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1 Model Details 

1.1 Equations 
The full set of equations used to describe CRAM is provided in this appendix.  Each compartment is 
divided into 17 age groups and two risk groups. The 34 (33 non-null) sub-compartments are indexed by 

a,r, where a is the age group and r is the risk group. The population size of each group is given by 𝑁𝑁𝑎𝑎,𝑟𝑟 
and a compartment sub-indexed by 𝑁𝑁𝑎𝑎,∙ represents the sum of both risk groups for one age group.   

𝑆𝑆′𝑎𝑎,𝑟𝑟 = − 𝛽𝛽 ∗ 𝑠𝑠𝑠𝑠𝑎𝑎 ∗ 𝑠𝑠𝑡𝑡 ∗ 𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟 ∗�
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎,𝑘𝑘

𝑁𝑁𝑘𝑘,∙
[𝐼𝐼𝐼𝐼𝐼𝐼𝑘𝑘,∙ + 𝐼𝐼𝐼𝐼𝑘𝑘,∙ + 𝐼𝐼𝐼𝐼𝐼𝐼𝑘𝑘,∙ + 𝐼𝐼𝐼𝐼𝑘𝑘,∙ + 𝐼𝐼𝐼𝐼𝑘𝑘,∙]

17

𝑘𝑘=1

∗ 𝑆𝑆𝑎𝑎,𝑟𝑟 −  𝑤𝑤𝑎𝑎,𝑟𝑟,𝑡𝑡 ∗ 𝑆𝑆𝑎𝑎,𝑟𝑟 − 𝑣𝑣𝑎𝑎,𝑟𝑟,𝑡𝑡 ∗ 𝑆𝑆𝑎𝑎,𝑟𝑟 

𝑆𝑆𝑆𝑆′𝑎𝑎,𝑟𝑟 = 𝑤𝑤𝑎𝑎,𝑟𝑟,𝑡𝑡 ∗ 𝑆𝑆𝑎𝑎,𝑟𝑟 −  𝛽𝛽 ∗ 𝑠𝑠𝑠𝑠𝑎𝑎 ∗ 𝑠𝑠𝑡𝑡 ∗�
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡′𝑎𝑎,𝑘𝑘

𝑁𝑁𝑘𝑘,∙
[𝐼𝐼𝐼𝐼𝐼𝐼𝑘𝑘,∙ + 𝐼𝐼𝐼𝐼𝑘𝑘,∙ + 𝐼𝐼𝑄𝑄𝑄𝑄𝑘𝑘,∙ + 𝐼𝐼𝐼𝐼𝑘𝑘,∙ + 𝐼𝐼𝐼𝐼𝑘𝑘,∙]

17

𝑘𝑘=1

∗ 𝑆𝑆𝑆𝑆𝑎𝑎,𝑟𝑟 − 𝑣𝑣𝑎𝑎,𝑟𝑟,𝑡𝑡 ∗ 𝑆𝑆𝑆𝑆𝑎𝑎,𝑟𝑟   

𝑉𝑉′𝑎𝑎,𝑟𝑟 =  𝑣𝑣𝑎𝑎,𝑟𝑟,𝑡𝑡 ∗ 𝑆𝑆𝑎𝑎,𝑟𝑟 + 𝑣𝑣𝑎𝑎,𝑟𝑟,𝑡𝑡 ∗ 𝑆𝑆𝑆𝑆𝑎𝑎,𝑟𝑟  −  𝛽𝛽 ∗ 𝑠𝑠𝑠𝑠𝑎𝑎 ∗ 𝑠𝑠𝑡𝑡 ∗ 𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟 ∗�
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎,𝑘𝑘

𝑁𝑁𝑘𝑘,∙
[𝐼𝐼𝐼𝐼𝐼𝐼𝑘𝑘,∙ + 𝐼𝐼𝐼𝐼𝑘𝑘,∙ + 𝐼𝐼𝐼𝐼𝐼𝐼𝑘𝑘,∙ + 𝐼𝐼𝐼𝐼𝑘𝑘,∙ + 𝐼𝐼𝐼𝐼𝑘𝑘,∙]

17

𝑘𝑘=1

∗ 𝑉𝑉𝑎𝑎,𝑟𝑟

− 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∗ 𝑉𝑉𝑎𝑎,𝑟𝑟 

 

𝑉𝑉𝑉𝑉′𝑎𝑎,𝑟𝑟 = (1 − 𝑉𝑉𝑉𝑉) ∗ 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∗ 𝑉𝑉𝑎𝑎,𝑟𝑟  −  𝛽𝛽 ∗ 𝑠𝑠𝑠𝑠𝑎𝑎 ∗ 𝑠𝑠𝑡𝑡 ∗ 𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟 ∗�
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎,𝑘𝑘

𝑁𝑁𝑘𝑘,∙
[𝐼𝐼𝐼𝐼𝐼𝐼𝑘𝑘,∙ + 𝐼𝐼𝐼𝐼𝑘𝑘,∙ + 𝐼𝐼𝐼𝐼𝐼𝐼𝑘𝑘,∙ + 𝐼𝐼𝐼𝐼𝑘𝑘,∙ + 𝐼𝐼𝐼𝐼𝑘𝑘,∙]

17

𝑘𝑘=1

  

 

𝐸𝐸′𝑎𝑎,𝑟𝑟 =  𝛽𝛽 ∗ 𝑠𝑠𝑠𝑠𝑎𝑎 ∗ 𝑠𝑠𝑡𝑡 ∗ 𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟 ∗�
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎,𝑘𝑘

𝑁𝑁𝑘𝑘,∙
[𝐼𝐼𝐼𝐼𝐼𝐼𝑘𝑘,∙ + 𝐼𝐼𝐼𝐼𝑘𝑘,∙ + 𝐼𝐼𝐼𝐼𝐼𝐼𝑘𝑘,∙ + 𝐼𝐼𝐼𝐼𝑘𝑘,∙ + 𝐼𝐼𝐻𝐻𝑘𝑘,∙]

17

𝑘𝑘=1

∗ (𝑆𝑆𝑎𝑎,𝑟𝑟 + 𝑉𝑉𝑎𝑎,𝑟𝑟+𝑉𝑉𝑉𝑉𝑎𝑎,𝑟𝑟)                             

+  𝛽𝛽 ∗ 𝑠𝑠𝑠𝑠𝑎𝑎 ∗ 𝑠𝑠𝑡𝑡 ∗�
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐′𝑎𝑎,𝑘𝑘

𝑁𝑁𝑘𝑘,∙
[𝐼𝐼𝐼𝐼𝐼𝐼𝑘𝑘,∙ + 𝐼𝐼𝐼𝐼𝑘𝑘,∙ + 𝐼𝐼𝐼𝐼𝐼𝐼𝑘𝑘,∙ + 𝐼𝐼𝐼𝐼𝑘𝑘,∙ + 𝐼𝐼𝐼𝐼𝑘𝑘,∙]

17

𝑘𝑘=1

∗ 𝑆𝑆𝑆𝑆𝑎𝑎,𝑟𝑟 − 𝑑𝑑𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ∗ 𝐸𝐸𝑎𝑎,𝑟𝑟  

𝐼𝐼𝐼𝐼𝐼𝐼′𝑎𝑎,𝑟𝑟 =  𝑑𝑑𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ∗ 𝐸𝐸𝑎𝑎,𝑟𝑟 − 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∗ 𝐼𝐼𝐼𝐼𝐼𝐼𝑎𝑎,𝑟𝑟 

𝐼𝐼𝐼𝐼′𝑎𝑎,𝑟𝑟 =  �1 − ℎ𝑎𝑎,𝑟𝑟 − 𝑙𝑙𝑎𝑎,𝑟𝑟� ∗ (1 − 𝑝𝑝𝑝𝑝𝑡𝑡) ∗ 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∗ 𝐼𝐼𝐼𝐼𝐼𝐼𝑎𝑎,𝑟𝑟 − 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∗ 𝐼𝐼𝐼𝐼𝑎𝑎,𝑟𝑟 

𝐼𝐼𝐼𝐼𝐼𝐼′
𝑎𝑎,𝑟𝑟 =  �1 − ℎ𝑎𝑎,𝑟𝑟 − 𝑙𝑙𝑎𝑎,𝑟𝑟� ∗ (𝑝𝑝𝑝𝑝𝑡𝑡) ∗ 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∗ 𝐼𝐼𝐼𝐼𝐼𝐼𝑎𝑎,𝑟𝑟 − 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∗ 𝐼𝐼𝐼𝐼𝐼𝐼𝑎𝑎,𝑟𝑟  

𝐼𝐼𝐼𝐼′𝑎𝑎,𝑟𝑟 =  𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∗ 𝐼𝐼𝐼𝐼𝐼𝐼𝑎𝑎,𝑟𝑟  − 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∗ 𝐼𝐼𝐼𝐼𝑎𝑎,𝑟𝑟  

𝐼𝐼𝐼𝐼′𝑎𝑎,𝑟𝑟 =  𝑙𝑙𝑎𝑎,𝑟𝑟 ∗ 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∗ 𝐼𝐼𝐼𝐼𝐼𝐼𝑎𝑎,𝑟𝑟 − 𝑑𝑑ℎ𝑜𝑜𝑜𝑜𝑜𝑜 ∗ 𝐼𝐼𝐼𝐼𝑎𝑎,𝑟𝑟  

𝐼𝐼𝐼𝐼′
𝑎𝑎,𝑟𝑟 =  ℎ𝑎𝑎,𝑟𝑟 ∗ 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∗ 𝐼𝐼𝐼𝐼𝐼𝐼𝑎𝑎,𝑟𝑟 − 𝑑𝑑ℎ𝑜𝑜𝑜𝑜𝑜𝑜 ∗ 𝐼𝐼𝐼𝐼𝑎𝑎,𝑟𝑟  

𝑅𝑅′𝑎𝑎,𝑟𝑟 = 𝑉𝑉𝑉𝑉 ∗ 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∗ 𝑉𝑉𝑎𝑎,𝑟𝑟 + (1 −𝑚𝑚1𝑟𝑟) ∗ 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∗ (𝐼𝐼𝐼𝐼𝑎𝑎,𝑟𝑟 + 𝐼𝐼𝐼𝐼𝑎𝑎,𝑟𝑟) + (1 −𝑚𝑚2𝑟𝑟) ∗ 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∗ 𝐼𝐼𝐼𝐼𝑎𝑎,𝑟𝑟 + (1
−𝑚𝑚3𝑟𝑟) ∗ 𝑑𝑑ℎ𝑜𝑜𝑜𝑜𝑜𝑜 ∗ 𝐼𝐼𝐼𝐼𝑎𝑎,𝑟𝑟  

𝐷𝐷′
𝑎𝑎,𝑟𝑟 = 𝑚𝑚1𝑟𝑟 ∗ 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∗ (𝐼𝐼𝐼𝐼𝑎𝑎,𝑟𝑟 + 𝐼𝐼𝐼𝐼𝑎𝑎,𝑟𝑟) + 𝑚𝑚2𝑟𝑟 ∗ 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∗ 𝐼𝐼𝐼𝐼𝑟𝑟 + 𝑚𝑚3𝑟𝑟 ∗ 𝑑𝑑ℎ𝑜𝑜𝑜𝑜𝑜𝑜 ∗ 𝐼𝐼𝐼𝐼𝑎𝑎,𝑟𝑟   
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Some parameters are functions, as in the following. 

ℎ𝑠𝑠𝑠𝑠𝑎𝑎 = 𝑀𝑀𝑀𝑀𝑀𝑀[𝑒𝑒𝜕𝜕+𝛾𝛾(𝑎𝑎), 0]  

where 𝑎𝑎 is the age group and 𝜕𝜕, 𝛾𝛾 are fitted parameters from an exponential regression. 

ℎ𝑎𝑎,𝑟𝑟 = 𝑒𝑒
log(𝜎𝜎)+log (

𝑝𝑝𝑝𝑝ℎ𝑜𝑜𝑜𝑜𝑜𝑜∗ℎ𝑠𝑠𝑠𝑠𝑎𝑎
1−𝑝𝑝𝑝𝑝ℎ𝑜𝑜𝑜𝑜𝑜𝑜∗ℎ𝑠𝑠𝑠𝑠𝑎𝑎

)+log (𝑂𝑂𝑂𝑂ℎ𝑜𝑜𝑜𝑜𝑜𝑜∗(𝑟𝑟−1))
  

where 𝑟𝑟 is the risk group index. 

𝑠𝑠𝑡𝑡 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∗ 𝐶𝐶𝐶𝐶𝐶𝐶 ��𝑡𝑡 ∗
2

365
∗ 𝜋𝜋� + 0.1� + (1 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) 

Where 𝜋𝜋 is the numeric constant Pi, 𝑡𝑡 is the date, and 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 controls the amplitude of the seasonal 
effect, larger numbers will increase the difference in transmission maximum and minimum values. The 
shift of 0.1 centres the minimum on the centre date between the hottest days of the year in Alberta’s 
major cities, Edmonton and Calgary.  

The contact matrix is decomposed into four locations: home, workplace, school, and other, where other 
comprises all remaining possible locations. Total contacts are given as the sum of contacts for each age 
to age (a,k) entry in each of the matrices. Decomposing the total contact matrix by location allows for 
adjustments in contact rates at locations to align with policy interventions. For example, school closure 
is reflected by adjusting the school contact matrix (𝑠𝑠𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑎𝑎,𝑘𝑘,𝑡𝑡) by a scalar value, for the duration of 
dates during which the school is closed:  

𝑠𝑠𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑎𝑎,𝑘𝑘,𝑡𝑡 = 𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜 ∗ 𝑠𝑠𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑎𝑎,𝑘𝑘,   

where 𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜 = 0 while schools are closed, and 𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜 = 1 otherwise (that is, 0 ≤  𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑙𝑙 ≤ 1). 

Similarly, for interventions which would reduce contact rates in schools, 𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜,𝑎𝑎 may be applied to 
specific age groups, adjusting the school contact matrix at various points in time according to age group. 

Reductions 𝑖𝑖𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 , 𝑖𝑖𝑠𝑠𝑜𝑜ℎ𝑜𝑜𝑜𝑜𝑜𝑜 , and 𝑖𝑖𝑖𝑖𝑖𝑖𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒  are applied to the remaining contact matrices, which are then 
summed to generate the total matrix, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎,𝑘𝑘, at each time step. Reduction in contacts for seniors 
age 75+ are applied directly to the total contact matrix, as a scalar multiplied through the rows and 
columns where a or k equals 16. Reduction in contacts for high-risk individuals are applied to the total 
contact matrix, only for those individuals whose r equals 2. For example: 

𝛽𝛽 ∗ ∑ 𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∗
𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑎𝑎,𝑘𝑘

𝑁𝑁𝑘𝑘,∙
[𝐼𝐼𝐼𝐼𝐼𝐼𝑘𝑘,∙ + 𝐼𝐼𝐼𝐼𝑘𝑘,∙ + 𝐼𝐼𝐼𝐼𝐼𝐼𝑘𝑘,∙ + 𝐼𝐼𝐼𝐼𝑘𝑘,∙ + 𝐼𝐼𝐼𝐼𝑘𝑘,∙]17

𝑘𝑘=1 ∗ 𝑆𝑆𝑎𝑎,𝑟𝑟  

where 𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 1 for non-high-risk individuals. 
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1.2 Assumptions 
The CRAM makes the following assumptions: 

• Only susceptible individuals who have not been exposed to COVID-19 are immunised. In 
practice, this may require serology testing prior to vaccine.  

• The vaccine behaves as an all-or nothing vaccine, where the vaccine protects a proportion of 
those immunised corresponding to vaccine effectiveness. 

• Daily contact rates are based on age group in CRAM. This limits the types of contacts 
represented in the model; for example, the model cannot represent cohorts of students (that is, 
students seeing the same limited group of students/staff each day).  

• There are no additional school contacts between individuals older than 20 years in our model 
(for example, between school staff). Therefore, when contacts were increased with in-person 
schooling, increases in contact rates only applied to contacts between students and other 
students, and contacts between students and adults.  

• All public health interventions were modelled by reducing the contacts of specific age or risk 
groups. This necessitates assumptions about contact reductions associated with each public 
health intervention (for example, how masks reduce contacts between school-aged children). 
Therefore, CRAM cannot test which public health interventions are most likely to reduce 
contacts; rather, it estimates the impact that reducing contacts through public health 
interventions may have on overall disease outcomes. 

• Provincial level modelling is broadly informative at a local level. Where local case counts 
increase, this may indicate that additional actions need to be taken, including possible changes 
to schooling arrangements, but local factors relative to the provincial dynamics presented in 
these results should be taken into context. 

• All strategies in place at the start of the period, other than vaccine and other clearly stated 
changes will remain in place for the duration of the model period. Therefore, the results reflect 
what might happen in a scenario where no mitigating actions are taken. Any interventions 
implemented at a local or regional level in response to an outbreak would result in a different 
number of expected infections and hospitalisations. 

 

1.3 Evaluating Minimum Iterations Required 

Complex mathematical models such as the CRAM are computationally expensive and have long run 
times. To identify the sufficient number of simulations to achieve stable results, mean results for total 
number of cases, hospitalizations, total cost, and total utility loss were collected for simulation iterations 
from 10 to 800. The results from different simulation sizes were compared using Welches’ t-test, which 
was selected since comparator samples can not be assumed to have equal variances due to inequal 
sample size.  

The difference in means was compared for the four results (i.e., total number of cases, hospitalizations, 
total cost, and total utility loss) for simulations above a ‘threshold’ number of simulations. A rejection of 
the null hypothesis is interpreted as an indication that the number of simulations is insufficient. The 
number of iterations for which the null hypothesis is rejected above a given threshold is presented for 
different significance levels. Interpreting the 0.1 significance level as a low tolerance for differences in 
means, we found a minimum of 200 simulations is required to ensure stability in results. These values 
are presented in Table 1. 
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Table 1: Count of iterations by threshold for which difference in means 
statistically different than large-N simulation 

Simulation threshold 0.01 significance 0.05 significance 0.1 significance 
50 0 36 61 
75 0 22 36 
100 0 4 11 
150 0 0 0 
200 0 0 0 
250 0 0 0 
300 0 0 0 
350 0 0 0 
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2 Model Inputs 

2.1 Expert Elicitation 

To generate estimates for parameters for which there was no information source, a rapid expert 
elicitation exercise was developed. The elicitation drew from the SHELF tool and adapted the 
questionnaire to be given through a web-based survey. Expert opinions were pooled to derive the 
median and 90% CI estimates for each value of interest. 

An initial set of questions was disseminated to seven public health experts, identified in partnership with 
Alberta Health. Experts were provided with a short online training module, and responses were 
restricted to a 11-point Likert scale between 0 and 10. The median, and upper and lower tertiles were 
elicited, and beta distributions were fit to estimate response values. These values are presented in Table 
2. 

A second elicitation was disseminated to ten public health and education experts, using two return to 
school scenarios defined by the Alberta Government. Experts were provided with a webinar training, 
and then the questionnaire was disseminated online, with responses restricted to an 11-point Likert 
scale as before. The median, 5th and 95th quantiles were elicited, and beta distributions were fit to 
estimate response values. These values are presented in Table 3. 

Note that following the expert elicitation, Alberta Health mandated mask use in schools. An additional 
reduction in contact rates using a uniform distribution ranging from 20-80% relative to the elicited 
values was applied to the school contact matrix. A uniform distribution was selected to account for the 
high degree of uncertainty in these estimates, meaning, for example, that 50% effectiveness is equally 
probably to 30% effectiveness. This value was based on a rapid review which found evidence of mask 
effectiveness at reducing spread, but uncertainty in the degree of effectiveness [1]. 
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Table 2: Elicitation question and responses 
Quantity Pooled response values, median [90% CI] Elicited values and linear pool 

Factor by which 
Albertans have 
reduced their 
contacts at home, 
given current 
public health 
orders and 
guidance 

0.586 [0.070, 0.995] 

 

Factor by which 
Albertans aged 
≥75 years have 
reduced their 
contacts in all 
locations, given 
current public 
health orders and 
guidance 

0.387 [0.137, 0.945] 

 

Factor by which 
Albertans with a 
high-risk of severe 
outcomes have 
reduced their 
contacts in all 
locations, given 
current public 
health orders and 
guidance 

0.326 [0.065, 0.922] 
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Table 3: School Elicitation question and responses 

Quantity, Values Age group: 5–9 years Age group: 10–14 years Age group: 15–19 years 

 
Age 

group 
Contact 

reduction 

5–9 
years 

0.692 
[0.358, 
0.869] 

10–
14 
years 

0.573 
[0.314, 
0.846] 

15–
19 
years 

0.522 
[0.278, 
0.861] 

 

   

 
Age 

group 
Proportion 

 returning 

5–9 
years 

0.760 
[0.399, 
0.933] 

10–
14 
years 

0.831 
[0.399, 
0.941] 

15–
19 
years 

0.860 
[0.634, 
0.994] 

 

   

CI: confidence interval 
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2.2 Estimating Utility Decrement and Incremental Cost related to ‘Chronic 1 
COVID’ 2 

It is known that following SARS-Cov-19 infection, that some individuals experience long term health 3 
consequences, often referred to as ‘Chronic COVID’ or ‘Long COVID/Long-haulers’.  To estimate the 4 
health utility decrement and incremental costs associated with Chronic COVID, we identified several 5 
chronic conditions which have emerged following SARS-Cov-19 infection:  Chronic Fatigue, Diabetes, 6 
Chronic Kidney Disease, Chronic liver Disease, Adverse Cardiovascular events, and Psychiatric conditions.  7 
We converted incremental cost values identified in the literature to 2020 Canadian dollars following 8 
CADTH guidelines [2-10], and estimated utility decrements by identifying relevant general population 9 
comparison [11-17]. Estimates were combined by weighting relative to the prevalence of each condition 10 
in the pre-pandemic population [18-22]. Given that the duration of Chronic COVID is unknown, we 11 
conservatively include one year of utility decrement and incremental cost outcomes in our model inputs. 12 
Furthermore, we make the conservative assumption that Chronic COVID occurs only for hospitalized 13 
cases, and use the proportion of patients reporting ‘fatigue on discharge’ from [23], as chronic fatigue 14 
was a major contributor to utility decrements among the chronic conditions we identified. An excel 15 
workbook with full calculations, options to change the time period for discounting, and references is 16 
provided at https://github.com/eKirwin-IHE/chronicCOVID.   17 
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