied as a calibration parameter in creating the time-varying case detection proportion

function. Note that testing rates were typically considerably higher than one per thousand per day during

the period modelled, such that the actual modelled case detection proportion is considerably higher than the

case detection calibration parameter for most of the simulation period.
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2 CASE DETECTION

Figure 4 – Example case detection rate curves. 70 parameters for the case detection rate at a

given daily per capita testing rate were sampled at random from accepted values to produce this

graph.
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3 IMPLEMENTATION OF NON-PHARMACEUTICAL INTERVENTIONS

3 Implementation of non-pharmaceutical interventions

A major part of the rationale for the development of this model was to capture the past impact of non-

pharmaceutical interventions (NPIs) and produce future scenarios projections with the implementation or

release of such interventions.

3.1 Isolation and quarantine

For persons who are identified with symptomatic disease and enter clinical stratum 3, self-isolation is as-

sumed to occur and their infectiousness is modified as described above. The proportion of ambulatory

symptomatic persons effectively identified through the public health response by any means is determined

by the case detection rate as described above.

3.2 Community quarantine or “lockdown” measures

For all NPIs relating to reduction of human mobility or “lockdown” (i.e. all NPIs other than isolation

and quarantine), these interventions are implemented through dynamic adjustments to the age-assortative

mixing matrix. The baseline mixing matrices of Prem et al. [3] are synthetic and do not represent direct

observations or reports from surveys (in the case of the 144 countries to which they were extrapolated from

observations in the eight “POLYMOD” countries of Western Europe). Although synthetic, the matrices are

contextualised to national demographic information, including country-specific data that include household

size, workforce participation and school enrolment. Further, the matrices presented are easily machine-

readable and appear to be plausible representations of contact structures within these countries.

The matrices also have the major advantage of allowing for disaggregation of total contact rates by

location, i.e. home, work, school and other locations. This disaggregation allows for the simulation of

various NPIs in the local context by dynamically varying the contribution of each location to reflect the

historical implementation of the interventions.

The corresponding mixing matrix (denoted C0) is presented using the standard convention that a row

represents the average number of age-specific contacts per day for a contact recipient of a given age-group.

In other words, the element C0i, j is the average number of contacts per day that an individual of age-group

12



3 IMPLEMENTATION OF NON-PHARMACEUTICAL INTERVENTIONS

j makes with individuals of age-group i.

This matrix results from the summation of the four location-specific contact matrices provided by Prem

et al.: C0 =CH +CS +CW +CL, where CH , CS, CW and CL are the age-specific contact matrices associated

with households, schools, workplaces and other locations, respectively.

In our model, the contributions of the matrices CS, CW and CL vary with time such that the input contact

matrix can be written:

C(t) =CH + s(t)2CS +w(t)2CW + l(t)2CL

The modifying functions are each squared to capture the effect of the mobility changes on both the

infector and the infectee in any given interaction that could potentially result in transmission. The modifying

functions incorporate both macro-distancing and microdistancing effects, depending on the location.

3.3 School closures/re-openings

Reduced attendance at schools is represented through the function s(t), which represents the proportion of

all school students currently attending on-site teaching. If schools are fully closed, s(t) = 0 and CS does not

contribute to the overall mixing matrix C(t). s(t) is calculated through a series of estimates of the proportion

of students attending schools, to which a smoothed step function is fitted. Note that the dramatic changes

in this contribution to the mixing matrix with school closures/re-openings is a more marked change than

is seen with the simulation of policy changes in workplaces and other locations (which are determined by

empiric data and so do not vary so abruptly and do not fall to zero).

3.4 Workplace closures

Workplace closures are represented by quadratically reducing the contribution of workplace contacts to

the total mixing matrix over time. This is achieved through the scaling term w(t)2 which modifies the

contribution of CW to the overall mixing matrix C(t). The profile of the function w(t) is set by fitting a

polynomial spline function to Google mobility data for workplace attendance (Table 2).

13



3 IMPLEMENTATION OF NON-PHARMACEUTICAL INTERVENTIONS

3.5 Community-wide movement restriction

Community-wide movement restriction (or “lockdown”) measures are represented by proportionally reduc-

ing the contribution of the other locations contacts to the total mixing matrix over time. This is achieved

through the scaling term l(t)2 which modifies the contribution of CL to the overall mixing matrix C(t). The

profile of the function l(t) is set by fitting a polynomial spline function to an average of Google mobility

data for various locations, as indicated in Table 2.

3.6 Household contacts

The contribution of household contacts to the overall mixing matrix C(t) is fixed over time. Although

Google provides mobility estimates for residential contacts, the nature of these data are different from those

for each of the other Google mobility types in that they represent the time spent in that location rather

than the duration. The daily frequency with which people attend their residence is likely to be close to one

and we considered that household members likely have a daily opportunity for infection with each other

household member. Therefore, we did not implement a function to scale the contribution of household

contacts to the mixing matrix with time.

Prem “location” Approach Google mobility types

School Policy response Not applicable

Household Constant Not applicable

Workplace Google mobility Workplace

Other locations Google mobility Unweighted average of:

• Retail and recreation
• Grocery and pharmacy
• Parks
• Transit stations

Table 2 – Mapping of Google mobility data to contact locations (as defined by Prem et al.)
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4 SIMULATION OF LOCAL NPI IMPLEMENTATION DURING VICTORIA’S SECOND WAVE

3.7 Microdistancing

Interventions other than those that prevent people coming into contact with one another are thought to be

important to COVID-19 transmission and epidemiology, such as maintaining interpersonal physical distance

and the wearing of face coverings. We therefore implemented a “microdistancing” function to represent

reductions in the rate of effective contact that is not attributable to persons visiting specific locations and

so is not captured through Google mobility data. This microdistancing function reduces the values of all

elements of the mixing matrices by a certain proportion. These time-varying functions multiplicatively

scale the location-specific contact rate modifiers s(t), w(t) and l(t).

4 Simulation of local NPI implementation during Victoria’s second wave

4.1 School closures

The effect of Victorian school closures is captured through the timeline presented in Table 3.

Date of change Policy change Modification applied

to school contacts

contribution to

mixing matrix, s(t)

From model start Remote learning 0.1

26th May 400,000 school students return to school 0.393

9th June Remaining 618,000 school students return

to school

1

15



4 SIMULATION OF LOCAL NPI IMPLEMENTATION DURING VICTORIA’S SECOND WAVE

9th July Remote learning for stage 3 restrictions 0.1

Table 3 – Timeline used to implement Victorian school closure policies. The function is applied to both

metropolitan and regional clusters.

4.2 Macrodistancing in workplaces and other locations

The functions applied here are determined by the Google mobility data according to Table 2, as described

above, but are applied separately for each cluster. Because Google mobility data pertains to local gov-

ernment areas (LGAs), whereas health service clusters may receive patients from across the state, it was

necessary to map mobility data to clusters. Health service clusters’ overall mobility values in each location

were calculated using a weighted average of LGA mobility values according to the historical pattern of the

origin of patients presenting to services within each cluster.

As a hypothetical example, if 50% of patients historically presenting to Barwon South West health

cluster services come from the City of Geelong, the mobility data for the City of Geelong will contribute

50% of the Google mobility estimate of Barwon South West.

Historical patterns of patient presentations by health service cluster were provided by the Victorian

Department of Health and Human Services (DHHS).

4.3 Microdistancing approach

In this application to Victoria, the microdistancing function m(t) is comprised of two components: physical

distancing and face coverings. Both physical distancing and face coverings micro-distancing are applied

to the three non-household locations, such that the microdistancing function for non-household locations is

given by:

m(t) = d(t)2× f (t)2

16



5 BETWEEN CLUSTER MIXING

The two interventions are assumed to be independent and so are multiplicative. As for the macrodistancing

functions, the two functions of time are squared to represent their effects on both the infector and the

infectee in any potentially infectious interaction.

4.4 Physical distancing

The physical distancing function d(t) is a transposed and translated hyerbolic tan function. The parameters

of this function were estimated by using maximum a posteriori inference, with priors that penalised large

shape parameters (to avoid extremely rapid transitions). The proportions of respondents answering “always”

to YouGov surveys of Victorian residents asking “Thinking about the last 7 days, about how many people

from your household have you come into physical contact with (within 2 meters / 6 feet)?” were used as

input data. Resulting parameters were: shape, 0.262764; lower asymptote, 0.2803973; upper asymptote;

0.4421819; and inflection point, 15th July. The resulting function is presented in Figure 5.

4.5 Face coverings

Two separate face coverings microdistancing functions are employed, one for metropolitan and one for

regional health service clusters. These functions were fitted using the same methods as for physical distanc-

ing, using YouGov data on Victorian residents’ survey responses to the question “Thinking about the last 7

days, have you worn a face mask outside your home (e.g. when on public transport, going to a supermarket,

going to a main road)?”. Estimated parameters were: shape, 0.5261693; lower asymptote, 0.130469; upper

asymptote, 0.9143849; and inflection point, 23rd July (consistent with the policy change in metropolitan

Melbourne). This was applied directly to metropolitan clusters and translated ten days later for regional

clusters, where face coverings were mandated from the 2nd August. The resulting function is presented in

Figure 6.

5 Between cluster mixing

The preceding section describes the creation of heterogeneous mixing matrices by age for each of the nine

health service clusters individually. These mixing matrices are then combined to create a single time-

17



5 BETWEEN CLUSTER MIXING

Figure 5 – Physical distancing micro-distancing function (for all clusters) with data used

for fitting.
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5 BETWEEN CLUSTER MIXING

Figure 6 – Face coverings micro-distancing function for metropolitan Melbourne clusters

with data used for fitting.
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7 PARAMETERS

varying heterogeneous mixing matrix by cluster and age resulting in a 144 by 144 (9× 16 = 144) square

mixing matrix. The force of infection for an index cluster is calculated from the mixing matrices of the age-

assortative matrix for each of the clusters modelled. For clusters other than the index cluster, the mixing

matrices are multiplied by a parameter that represents the extent of inter-cluster mixing. This is then added

to the mixing matrix for the index cluster multiplied by 1−8× intercluster mixing (because there are eight

clusters other than the index cluster contributing to the mixing matrix) to create the final inter-cluster mixing

matrix. The upper limit of prior of the intercluster mixing parameter is set to be considerably less than one

ninth, to ensure most of the force of infection is contributed from the index cluster (Table 6).

6 Model initialisation

The model was commenced from approximately one to two weeks earlier than the actual beginning of Vic-

toria’s second wave (as determined by genomic analysis), in order that the distribution of infectious persons

distributes naturally across compartments as the model approaches the actual beginning of Victoria’s second

wave in early June. The actual start date selected is the 14th May. The infectious seed needed at this time

is then calibrated to ensure dynamics are realistic at the beginning of the second wave (see Table 6). The

infectious seed is distributed evenly across metropolitan clusters, consistent with the epidemic’s emergence

from metrpolitan Melbourne.

7 Parameters

7.1 Non-age-stratified parameters

Parameter Value Rationale

Incubation period Calibration
parameter, truncated
normal distribution,
mean 5.5 days

Estimates of the incubation period have included
5.1 days, 5.2 days and 4.8 days [6] [7] [8] [9]. A
systematic review [2] found that data are best
fitted by a log-normal distribution (mean 5.8 days,
CI 5.0 to 6.7, median 5.1 days). Our systematic
review [10] found that estimates of the mean
incubation period have varied from 3.6 to 7.4
days.

20



7 PARAMETERS

Continuation of Table 4

Parameter Value Rationale

Proportion of incubation
period infectious

50% Infectiousness is considered to be present
throughout a considerable proportion of the
incubation period, based on analyses of
confirmed source-secondary pairs [11] and early
findings that the incubation period was similar to
the serial interval [6]. The study of
source-secondary pairs was also the primary
reference cited by a review of the infectious period
that identified studies that quantified the
pre-symptomatic period, which concluded that the
median pre-symptomatic period could range from
less than one to four days [12].

Active period (regardless of
detection/isolation, for
clinical strata 1 to 3)

Calibration
parameter, truncated
normal distribution,
mean 6.5 days

This quantity is difficult to estimate, given that
identified cases are typically quarantined. Studies
in settings of high case ascertainment and an
effective public health response have suggested a
duration of greater than 5.5 days [9]. PCR
positivity, which may continue for up to two to
three weeks from the point of symptom onset [11]
[12], is difficult to interpret and does not
necessarily indicate infectiousness. Consistent
with these findings, the duration infectious for
asymptomatic persons has been estimated at 6.5
to 9.5 days [12] (although in our model, this would
include the pre-symptomatic infectious period).

Proportion of infectious
period before isolation or
hospitalisation can occur

0.333 Assumed

Disease duration prior to
admission for hospitalised
patients not critically unwell
(i.e. early active sojourn
time, stratum 4)

7.7 days Mean value from ISARIC cohort, as reported on
4th October 2020 in Table 6 [13], and similar to
the expected mean from earlier reports from
ISARIC [14]. This cohort represents high-income
countries better than low and middle-income
countries, with the United Kingdom contributing
data on the greatest number of patients, followed
by France. Earlier estimates of this quantity from
China included 4.4 days [6].

Duration of hospitalisation if
not critically unwell (late
active sojourn time, stratum
4)

11.6 days Obtained from the Victorian Agency for Health
Information
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7 PARAMETERS

Continuation of Table 4

Parameter Value Rationale

ICU duration (late active
sojourn time, stratum 5)

7.4 days Obtained from the Victorian Agency for Health
Information

Duration of time prior to ICU
for patients admitted to ICU

10.5 days Calculated as the sum of the time from symptom
onset to hospital admission (7.7 days above) plus
the duration from hospital admission to ICU
admission reported by October ISARIC report
(2.8 days) [13].

Relative infectiousness of
asymptomatic persons (per
unit time with active
disease)

Calibration
parameter, uniform
distribution, range
0.15 to 0.7

Assumed

Relative infectiousness of
persons admitted to hospital
or ICU

0.2 Assumed

Relative infectiousness of
identified persons in
isolation

0.2 Assumed

Proportion of hospitalised
patients ever admitted to
ICU

0.16 DHHS

Table 4 – Universal (non-age-stratified) model parameters. Point estimates are used as model
parameters except where ranges are indicated in calibration parameter table below.

7.2 Age-specific parameters
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7 PARAMETERS

Age group
(years)

Clinical
fractiona

Relative
susceptibility to
infection

Infection fatality
rate

Proportion of
symptomatic
patients hospi-
talised

0 to 4 0.29 0.36 3 ×10-5 0.0777

5 to 9 0.29 0.36 1 ×10-5 0.0069

10 to 14 0.21 0.36 1 ×10-5 0.0034

15 to 19 0.21 1 3 ×10-5 0.0051

20 to 24 0.27 1 6 ×10-5 0.0068

25 to 29 0.27 1 1.3 ×10-4 0.0080

30 to 34 0.33 1 2.4 ×10-4 0.0124

35 to 39 0.33 1 4.0 ×10-4 0.0129

40 to 44 0.40 1 7.5 ×10-4 0.0190

45 to 49 0.40 1 1.21 ×10-3 0.0331

50 to 54 0.49 1 2.07 ×10-3 0.0383

55 to 59 0.49 1 3.23 ×10-3 0.0579

60 to 64 0.63 1 4.56 ×10-3 0.0617

65 to 69 0.63 1.41 1.075 ×10-2 0.1030

70 to 74 0.69 1.41 1.674 ×10-2 0.1072

75 and above 0.69 1.41 5.748 ×10-2, b 0.0703

Source/
rationale

Model fitting to
age-distribution
of early cases in
China, Italy,
Japan,
Singapore, South
Korea and
Canada taken
from upper-left
panel of Figure
2b of [15].

Conversion of odds
ratios presented in
Table S15 of Zhang
et al. 2020 to relative
risks using data
presented in Table
S14 of the same
study [16].c

Estimated from
pooled analysis of
data from 45
countries from Table
S3 of O’Driscoll et al
[4]. Values
consistent with
previous estimates
using serosurveys
performed in Spain
[17].

Estimates from
the Netherlands
as the first wave
of infections de-
clined from 4th
May to 21st July
[18].

Table 5 – Age-stratified parameter values. Age-stratified parameters not varied during calibra-
tion, or varied through a common multiplier.
a Proportion of incident cases developing symptoms.
b Weighted average of IFR estimates for 70 to 79 and 80 and above age groups.
c Note the relative magnitude of these values are similar to those estimated by the analysis we use to estimate the age-specific clinical
fraction.[15]
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8 CALCULATION OF OUTPUTS

8 Calculation of outputs

8.1 Incidence

Incidence is calculated as any transitions into the early active compartment (“I”).

8.2 Hospital occupancy

This is calculated as the sum of three quantities:

1. All persons in the late active compartment in clinical stratum 4, representing those admitted to hos-

pital but never critically unwell.

2. All persons in the late active compartment in clinical stratum 5, representing those currently admitted

to ICU.

3. A proportion of the early active compartment in clinical stratum 5, representing those who will be

admitted to ICU at a time in the future. This proportion is calculated as the quotient of 1) the differ-

ence between the pre-ICU period and the pre-hospital period for clinical stratum 4, divided by 2) the

total pre-ICU period. That is, a proportion of the pre-ICU period is considered to represent patients

in hospital who have not yet been admitted to ICU.

8.3 ICU occupancy

This is calculated as all persons in the late active compartment in clinical stratum 4.

8.4 Seropositive proportion

This is calculated as the proportion of the population in the recovered (“R”) compartment. Although very

similar numerically to the attack rate, persons who died of COVID-19 are not included in the denominator.

8.5 COVID-19-related mortality

This is calculated as all transitions representing death, exiting the model. This is implemented as depletion

of the late active compartment.
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9 CALIBRATION

8.6 Notifications

Local case notifications are calculated as transitions from the early to the late active compartment for clinical

strata 3 to 5.

9 Calibration

We calibrated the model using the adaptive Metropolis algorithm described by Haario et al. [19]. A standard

Metropolis algorithm with fixed proposal distribution parameters was used for the first 500 iterations to

initiate the covariance matrix before the adaptive algorithm commenced.

9.1 Rationale for cluster-specific targets

For all clusters (both metropolitan and regional), we included the time series of daily notifications for that

cluster as a calibration target, using a normal distribution for the likelihood function. A normal distribution

is preferred because the mapping process for the notifications for each cluster results in these quantities not

being integer-valued.

In addition, we include time series for the following quantities at the state level. Because these quantities

are counts, Poisson distributions are used in likelihood calculations:

• Daily new COVID-19 notifications

• Daily new hospital admissions

• Daily new ICU admissions

• Daily deaths

9.2 Assigning targets to clusters

Hospital admissions and ICU admissions can be mapped directly to a health service cluster. Health service

clusters include all health care (including public hospitals, private, rehab, acute, mental health, etc.) and

some metropolitan services have changed cluster assignment over the years. Mapping was performed as

at August 2020. However, for the other two indicators used (notifications and deaths), mapping was not

25



9 CALIBRATION

possible because these events do not necessarily occur within a health service cluster. Therefore, the lo-

cal government area (LGA) of residence of the person notified or dying is considered. Each notification

and death is split proportionately across the health service clusters to which they would typically present,

according to historical data on hospital presentations for each LGA provided by DHHS. (Note that only no-

tifications are considered as calibration targets, although these considerations are relevant to the comparison

between data and modelled outputs undertaken for validation purposes.)

Parameter name Distribution type Distribution parameters

Incubation period (see Table 4) Truncated normal Mean 5.5 days, standard

deviation 0.97 days, truncation

<1 day

Infectious period (for clinical

strata 1 to 3) (see Table 4)

Truncated normal Mean 6.5 days, standard

deviation 0.77 days, truncation

<1 day

Risk of infection per contact

(before adjustments)

Uniform 0.015 to 0.06

Intercluster mixing (proportion

of infection contributed by each

non-index cluster)

Uniform Range 0.005 to 0.05

Infectious seed Uniform 10 to 30

Seasonal forcing (relative

change to contact probability

from mid-summer to mid-winter)

Uniform Range 0 to 0.5
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9 CALIBRATION

Continuation of Table 6

Parameter name Distribution type Distribution parameters

Clinical fraction adjuster Truncated normal Mean 1, standard deviation 0.2,

truncation <0.5

Relative infectiousness of

asymptomatic patients

Uniform Range 0.15 to 0.7

Hospitalisation proportions

adjuster

Normal Range 0.5 to 3

Infection fatality rate adjuster Normal Range 0.5 to 4

Proportion of symptomatic

cases that would be detected

with daily per capita testing rate

of one per thousand

Uniform Range 0.2 to 0.5

Disease duration prior to

admission to ICU (early

disease, stratum 5 sojourn time)

Truncated normal Mean 12.7 days, standard

deviation 4 days, truncated <3

days

Effect of physical distancing Normal Range 0 to 0.5

Effect of face coverings Normal Range 0 to 0.5
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9 CALIBRATION

Continuation of Table 6

Parameter name Distribution type Distribution parameters

Five parameters to adjust the

probability of infection given

contact in each of the four

metropolitan clusters for

Barwon South West

Truncated normal Mean 1, standard deviation 0.5,

truncation <0.5

One parameter to adjust the

probability of infection given

contact in all of the remaining

four regional clusters

Truncated normal Mean 1, standard deviation 0.5,

truncation <0.5

Table 6 – Calibration parameters.

9.3 Variation of age-specific proportion parameters using “adjuster” parameters

The following sections describe age-specific parameters that were varied during calibration. These propor-

tion parameters are modified through “adjuster” parameters that are not strictly multipliers, but are rather

implemented in such a way as to scale the base parameter value while ensuring that the adjusted parameter

remains a proportion (with range zero to one). In each of these cases, the adjuster parameters can be consid-

ered as multiplicative factors that are applied to the odds ratio that is equivalent to the baseline proportion

to be adjusted. Specifically, the adjusted proportion is equal to:

proportion×ad juster
proportion× (ad juster−1)+1

9.4 Variation of the proportion of patients symptomatic

The modelled proportion of patients symptomatic differs by age group. However, given that this quantity

remains highly uncertain and may vary between settings, it is varied during calibration. A single adjuster is

used to increase or decrease each value for each age group.
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11 ORDINARY DIFFERENTIAL EQUATIONS

9.5 Variation of the proportion of patients hospitalised

The modelled proportion of patients hospitalised similarly differs by age group, and is also likely to vary

between settings. A single adjuster is used to increase or decrease each value for each age group.

9.6 Variation of infection fatality rate

The infection fatality rate (risk of death given infection) is considered a more stable quantity than the

case fatality rate. However, it is still likely to vary considerably between settings and so is included as

a calibration parameter which adjusts each age-specific IFR by the same value. Because the epidemic in

Victoria has been characterised by high rates of transmission and disease in aged care, at baseline we assign

a prior centred at a value greater than one.

10 Likelihood function

Likelihood functions are derived from comparing model outputs to target data at each time point nominated

for calibration.

The composite likelihood function is given formally as:

∏
t

nt(θ)dt(θ)ht(θ)it(θ)×∏
t,g

nt,g(θ ,σ)

where t indexes the date, g indexes the cluster, nt refers to daily new notifications, dt to daily deaths, ht to

daily new hospitalisations and it to daily new ICU admissions. Each state-wide component uses a Poisson

distribution (e.g. nt(θ) =Poiss(νt(θ)), where νt(θ) is the number of notifications simulated by the model at

date t under parameter set θ ), whereas each nt,g uses a normal likelihood distribution (because these targets

are not integer-valued). σ is ratio of the peak of each cluster-specific notification to the corresponding

standard deviation of each of the normal distributions used in calculating their contribution to the likelihood.

This was included as a calibration parameter to improve calibration efficiency.

11 Ordinary differential equations

For the clearest description of the model, we refer the reader to our code repository, because our object-

oriented approach to software development is intended to be highly transparent and readable. For those who
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11 ORDINARY DIFFERENTIAL EQUATIONS

prefer dynamical systems such as this presented in the form of ordinary differential equations, we present

the following.

dSa,g

dt
=−λa,g(t)×σa×Sa,g

dEa,g

dt
= λa,g(t)×σa×Sa,g−αEa,g

dPa,c,g

dt
= pa,c(t)×αEa,g−νPa,c,g

dIa,c,g

dt
= νPa,c,g− γcIa,c,g

dLa,c,g

dt
= γcIa,c,g−δa,cLa,c,g−µa,cLa,c,g

dRa,g

dt
= ∑

c
δa,cLa,c,g

where

λa,g = β (t)∑
g′

Gg,g′∑
j,c

εPj,c,g′(t)+ ιcI j,c,g′(t)+κcL j,c,g′(t)
N j,g′(t)

Ca, j(t)

∑
c

pa,c(t) = 1,∀t ∈ R

C0 = CH +CS +CW +CL

Cg(t) = CH + sg(t)2CS +wg(t)2CW + lg(t)2CL

lg(t) =
reg(t)+grg(t)+ pag(t)+ trg(t)

4
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11 ORDINARY DIFFERENTIAL EQUATIONS

Symbol Explanation

S Persons susceptible to infection

E Persons in the non-infectious incubation period

P Persons in the incubation period

I Persons in the early active disease period, before isolation or hospitalisation may occur

L Persons in the late active disease period, after isolation or hospitalisation may have

occurred

R Persons in the recovered period, from which re-infection cannot occur
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11 ORDINARY DIFFERENTIAL EQUATIONS

Symbol Explanation

t Time

a Compartment of age group a

c Compartment of clinical stratification c

g Compartment of geographical cluster stratificiation g

α Rate of progression from non-infectious to infectious incubation period

ν Rate of progression from infectious incubation to early active disease

γ Rate of progression from early active disease to late active disease

µ Rate of disease-related death

ε Relative infectiousness of pre-symptomatic compartment

ι Clinical stratification infectiousness vector for early active compartment

κ Clinical stratification infectiousness vector for late active compartments

β (t) Seasonally adjusted probability of infection per contact between an infectious and

susceptible individual

j Infectious populations

p Proportion progressing to each clinical stratification

G Square matrix of dimensions 9×9 (for nine clusters) with values of mixing parameter

for the off-diagonal elements and values of 1−8×mixingparameter
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11 ORDINARY DIFFERENTIAL EQUATIONS

Symbol Explanation

C Mixing matrix

H Household contribution to mixing matrix

W Workplace contribution to mixing matrix

O Other locations contribution to mixing matrix

S Schools contribution to mixing matrix

l Other locations macrodistancing function of time

w Function fit to Google mobility data for workplaces

s Function fit to Google mobility data for schools

re Function fit to Google mobility data for retail and recreation

gr Function fit to Google mobility data for grocery and pharmacy

pa Function fit to Google mobility data for parks

tr Function fit to Google mobility data for transit stations

33



12 SUPPLEMENTAL OUTPUT FIGURES

12 Supplemental Output Figures
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12 SUPPLEMENTAL OUTPUT FIGURES

Figure 7 – Calibration fit to daily time series of notifications for each metropolitan health

service cluster. Daily confirmed cases (black dots) overlaid on the median modeled detected

cases (dark blue line), with shaded areas representing the 25th to 75th centile (mid blue), 2.5th to

97.5th centile (light blue) and 1st to 99th centile (faintest blue) of estimated detected cases.
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12 SUPPLEMENTAL OUTPUT FIGURES

Figure 8 – Calibration fit to daily time series of notifications for each regional health service

cluster. Daily confirmed cases (black dots) overlaid on the median modeled detected cases (dark

blue line), with shaded areas representing the 25th to 75th centile (mid blue), 2.5th to 97.5th centile

(light blue) and 1st to 99th centile (faintest blue) of estimated detected cases.
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12 SUPPLEMENTAL OUTPUT FIGURES

Figure 9 – Validation fit to daily time series of hospitalisations for each metropolitan health

service cluster. Daily confirmed cases (black dots) overlaid on the median modeled detected

cases (dark blue line), with shaded areas representing the 25th to 75th centile (mid blue), 2.5th to

97.5th centile (light blue) and 1st to 99th centile (faintest blue) of estimated detected cases.
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12 SUPPLEMENTAL OUTPUT FIGURES

Figure 10 – Validation fit to daily time series of hospitalisations for each regional health

service cluster. Daily confirmed cases (black dots) overlaid on the median modeled detected

cases (dark blue line), with shaded areas representing the 25th to 75th centile (mid blue), 2.5th to

97.5th centile (light blue) and 1st to 99th centile (faintest blue) of estimated detected cases.
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Figure 11 – Validation fit to daily time series of ICU admissions for each metropolitan health

service cluster. Daily confirmed cases (black dots) overlaid on the median modelled detected

cases (dark blue line), with shaded areas representing the 25th to 75th centile (mid blue), 2.5th to

97.5th centile (light blue) and 1st to 99th centile (faintest blue) of estimated detected cases.
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Figure 12 – Validation fit to ICU occupancy for each metropolitan health service cluster.

Daily occupancy values (black dots) overlaid on the median modelled detected cases (dark blue

line), with shaded areas representing the 25th to 75th centile (mid blue), 2.5th to 97.5th centile (light

blue) and 1st to 99th centile (faintest blue) of estimated detected cases. Note that this data was

a particularly poor validation/calibration target because of the number of inter-ICU transfers that

affected the cluster-specific bed occupancy values.
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Figure 13 – Histograms of state-wide epidemiological parameter posteriors, other than key

parameters of interest (presented in main manuscript).
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Figure 14 – Histograms of cluster-specific contact rate modifier parameter posteriors.
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Figure 15 – Correlation matrix for key epidemiological parameters of interest.
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Figure 16 – Correlation matrix for other state-wide epidemiological parameters. Parameters

are: 1, incubation period; 2, duration active; 3, infection risk per contact; 4, inter-cluster mixing; 5,

infectious seed; 6, sympt prop adjuster; 7, asympt infect multiplier; 8, hospitalisation adjuster; 9,

IFR adjuster; 10, CDR at base testing rate; 11, pre-ICU period.
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Figure 17 – Correlation matrix for all parameters. Parameters are: 1, incubation period; 2,

duration active; 3, north metro; 4, south east metro; 5, south metro; 6, west metro; 7, barwon

south west; 8, regional; 9, infection risk per contact; 10, inter-cluster mixing; 11, infectious seed;

12, seasonal forcing; 13, sympt prop adjuster; 14, asympt infect multiplier; 15, hospitalisation ad-

juster; 16, IFR adjuster; 17, CDR at base testing rate; 18, pre-ICU period; 19, physical distancing;

20, face coverings; 21, target output ratio.
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Figure 18 – Parameter progression traces for key estimation parameters.
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Figure 19 – Parameter progression traces for epidemiological parameters.
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Figure 20 – Parameter progression traces for cluster contact rate modifier parameters.
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Figure 21 – Estimated proportion of population recovered from COVID-19 at 1st October

2020, by age group and health service cluster. Point estimates with associated 50% credible

intervals. Values are negligibly different from attack rates, except that deaths are excluded from

the denominator. Infections from first wave not considered.
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Figure 22 – Scenario plot showing only baseline calibration and school re-opening sce-

nario. Scenarios are: blue, baseline; purple, schools re-opened from 7th July.
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