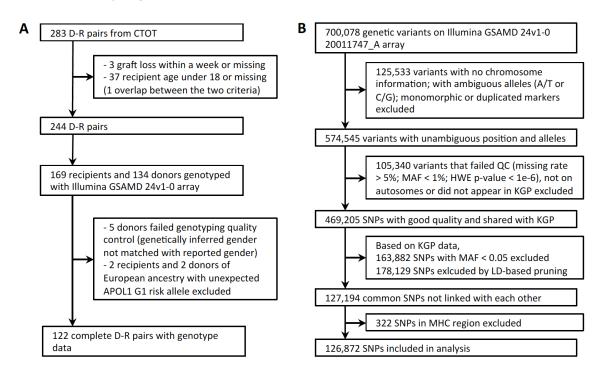
Supplementary Material for


Recipient APOL1 risk alleles associate with death-censored renal allograft survival and rejection episodes

Supplementary Figures

Figure S1. Flowchart of genotyping and quality control for CTOT cohort	1
Figure S2. Genetic ancestry of CTOT donors and recipients	2-3
Figure S3. Kaplan-Meier plot of death-censored allograft survival for recipients with different numbers of APOL1 risk alleles	4
Figure S4. Recipient pAFR and creatinine in GOCAR and CTOT cohorts	5
Figure S5. Allele specific expression of APOL1 in single cell RNA sequencing data from PBMCs of two ESRD patients	6
Supplementary Tables	
Table S1. Demographic and clinicopathologic characteristics of GOCAR and CTOT donors and recipients with genome-wide genotype data	7-8
Table S2. Genetic ancestry and self-reported ancestry of donors and recipients in CTOT	9
Table S3. APOL1 risk genotype in donor-recipient pairs of GOCAR and CTOT	10
Table S4. Summary of APOL1 risk alleles in GOCAR and CTOT cohorts stratified by recipients and donors with different genetic ancestries	11
Table S5. Association of APOL1 risk alleles with death-censored allograft loss in an additive manner in CTOT cohort	12
Table S6. Association of recipient APOL1 risk alleles with DCAL within the stratum of donors carrying APOL1 low-risk genotype in the GOCAR cohort.	13
Table S7. Association of recipient APOL1 risk alleles with DCAL within the stratum of donors carrying APOL1 low-risk genotype in the CTOT cohort.	14
Table S8. Association of APOL1 risk alleles with different TCMR outcomes in an additive way in CTOT data	15
Table S9. Association of APOL1 risk alleles with death-censored allograft loss independent of APOL1 SNP-wise mismatch in GOCAR and CTOT	16
Table S10. Enrichment in KEGG pathways of DEGs identified in immune cells in DICE data	17
Table S11. Enrichment in KEGG pathways of DEGs identified from two ESRD patients with single cell RNA sequencing data of PBMCs	17
Table S12. Enrichment in immune related pathways of DEGs identified from a subset of GOCAR recipients with PBMC RNA sequencing data	17
Table S13. Genes used to define cell types in the scRNAseq data analysis for two ESRD patients	17

References

Supplementary Figures

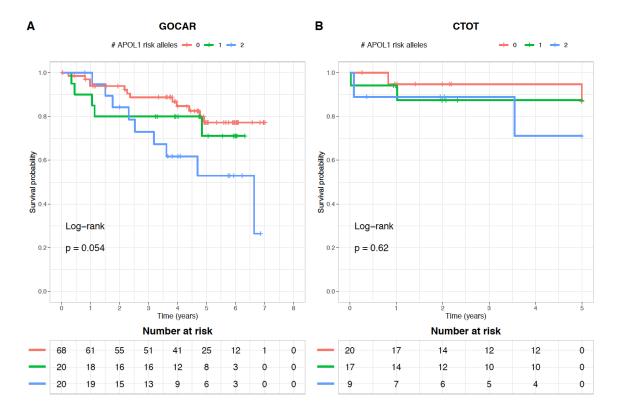


Figure S1. Flowchart of genotyping and quality control for CTOT cohort. (A) Participants; **(B)** Genetic variants. QC: quality control; MAF: minor allele frequency; HWE: Hardy-Weinberg equilibrium; KGP: 1000 Genomes Project; LD: linkage disequilibrium; MHC: major histocompatibility complex.

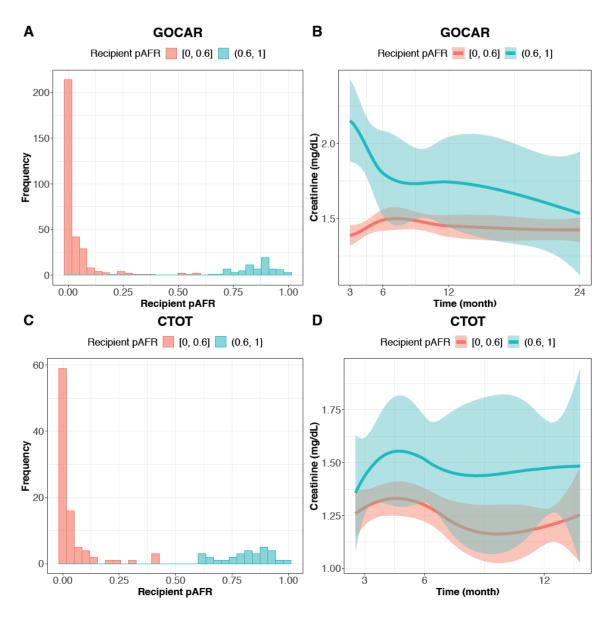


Figure S2. Genetic ancestry of CTOT donors and recipients. (A) Samples from 1000 Genomes Project (KGP) with different ethnicities anchor the location of continental-level ancestries on the space spanned by estimated proportions of African and Caucasian ancestries. CTOT donors (solid triangle) and recipients (empty triangle) are projected onto the same space and colored based on self-reported ancestry. Donor-recipient pairs

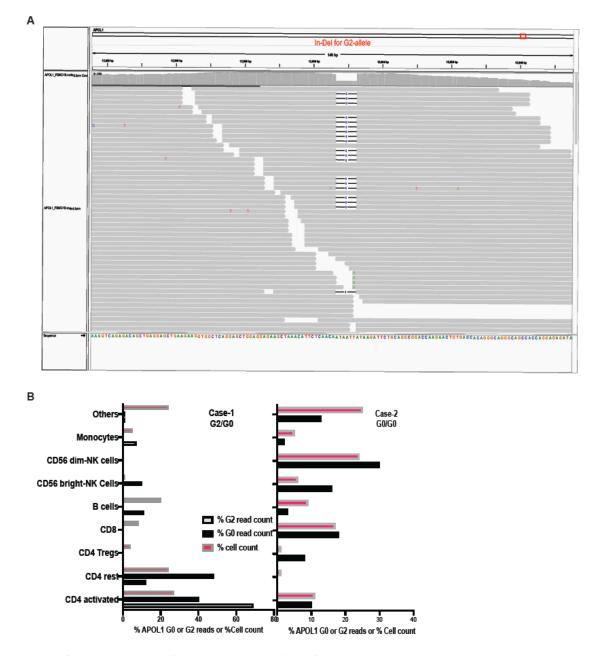

are connected by dashed lines. KGP: 1000 Genomes Project; EUR: European; AFR: African; EAS: East Asian; AMR: American. **(B)** The ancestral composition of each individual in CTOT. Each vertical bar represents an individual. The length of colored segments within each bar indicates the estimated proportion of different genetic ancestries. The ticks under the bar plot indicates self-reported race with the same color code in legend of (A).

Figure S3. Kaplan-Meier plot of death-censored allograft survival for recipients with different numbers of APOL1 risk alleles. The subset of African American and Hispanic recipients was shown. (A) GOCAR; (B) CTOT.

Figure S4. Recipient pAFR and creatinine in GOCAR and CTOT cohorts. (**A**) and (**C**) Histogram of the distribution of recipient pAFR values in GOCAR and CTOT cohorts. Recipients were categorized in 2 groups by their pAFR corresponding to non-African American and African American. (**B**) and (**D**) Smoothed curves with 95% confidence band for longitudinal creatinine levels grouped by recipient pAFR as shown in (A) and (C) for GOCAR and CTOT cohorts.

Figure S5. Allele specific expression of APOL1 in single cell RNA sequencing data from PBMCs of two ESRD patients. (**A**) Visualization of the expression of APOL1 G2 allele represented by the short reads (indicated by gray thick arrows) carrying the 6 bp micro-deletion (indicated by a short segment) in the patient with G2 allele using Integrative Genomics Viewer (IGV).¹ (**B**) The percentage of different types of immune cells and the percentage of short reads carrying G2 and G0 alleles in the two patients. Here, G0 refers to the APOL1 allele without G1/G2 risk variants.

Supplementary Tables

Table S1. Demographic and clinicopathologic characteristics of GOCARand CTOT donors and recipients with genome-wide genotype data.

	GOCAR D-R pairs	CTOT D-R pairs		
Variable	with genotype	with genotype	p-value ^c	
	(n = 385) ^a	(n = 122) ^b		
Recipient				
Death censored graft loss (years)				
mean ± SD; median (range)	4.6 ± 1.7;	3.7 ± 1.8;	<0.001	
mean ± 3D, median (range)	4.9 (0.04, 7.3)	5.0 (0.02, 5.0)	\U.UU	
# events (%)	50 (13.0%)	6 (4.9%)	0.01	
TCMR >= borderline, # events (%)	126 (32.7%)	15 (12.3%)	<0.001	
TCMR > borderline, # events (%)	36 (9.4%)	1 (0.8%)	<0.001	
Recurrent TCMR >= borderline, # events (%)	59 (15.3%)	-	-	
Recurrent TCMR > borderline, # events (%)	25 (6.5%)	-	-	
Are (vers) meen (SD) median (rense)	49.9 ± 13.5;	48.8 ± 13.6;	0.44	
Age (years), mean ± SD; median (range)	50 (18, 83)	50 (18, 89)	0.44	
Gender, male, n (%)	257 (66.8%)	74 (60.7%)	0.23	
Genetic ancestry ^d , n (%)			0.30	
African American	70 (18.2%)	30 (24.6%)		
Asian	13 (3.4%)	2 (1.6%)		
Caucasian	235 (61.0%)	74 (60.7%)		
Hispanic	67 (17.4%)	16 (13.1%)		
HLA mismatch score ^e , n (%)	2.0 ± 1.0	3.3 ± 1.8	0.03 [†]	
Induction, n (%)			0.11	
No induction	78 (20.3%)	36 (29.5%)		
Non-depletional (IL2 antagonist)	130 (33.8%)	36 (29.5%)		
Depletional (Thymoglobulin or Campath)	177 (46.0%)	50 (41.0%)		
# APOL1 risk alleles ⁹ , n (%)			0.001	
0	316 (82.1%)	94 (77.0%)		
1	20 (5.2%)	17 (13.9%)		
2	20 (5.2%)	9 (7.4%)		
N/A	29 (7.5%)	2 (1.6%)		

Donor

Age (years), mean ± SD; median (range)	42.6 ± 14.7;	40.3 ± 12.3;	0.09
	45 (3, 73)	39 (6, 65)	
Gender, male, n (%)	196 (50.9%)	49 (40.2%)	0.05
Genetic ancestry, n (%)			0.003
African American	33 (8.6%)	26 (21.3%)	
Asian	7 (1.8%)	2 (1.6%)	
Caucasian	293 (76.1%)	78 (63.9%)	
Hispanic	52 (13.5%)	16 (13.1%)	
Donor type, live donor, n (%)	194 (50.4%)	105 (86.8%)	<0.001
# APOL1 risk alleles ⁹ , n (%)			<0.001
0	355 (92.2%)	99 (81.1%)	
1	10 (2.6%)	16 (13.1%)	
2	6 (1.6%)	5 (4.1%)	
N/A	14 (3.6%)	2 (1.6%)	

^a: Genome-wide genotype data is available for 385 donor-recipient (D-R) pairs from the parent

GOCAR study after data processing and quality control detailed elsewhere.²

^b: Genome-wide genotype data is available for 122 donor-recipient (D-R) pairs from the parent CTOT study after data processing and quality control (see Methods).

^c: P-value was calculated from unpaired t-test for continuous variables and from Fisher's exact test for categorical variables unless otherwise specified. Bold p-value < 0.05.

^d: Genetic ancestry was inferred from genome-wide genotype data and considered more accurate than self-reported race.²

^e: HLA mismatch score was derived from 2-digit HLA allele typing. Following previous reports for GOCAR,²⁻⁴ the raw mismatch score (scaling from 0 to 6) was categorized into: 0 (no mismatches), 1 (1-2 mismatches), 2 (3-4 mismatches), and 3 (5-6 mismatches); while for the CTOT cohort, the raw mismatch score (scaling from 0 to 6) was used. In subsequent statistical analyses, this variable was used as numeric covariate in regression models.

^f: In order to calculate the p-value, the raw HLA mismatch score used in CTOT was hereby categorized in the same way as GOCAR so that the HLA mismatch scores originally defined on different scales in the two cohorts are comparable. The p-value was calculated by Fisher's exact test.

^g: There are missing data in the APOL1 genotype of 29 recipients and 14 donors for GOCAR cohort and of 2 recipients and 2 donors for CTOT cohort (see supplementary Table S3 for details).

Table S2. Genetic ancestry and self-reported ancestry of donors and recipients inCTOT. Genetic ancestry is inferred from genome-wide genetic data for n = 122 D-Rpairs.

			Self-reported Race					
		African American	Asian	Caucasian	Hispanic	Other/ Unreported		
Genetic	African American	26	0	0	0	0		
	Asian	0	2	0	0	0		
Ancestry	Caucasian	0	0	76	0	2		
	Hispanic	1	1	5	0	9		

(a) Donor: Genetic ancestry versus self-reported race

(b) Recipient: Genetic ancestry versus self-reported race

			Ś	Self-reported Rac	e	
		African American	Asian	Caucasian	Hispanic	Other/ Unreported
	African American	30	0	0	0	0
Genetic Ancestry	Asian	0	2	0	0	0
	Caucasian	0	0	74	0	0
	Hispanic	3	0	4	0	9

(c) Donor and recipient genetic ancestry

			Recipient Genetic Ancestry			
		African American	Asian	Caucasian	Hispanic	Total
	African American	24	0	1	1	26
Donor Genetic	Asian	0	2	0	0	2
Ancestry	Caucasian	4	0	72	2	78
	Hispanic	2	0	1	13	16
	Total	30	2	74	16	122

			Recipient APC	DL1 risk genotype	9	
		G0/G0	G0/G1 or G0/G2	G1/G1, G1/G2, or G2/G2	N/A	Total
	G0/G0	305	17	14	19	355
Donor APOL1	G0/G1 or G0/G2	6	0	1	3	10
risk genotype	G1/G1, G1/G2, or G2/G2	0	2	2	2	6
	N/A	5	1	3	5	14
	Total	316	20	20	29	385

(A) GOCAR (n = 385 D-R pairs)

(B) CTOT (n = 122 D-R pairs)

			Recipient APOL1 risk genotype			
		G0/G0	G0/G1 or G0/G2	G1/G1, G1/G2, or G2/G2	N/A	Total
	G0/G0	87	7	5	0	99
Donor APOL1	G0/G1 or G0/G2	5	8	3	0	16
risk genotype	G1/G1, G1/G2, or G2/G2	2	2	1	0	5
	N/A	0	0	0	2	2
	Total	94	17	9	2	122

Table S4. Summary of APOL1 risk alleles in GOCAR and CTOT cohorts stratifiedby recipients and donors with different genetic ancestries.

	Recipi	ent #AP	OL1 ris	k alleles		Done	or #APOL	.1 risk a	lleles	
Genetic Ancestry	0	1	2	N/A	Total	0	1	2	N/A	Total
GOCAR (n =	385 D-R	pairs)								
African American	12	16	15	27	70	9	7	6	11	33
Asian	13	0	0	0	13	7	0	0	0	7
Caucasian	235	0	0	0	235	293	0	0	0	293
Hispanic	56	4	5	2	67	46	3	0	3	52
All	316	20	20	29	385	355	10	6	14	385
CTOT (n = 12	22 D-R p	airs)								
African American	8	14	8	0	30	6	15	5	0	26
Asian	2	0	0	0	2	2	0	0	0	2
Caucasian	72	0	0	2	74	76	0	0	2	78
Hispanic	12	3	1	0	15	15	1	0	0	16
All	94	17	9	2	122	99	16	5	2	122

Table S5. Association of APOL1 risk alleles with death-censored allograft loss in
an additive manner in CTOT cohort.

Variable ^a	HR	95% CI	p-value ^d
<u>CTOT: recipients all ancestries^b (n = 117°;</u>	6 [5.1%] graft los	s events <u>)</u>	
# APOL1 risk alleles	2.73	(1.04, 7.20)	0.04
Donor type (ref: LD) DD	3.85	(0.71, 20.8)	0.12
HLA mismatch score	1.16	(0.73, 1.83)	0.52
CTOT: recipients of African American and	Hispanic (n = 46	°; 6 [13.0%] graft lo	oss events <u>)</u>
# APOL1 risk alleles	1.32	(0.46, 3.81)	0.60
Donor type (ref: LD) DD	3.96	(0.70, 22.4)	0.12
HLA mismatch score	1.08	(0.64, 1.84)	0.77

^a: In the multivariable Cox regression model, donor type and HLA mismatch score were forced into model, while other covariates adjusted in GOCAR data, including recipient ancestry and induction, that were not significant in multivariable analysis were not included in order to increase statistical power for the CTOT cohort with limited sample size.

^b: The "Asian" category was excluded due to limited sample size which led to instable model fitting.

^c: Sample size was reduced due to missing data in donor APOL1 risk alleles.

^d: Bold p-value < 0.05.

Table S6. Association of recipient APOL1 risk alleles with death-censored allograftloss using multivariable Cox regression, within the stratum of donors carryingAPOL1 low-risk genotype in the GOCAR cohort.

Variable	HR	95% CI	p-value ^d

<u>GOCAR:</u> recipients of all ancestries^a, within the stratum of donors carrying APOL1 lowrisk genotype^b ($n = 330^{\circ}$; 41 [12.4%] graft loss events)

	<u>33 cvcm3/</u>						
# APOL1 risk alleles	1.93	(1.06, 3.49)	0.03				
Recipient genetic ancestry (ref: Caucasian)							
African Amer	ican 1.02	(0.29, 3.57)	0.98				
Hisp	anic 2.70	(1.23, 5.95)	0.01				
Induction (ref: No)							
Non-depletional	2.84	(0.92, 8.79)	0.07				
Depletional	3.56	(1.14, 11.1)	0.03				
Donor type (ref: LD) DD	2.62	(1.24, 5.51)	0.01				
HLA mismatch score	1.20	(0.81, 1.77)	0.36				

GOCAR: recipients of African American and Hispanic, within the stratum of donors

n = 97°; 23 [23.7%] graft loss events)			
2.11	(1.14, 3.88)	0.02	
2.98	(0.90, 9.82)	0.07	
5.46	(0.62, 47.7)	0.13	
4.93	(0.60, 40.7)	0.14	
2.90	(0.88, 9.55)	0.08	
1.67	(0.85, 3.30)	0.14	
	2.11 2.98 5.46 4.93 2.90	2.11 (1.14, 3.88) 2.98 (0.90, 9.82) 5.46 (0.62, 47.7) 4.93 (0.60, 40.7) 2.90 (0.88, 9.55)	

^a: The "Asian" category was excluded due to limited sample size which led to instable model fitting.

^b: Donor APOL1 high-risk genotype is defined as 2 copies of G1/G2 alleles and low-risk genotype as 0 or 1 G1/G2 allele.

^c: Sample size was reduced due to missing data in APOL1 risk alleles.

^d: Bold p-value < 0.05.

Table S7. Association of recipient APOL1 risk alleles with death-censored allograftloss using multivariable Cox regression, within the stratum of donors carryingAPOL1 low-risk genotype in the CTOT cohort.

Variable ^a	HR	95% CI	p-value ^e
<u>CTOT: recipients all ancestries^b, within</u> genotype ^c ($n = 112^d$; 6 [5.4%] graft loss		rs carrying APOL1	<u>low risk</u>
# APOL1 risk alleles	<u>2.84</u>	(1.05, 7.70)	0.04
Donor type (ref: LD) DD	3.61	(0.67, 19.4)	0.13
HLA mismatch score	1.13	(0.71, 1.79)	0.62

<u>CTOT: recipients of African American and Hispanic, within the stratum of donors carrying</u> APOL1 low risk genotype^c ($n = 41^{d}$; 6 [14.6%] graft loss events)

# APOL1 risk alleles	1.32	(0.45, 3.91)	0.62
Donor type (ref: LD) DD	3.76	(0.67, 21.1)	0.13
HLA mismatch score	1.04	(0.60, 1.80)	0.88

^a: In the multivariable Cox regression model, donor type and HLA mismatch score were forced into model, while other covariates adjusted in GOCAR data, including recipient ancestry and induction, that were not significant in multivariable analysis were not included in order to increase statistical power for the CTOT cohort with limited sample size.

^b: The "Asian" category was excluded due to limited sample size which led to instable model fitting.

^c: Donor APOL1 high-risk genotype is defined as 2 copies of G1/G2 alleles and low-risk genotype as 0 or 1 G1/G2 allele.

^d: Sample size was reduced due to missing data in donor APOL1 risk alleles.

^e: Bold p-value < 0.05.

TCMR outcome	n _{control} ^{a,b}	n _{case} a	OR	95% CI	p-value ^d
CTOT: recipient of all ancestries					
TCMR >= borderline (Univariate)	106	14	2.32	(1.06, 4.87)	0.03
TCMR >= borderline (Multivariable ^c)	100	14	2.32	(1.02, 5.16)	0.04
CTOT: recipients of African American	and Hispani	ic			
TCMR >= borderline (Univariate)	39	7	2.95	(1.01, 10.3)	0.06
TCMR >= borderline (Multivariable ^c)	34	7	3.39	(1.07, 13.6)	0.05

Table S8. Association of recipient APOL1 risk alleles with different TCMRoutcomes in the CTOT cohort.

^a: Sample size was reduced due to missing data in APOL1 risk alleles for univariate analysis and due to missing data in APOL1 risk alleles and HLA mismatch score for multivariable analysis.
 ^b: Controls (no TCMR) were defined as patients with either (a) no TCMR or borderline TCMR on obtained biopsies at anytime, or (b) no reported biopsies during follow up.

^c: In the multivariable logistic regression model, we focused on the stratum of donors with APOL1 low-risk genotype carrying 0 or 1 G1/G2 allele, because the model fitting would not have converged if the donor APOL1 risk genotype had been included as a covariate due to the limited number (n = 5) of donors with APOL1 high-risk genotype carrying 2 G1/G2 alleles. HLA mismatch score were forced into model, while other covariates adjusted in GOCAR data, including recipient ancestry, induction, and donor type that were not significant in multivariable analysis were not included in order to increase statistical power for the CTOT cohort with limited sample size. ^d: Bold p-value < 0.05.

Table S9. Association of APOL1 risk alleles with death-censored allograft loss
independent of APOL1 SNP-wise mismatch in GOCAR and CTOT.

Variable ^a	HR	95% CI	p-value ^d
GOCAR: recipients of all ancestries ^b (n =	= 343 [°] ; 44 [12.8%]	graft loss events)
# APOL1 risk alleles	2.24	(1.30, 3.86)	0.004
APOL1 SNP-wise mismatch	0.75	(0.40, 1.44)	0.39
GOCAR: recipients of African American	and Hispanic (n =	108 [°] ; 26 [24.1%]	<u>graft loss</u>
<u>events)</u>			
# APOL1 risk alleles	2.46	(1.38, 4.40)	0.002
APOL1 SNP-wise mismatch	0.75	(0.32, 1.76)	0.51
<u>CTOT: recipients of all ancestries (n = 1</u>	17°; 6 [5.1%] graft	loss events <u>)</u>	
# APOL1 risk alleles	2.56	(0.98, 6.73)	0.06
APOL1 SNP-wise mismatch	1.39	(0.73, 2.66)	0.31
CTOT: recipients of African American a	nd Hispanic (n = 40	5 [°] ; 6 [13.0%] graf	<u>t loss</u>
<u>events)</u>			
# APOL1 risk alleles	1.10	(0.35, 3.41)	0.87
APOL1 SNP-wise mismatch	1.62	(0.78, 3.35)	0.19
^a : In the Cox regression model for GOCAR	, covariates include	recipient ancestry	, number of
APOL1 risk alleles, and APOL1 SNP-wise	mismatch induction	donor type and	HI A mismat

APOL1 risk alleles, and APOL1 SNP-wise mismatch, induction, donor type, and HLA mismatch score. In the multivariable Cox regression model for CTOT, donor type and HLA mismatch score were forced into model, while other covariates adjusted in GOCAR data, including recipient ancestry and induction, that were not significant in multivariable analysis were not included in order to increase statistical power for the CTOT cohort with limited sample size. For concise presentation, only recipient number of APOL1 risk alleles and APOL1 SNP-wise mismatch were shown in the table.

^b: The "Asian" category was excluded due to limited sample size which led to instable model fitting.

^c: Sample size was reduced due to missing data in APOL1 risk alleles.

^d: Bold p-value < 0.05.

Table S10. Enrichment in KEGG pathways of DEGs identified in immune cells inDICE data.

(Supplementary_Tables_S10_to_S12.xlsx)

Table S11. Enrichment in KEGG pathways of DEGs identified from two ESRD patients with single cell RNA sequencing data of PBMCs.

(Supplementary_Tables_S10_to_S12.xlsx)

Table S12. Enrichment in immune related pathways of DEGs identified from asubset of GOCAR recipients with PBMC RNA sequencing data.(Supplementary_Tables_S10_to_S12.xlsx)

Table S13. Genes used to define cell types in the scRNAseq data analysis for two ESRD patients.

Cell type	Genes used to define cell type
Activated CD4 ⁺ T cell	CD3D, CD3E, LTB, CD4, TNF, STAT1, MAF
Activated $CD8^+$ T cell	CD3D, CD3E, CD8A, CD8B, GZMB, GNLY, PRF1
CD56 ^{dim} NK cell	GNLY, NKG7, PRF1, GZMB, GZMH, FGFBP2
Monocyte	CD14, LYZ, S100A8, S100A9
B Cell	CD19, CD79A, CD74, MS4A1

References

- 1. Robinson, JT, Thorvaldsdóttir, H, Winckler, W, Guttman, M, Lander, ES, Getz, G, Mesirov, JP: Integrative genomics viewer. *Nature Biotechnology*, 29: 24-26, 2011.
- 2. Zhang, Z, Menon, MC, Zhang, W, Stahl, E, Loza, B-L, Rosales, IA, Yi, Z, Banu, K, Garzon, F, Sun, Z, Wei, C, Huang, W, Lin, Q, Israni, A, Keating, BJ, Colvin, RB, Hao, K, Murphy, B: Genome-wide non-HLA donor-recipient genetic differences influence renal allograft survival via early allograft fibrosis. *Kidney International*, 98: 758-768, 2020.
- 3. O'Connell, PJ, Zhang, W, Menon, MC, Yi, Z, Schroppel, B, Gallon, L, Luan, Y, Rosales, IA, Ge, Y, Losic, B, Xi, C, Woytovich, C, Keung, KL, Wei, C, Greene, I, Overbey, J, Bagiella, E, Najafian, N, Samaniego, M, Djamali, A, Alexander, SI, Nankivell, BJ, Chapman, JR, Smith, RN, Colvin, R, Murphy, B: Biopsy transcriptome expression profiling to identify kidney transplants at risk of chronic injury: a multicentre, prospective study. *Lancet*, 388: 983-993, 2016.
- 4. Zhang, W, Yi, Z, Keung, KL, Shang, H, Wei, C, Cravedi, P, Sun, Z, Xi, C, Woytovich, C, Farouk, S, Huang, W, Banu, K, Gallon, L, Magee, CN, Najafian, N, Samaniego, M, Djamali, A, Alexander, SI, Rosales, IA, Smith, RN, Xiang, J, Lerut, E, Kuypers, D, Naesens, M, O'Connell, PJ, Colvin, R, Menon, MC, Murphy, B: A Peripheral Blood Gene Expression Signature to Diagnose Subclinical Acute Rejection. *J Am Soc Nephrol*, 30: 1481-1494, 2019.