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1 Mathematical model
Many epidemiological models are based on the SIR or SEIR model which is classical in the context

of epidemics. We refer to [23, 19] for the earliest articles devoted to such a question and to [1, 2, 6, 4, 5,
7, 9, 14, 16, 17, 20] for more models. In this article we will compare the following SEIUR model to the
cumulative reported cases data

S′(t) = −τ(t)
[
I(t) + κU(t)

]
S(t),

E′(t) = τ(t)
[
I(t) + κU(t)

]
S(t)− αE(t),

I ′(t) = αE(t)− ν I(t),
U ′(t) = ν (1− f) I(t)− η U(t),
R′(t) = ν f I(t)− η R(t),

(1.1)

where at time t, S(t) is the number of susceptible, E(t) the number of exposed (not yet capable to transmit
the pathogen), I(t) the number of asymptomatic infectious, R(t) the number of reported symptomatic
infectious and U(t) the number of unreported symptomatic infectious. This system is supplemented by
initial data

S(t0) = S0, E(t0) = E0, I(t0) = I0, U(t0) = U0, and R(t0) = R0. (1.2)

In this model, τ(t) is the rate of transmission, 1/α is the average duration of the exposed period, 1/ν is
the average duration of the asymptomatic infectious period, and for simplicity we subdivide the class of
symptomatic patients into the fraction 0 ≤ f ≤ 1 of patients showing some severe symptoms, and the
fraction 1− f of patients showing some mild symptoms assumed to be not detected. The quantity 1/η
is the average duration of symptomatic infectious period.

The cumulative number of reported cases CR(t) is connected to the epidemic model by using the
following relationship

CR(t) = CR0 + ν f CI(t), for t ≥ t0, (1.3)

where

CI(t) =

∫ t

t0

I(σ)dσ. (1.4)
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Figure 1: Flow chart for the model.

Given and estimated parameters

We assume that the following parameters of the model are known

S0, U0, R0, f, κ, α, ν, η.

The goal of our method is to focus on the estimation of the three remaining parameters. Namely,
knowing the above-mentioned parameters, we plan to identify

E0, I0, τ(t).

Computation of the rate of transmission

The transmission rate is fully determined by the parameters κ, α, ν, η, f, S0, E0, I0, U0, and the
data that are represented by the function t→ CR(t) and by using the three following equations

τ(t) =
1

I(t) + κU(t)
× CE′′(t) + αCE′(t)

E0 + S0 − CE′(t)− αCE(t)
. (1.5)

where

I(t) =
CR′(t)

ν f
, (1.6)

CE(t) =
1

αν f

[
CR′(t)− ν f I0 + ν (CR(t)− CR0)

]
, (1.7)

U(t) = e−η(t−t0)U0 +

∫ t

t0

e−η(t−s) (1− f)

f
CR′(s)ds. (1.8)

Instantaneous reproduction number computed for COVID-19 data
In the standard SI epidemic model, we have only a single epidemic phase due the fact the epidemic

exhausts the susceptible population. Here, the changes of regime (epidemic phase versus endemic phase)
are partly due to the decay in the number of susceptible. But these changes are also influenced by
the changes of the transmission rate. These changes of the transmission rate are due to the limitation
of contacts between individuals or to changes in climate (in summer) or to other factors influencing
transmissions.

In this section, we will observe that the main factor for the changes in the epidemic regimes are the
changes in the transmission rate. In order to investigate this for the COVID-19 data, we use our method
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to compute the transmission rate and we consider the instantaneous reproduction number

Re(t) =
τ(t)S(t)

ην
(η + ν(1− f)), (1.9)

and the quasi instantaneous reproduction number

R0
e(t) =

τ(t)S0

ην
(η + ν(1− f)), (1.10)

in which the transmission varies but the size of the susceptible population remains constant equal to S0.
We refer to the Appendix 10 for detailed computations to obtain the formula (1.9).

The comparison between Re(t) and R0
e(t), permits to understand the contribution of the decay of the

susceptible population in the variations of Re(t). Another interesting aspect is that R0
e(t) is proportional

to the transmission rate τ(t). Therefore plotting R0
e(t) permits to visualized the variation of t → τ(t)

only.
In the Results section, we computed three types of instantaneous reproduction numbers. The two first

instantaneous reproduction numbers are obtained by using our method and combining the formula to
compute the initial values I0 in (2.18), E0 in (2.20) as well as τ(t) in the formula (1.5). We observe that
the changes between the first and the second notions of instantaneous reproduction numbers are small.
This means that each epidemic phase is not stopping due to the fact that the susceptible individuals are
exhausted by the epidemic. But the epidemic is stopping mainly due to the social changes. In the figure
(c) the green curve is proportional to the transmission rate and we can see that the transmission rate is
decaying due to social changes during epidemic phase and increase again when the new epidemic phase
starts.

In the figure (d) for each country we compare the instantaneous reproduction numbers obtained by
our method in black and the classical method of Cori et al [8] in green. We observe that the two methods
are not the same at the beginning. That is because the method of Cori et al [8] is assuming that is not
taking into account the initial values I0 and E0 while we do. Indeed the method Cori et al [8] is

2 Phenomenological model use for the multiple epidemic waves
In order represent the data we will use a phenomenological model to fit the curve of cumulative rate

cases. Such an idea is not new, since it was already propose by Bernoulli [3] in 1760 in the context
of smallpox epidemic. Here we use the so called Benoulli-Verhulst [21] model to describe the epidemic
phase. Bernoulli [3] investigated an epidemic phase followed by an endemic phase. This appears clearly
in the Figures 9 and 10 in [11]. Several works comparing cumulative reported case data and Bernoulli-
Verhulst’s model appear in the literature (see [15, 22, 24]). The Benoulli-Verhulst’s is sometime called
Richard’s model while Richard’s work came much more recently in 1959.

The phenomenological model deals with data series of new infectious cases decomposed into two types
of successive phases, 1) endemic phases, followed by 2) epidemic ones.

Endemic phase: During the endemic phase, the dynamics of new cases appears to fluctuate around an
average value independently of the number of cases. Therefore the average cumulative number of cases
is given by

CR(t) = N0 + (t− t0)× a, for t ∈ [t0, t1], (2.11)

where t0 denotes the beginning of the endemic phase, and a is the average value of daily number of new
cases.

We assume that the average daily number of new cases is constant. Therefore the daily number of
new cases is given by

CR′(t) = a. (2.12)

Epidemic phase: In the epidemic phase, the new cases are contributing to produce second cases.

Therefore the daily number of new cases is no longer constant, but varies with time as follows

CR(t) = Nbase +
eχ(t−t0)N0[

1 +
Nθ

0

Nθ
∞

(
eχθ(t−t0) − 1

)]1/θ
, for t ∈ [t0, t1]. (2.13)
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In other words, the daily number of new cases follows the Bernoulli-Verhulst [3, 21] equation. Namely,
by setting

N(t) = CR(t)−Nbase, (2.14)

we obtain

N ′(t) = χN(t)

[
1−

(
N(t)

N∞

)θ]
, (2.15)

completed with the initial value

N(t0) = N0.

In the model, Nbase + N0 corresponds to the value CR(t0) of the cumulative number of cases at time
t = t0. The parameter N∞ +Nbase is the maximal value of the cumulative reported cases after the time
t = t0. χ > 0 is a Malthusian growth parameter, and θ regulates the speed at which the CR(t) increases
to N∞ +Nbase.

Regularized model: Because the formula for τ(t) involves derivatives of the phenomenological model
regularizing CR(t) (see equations (1.5)-(1.8)), we need to connect the phenomenological models of the
different phases as smoothly as possible. Let us denote t0, . . . , tn the n+ 1 breaking points of the model,
that is to say, the times at which there is a transition between one phase and the next one. We let C̃R(t)
be the global model obtained by placing the phenomenological models for the different phases side by
side. More precisely, C̃R(t) is defined by (2.13) during an epidemic phase [ti, ti+1], or during the initial
phase (−∞, t0] or the last phase [tn,+∞). During an endemic phase, C̃R(t) is defined by (2.11). The
parameters are chosen so that the resulting global model C̃R is continuous. We define the regularized
model by using the convolution formula:

CR(t) =

∫ +∞

−∞
G(t− s)× C̃R(s)ds = (G ∗ C̃R)(t), (2.16)

where
G(t) :=

1

σ
√

2π
e−

t2

2σ2 ,

is the Gaussian function with mean 0 and variance σ2. The parameter σ controls the trade-off between
smoothness and precision: increasing σ reduces the variations in CR(t) and reducing σ reduces the
distance between CR(t) and C̃R(t). In any case the resulting function CR(t) is very smooth (as well as
its derivatives) and close to the original model C̃R(t) when σ is not too large. In the result section, we
fix σ = 7 days.

Numerically, we will need to compute some derivatives of t → CR(t). Therefore it is convenient to
take advantage of the convolution (2.16) and deduce that

dnCR(t)

dtn
=

∫ +∞

−∞

dnG(t− s)
dtn

× C̃R(s)ds, (2.17)

for n = 1, 2, 3.

Remark 1 We tried several approaches to link an epidemic phase to the next endemic phase. So far
this regularization procedure is the best one.

2.1 Computation of the initial value of the epidemic model
Based on (2.14), we can recover the initial number of asymptomatic infectious I0 = I(t0) and the

initial number of exposed E0 = E(t0) for an epidemic phase starting at time t0. Indeed by definition,
we have CR′(t) = νfI(t) and therefore

I0 =
CR′(t0)

νf
=

χN0

(
1−

(
N0

N∞

)θ)
νf

.
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Estimated initial number of infected

The initial number of asymptomatic infectious is given by

I0 =
CR′(t0)

ν f
. (2.18)

In the special case of Bernoulli-Verhulst’s model we obtain

I0 =
χ

ν f
N0

(
1−

(
N0

N∞

)θ)
. (2.19)

By differentiating (2.15) we deduce that

N ′′(t) = χN ′(t)

(
1−

(
N(t)

N∞

)θ)
− χθ

Nθ
∞
N(t) (N(t))

θ−1
N ′(t)

= χN ′(t)

(
1−

(
N(t)

N∞

)θ)
− χθ

Nθ
∞

(N(t))
θ
N ′(t),

therefore

CR′′(t) = N ′′(t) = χ2N(t)

(
1−

(
N(t)

N∞

)θ)(
1− (1 + θ)

(
N(t)

N∞

)θ)
.

By using the third equation in (1.1) we obtain

E0 =
I ′(t0) + νI(t0)

α
=

CR′′(t0) + νCR′(t0)

α
=
N ′′(t0) + νN ′(t0)

α
.

Estimated initial number of exposed

The initial number of exposed is given by

E0 =
CR′′(t0) + νCR′(t0)

α
. (2.20)

In the special case of Bernoulli-Verhulst’s model we obtain

E0 =
χ

α ν f
N0

(
1−

(
N0

N∞

)θ)(
χ+ ν − χ (1 + θ)

(
N0

N∞

)θ)
. (2.21)

3 Theoretical formula for τ(t)
We first remark that the S-equation of model (1.1) can be written as

d

dt
ln(S(t)) =

S′(t)

S(t)
= −τ(t)

[
I(t) + κU(t)

]
,

therefore by integrating between t0 and t we get

S(t) = S0 exp

(
−
∫ t

t0

τ(σ) [I(σ) + κU(σ)] dσ

)
.

Next we plug the above formula for S(t) into the E-equation of model (1.1) and obtain

E′(t) = S0 exp

(
−
∫ t

t0

τ(σ) [I(σ) + κU(σ)] dσ

)
τ(t) [I(t) + κU(t)]− αE(t)

= −S0
d

dt

(
−
∫ t

t0

τ(σ) [I(σ) + κU(σ)] dσ

)
exp

(
−
∫ t

t0

τ(σ) [I(σ) + κU(σ)] dσ

)
− αE(t),
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and by integrating this equation between t0 and t we obtain

E(t) = E0 + S0

[
1− exp

(
−
∫ t

t0

τ(σ) [I(σ) + κU(σ)] dσ

)]
− α

∫ t

t0

E(σ)dσ. (3.22)

Define the cumulative numbers of exposed, infectious and unreported individuals by

CE(t) :=

∫ t

t0

E(σ)dσ, CI(t) :=

∫ t

t0

I(σ)dσ, and CU(t) :=

∫ t

t0

U(σ)dσ,

and note that CE′(t) = E(t). We can rewrite the equation (3.22) as

S0 exp

(
−
∫ t

t0

τ(σ) [I(σ) + κU(σ)] dσ

)
= E0 + S0 − CE′(t)− αCE(t).

By taking the logarithm on both sides we obtain∫ t

t0

τ(σ) [I(σ) + κU(σ)] dσ = ln(S0)− ln
(
E0 + S0 − CE′(t)− αCE(t)

)
,

and by differentiating with respect to t:

τ(t) =
1

I(t) + κU(t)
× CE′′(t) + αCE′(t)

E0 + S0 − CE′(t)− αCE(t)
. (3.23)

Therefore we have an explicit formula giving τ(t) as a function of I(t), U(t) and CE(t) and its derivatives.
Next we explain how to identify those three remaining unknowns as a function of CR(t) and its derivatives.
We first recall that, from (1.3), we have

CR(t) = CR(t0) + ν f CI(t).

The I-equation of model (1.1) can be rewritten as

αE(t) = I ′(t) + νI(t),

and by integrating this equation between t0 and t we obtain

αCE(t) = CI′(t)− I0 + ν CI(t) =
1

ν f
(CR′(t) + νCR(t)− νCR(t0)). (3.24)

Finally by applying the variation of constants formula to the U -equation of system (1.1) we obtain

U(t) = e−η(t−t0)U0 +

∫ t

t0

e−η(t−s)ν (1− f) I(s)ds = e−η(t−t0)U0 +

∫ t

t0

e−η(t−s) 1− f
f

CR′(s)ds. (3.25)

From these computations we deduce that τ(t) can be computed thanks to (3.23) from CR(t), α, ν, η, κ,
f and U0. The following theorem is a precise statement of this result.

Theorem 2 Let S0 > 0, E0 > 0, I0 > 0, U0 > 0, CR0 ≥ 0, α, ν, η and f > 0 be given. Let
t 7→ τ(t) ≥ 0 be a given continuous function and t→ I(t) be the second component of system (1.1). Let
ĈR : [t0,∞)→ R be a twice continuously differentiable function. Then

ĈR(t) = CR0 + ν f

∫ t

t0

I (s) ds,∀t ≥ t0, (3.26)

if and only if ĈR satisfies

ĈR(t0) = CR0, (3.27)

ĈR
′
(t0) = ν f I0, (3.28)
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ĈR
′′
(t0) + νĈR

′
(t0) = αν f E0, (3.29)

ĈR
′
(t) > 0,∀t ≥ t0, (3.30)

νf (E0 + S0)−
[
ĈR
′′
(t) + νĈR

′
(t)
]
− α

[
ĈR
′
(t)− ν f I0 + νĈR(t)

]
> 0,∀t ≥ t0, (3.31)

and τ(t) is given by

τ(t) =
1

Î(t) + κÛ(t)
× ĈE

′′
(t) + αĈE

′
(t)

E0 + S0 − ĈE
′
(t)− αĈE(t)

, (3.32)

where

Î(t) :=
ĈR
′
(t)

ν f
, (3.33)

ĈI(t) :=
1

ν f

[
ĈR(t)− ĈR(t0)

]
, (3.34)

ĈE(t) :=
1

α

[
ĈI
′
(t)− I0 + ν ĈI(t)

]
=

1

αν f

[
ĈR
′
(t)− ν f I0 + ν

(
ĈR(t)− CR0

)]
, (3.35)

Û(t) := e−η(t−t0)U0 +

∫ t

t0

e−η(t−s) (1− f)

f
ĈR
′
(s)ds. (3.36)

Proof. Assume first that ĈR(t) satisfies (3.26). Then by using the first equation of system (1.1) we
deduce that

S0 exp

(
−
∫ t

t0

τ(σ) [I(σ) + κU(σ)] dσ

)
= E0 + S0 − E(t)− αCE(t). (3.37)

Therefore∫ t

t0

τ(σ) [I(σ) + κU(σ)] dσ = ln

[
S0

E0 + S0 − E(t)− αCE(t)

]
= ln (S0)−ln [E0 + S0 − E(t)− αCE(t)] ,

and by taking the derivative on both side we obtain

τ(t) [I(t) + κU(t)] =
E′(t) + αE(t)

E0 + S0 − E(t)− αCE(t)
,

which is equivalent to

τ(t) =
E(t)

I(t) + κU(t)
×

E′(t)

E(t)
+ α

E0 + S0 − E(t)− αCE(t)
.

By using the fact that E(t) = CE′(t) and I = CR′(t)/(νf), we deduce (3.32). By differentiating (3.26),
we get (3.28) and (3.30). (3.29) is a consequence of the E-component of equation (1.1). We get (3.31)
by combining (3.37) and (3.35) (since ĈE(t) = CE(t)).

Conversely, assume that τ(t) is given by (3.31) and all the equations (3.27)–(3.36) hold. We define
Î(t) = ĈR

′
(t)/νf and ĈI(t) =

(
ĈR(t)− CR0

)
/νf . Then, by using (3.27), we deduce that

ĈI(t) =

∫ t

t0

Î(σ)dσ, (3.38)
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and by using (3.28), we deduce

Î(t0) = I0. (3.39)

Moreover from (3.31) and Î(t) = ĈR
′
(t)/νf , we deduce that

τ(t) =
1

Î(t) + κÛ(t)
× ĈE

′′
(t) + αĈE

′
(t)

E0 + S0 − ĈE
′
(t)− αĈE(t)

. (3.40)

Multiplying (3.40) by Î(t) + κÛ(t) and integrating, we obtain∫ t
t0
τ(σ)

[
Î(σ) + κÛ(σ)

]
dσ = ln

(
E0 + S0 − ĈE

′
(t0)− αĈE(t0)

)
− ln

(
E0 + S0 − ĈE

′
(t)− αĈE(t)

)
,

(3.41)

where the right-hand side is well-defined thanks to (3.31). By combining (3.27), (3.28) and (3.35) we
obtain

ĈE(t0) = 0, (3.42)

and by taking the derivative in (3.35) we obtain

ĈE
′
(t0) =

1

αν f

[
ĈR
′′
(t) + νĈR

′
(t)
]

therefore by using (3.29) we deduce that

ĈE
′
(t0) = E0. (3.43)

In particular E0 + S0 − ĈE
′
(t0) − αĈE(t0) = S0 and, by taking the exponential of equation (3.41), we

obtain

S0e
−

∫ t
t0
τ(σ)[Î(σ)+κÛ(σ)]dσ = E0 + S0 − ĈE

′
(t)− αĈE(t),

which, differentiating both sides, yields

−S0e
−

∫ t
t0
τ(σ)[Î(σ)+κÛ(σ)]dστ(t)

[
Î(t) + κÛ(t)

]
= −ĈE

′′
(t)− αĈE

′
(t) = −Ê′(t)− αÊ(t),

and therefore

Ê′(t) = τ(t)Ŝ(t)
[
Î(t) + κÛ(t)

]
− αÊ(t), (3.44)

where Ê(t) := ĈE
′
(t) and Ŝ(t) := S0e

−
∫ t
t0
τ(σ)[Î(σ)+κÛ(σ)]dσ. Differentiating the definition of Ŝ(t), we

get

Ŝ′(t) = −
[
Î(t) + κÛ(t)

]
Ŝ(t). (3.45)

Next the derivative of (3.35) can be rewritten as

Î ′(t) =
1

ν f
ĈR
′′
(t) = αĈE

′
(t)− ν 1

ν f
ĈR
′
(t) = αÊ(t)− νÎ(t). (3.46)

Finally, differentiating (3.36) yields

Û ′(t) = ν (1− f) Î(t)− ηÛ(t). (3.47)

By combining (3.44)–(3.47) we see that
(
Ŝ(t), Ê(t), Î(t), Û(t)

)
satisfies (1.1) with the initial condition(

Ŝ(t0), Ê(t0), Î(t0), Û(t0)
)

= (S0, E0, I0, U0). By the uniqueness of the solutions of (1.1) for a given
initial condition, we conclude that

(
Ŝ(t), Ê(t), Î(t), Û(t)

)
=
(
S(t), E(t), I(t), U(t)

)
. In particular CR(t)

satisfies (3.26). The proof is completed.

Remark 3 The condition (3.31) is equivalent to say that

E0 + S0 − ĈE
′
(t)− αĈE(t) > 0, ∀t ≥ t0.

Remark 4 The present computations originate for the work of Hadeler [13].
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4 Computing the explicit formula for τ(t) during an epidemic
phase

In this section we assume that the curve of cumulative reported cases is given by the Bernoulli-Verhulst
formula

N(t) := CR(t)−Nbase =
eχ(t−t0)N0[

1 +
Nθ

0

Nθ
∞

(
eχθ(t−t0) − 1

)]1/θ
, for t ∈ [t0, t1],

and we recall that

N ′(t) = χN(t)

(
1−

(
N(t)

N∞

)θ)
.

Then we can compute an explicit formula for the components of the system (1.1). By definition we have

I(t) =
CR′(t)

νf
=

χ

νf
N(t)

(
1−

(
N(t)

N∞

)θ)
, (4.48)

which gives

I ′(t) =
CR′′(t)

νf
=
χ2

νf
N(t)

(
1−

(
N(t)

N∞

)θ)(
1− (1 + θ)

(
N(t)

N∞

)θ)
,

so that by using the I-component in the system (1.1) we get

E(t) =
1

α

(
I ′(t) + νI(t)

)
=

1

ανf

(
CR′′(t) + νCR′(t)

)
.

By integration, we get

CE(t) =
1

αν f

[(
CR′(t)− CR′0

)
+ ν [CR(t)− CR(t0)]

]
,

=
1

αν f

[
χN(t)

(
1−

(
N(t)
N∞

)θ)
− ν f I0 + ν [N(t)−N0]

]
,

=
1

αν f

[
N(t)

(
χ+ ν − χ

(
N(t)

N∞

)θ)
− ν f I0 − νN0

]
.

and since

ν f I0 = CR′(t0) = N ′(t0) = χN0

(
1−

(
N0

N∞

)θ)
,

hence we obtain

CE(t) =
1

αν f

[
N(t)

(
χ+ ν − χ

(
N(t)

N∞

)θ)
−N0

(
χ+ ν − χ

(
N0

N∞

)θ)]
.

Note also that we have explicit formulas for E(t) = CE′(t) and E′(t) = CE′′(t),

E(t) = CE′(t) =
χ

ανf

[
N(t)

(
1−

(
N(t)

N∞

)θ)(
χ+ ν − χ(1 + θ)

(
N(t)

N∞

)θ)]
, (4.49)

and

E′(t) = CE′′(t) =
χ2

ανf
N(t)

(
1−

(
N(t)

N∞

)θ)

×

[
χ+ ν − (χ(2 + θ) + ν)(1 + θ)

(
N(t)

N∞

)θ
+ χ(1 + θ)(1 + 2θ)

(
N(t)

N∞

)2θ
]
.
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Next, recall the U-equation of (1.1), that is

U ′(t) = ν(1− f)I(t)− ηU(t),

therefore by the variation of constant formula we have

U(t) = e−η(t−t0)U(t0) +

∫ t

t0

e−η(t−s)(1− f)νI(s)ds

= e−η(t−t0U0 +

∫ t

t0

e−η(t−s) 1− f
f

CR′(s)ds. (4.50)

Explicit formula for the transmission rate during an epidemic phase

The transmission rate τ(t) can be computed as

τ(t) =

χN(t)

(
1−

(
N(t)
N∞

)θ)
I(t) + κU(t)

×

[
A
(
N(t)
N∞

)2θ

−B
(
N(t)
N∞

)θ
+ C

]
E0 + S0 − E(t)− αCE(t)

. (4.51)

where

N(t) =
eχ(t−t0)N0[

1 +
Nθ

0

Nθ
∞

(
eχθ(t−t0) − 1

)]1/θ
, for t ≥ t0, (4.52)

and

A := χ2(1 + θ)(1 + 2θ), (4.53)

B := χ(1 + θ)
[
χ(2 + θ) + ν + α

]
, (4.54)

C := (α+ χ)(χ+ ν), (4.55)

and I(t) is given by (4.48), E(t) by (4.49) and U(t) by (4.50).

5 Compatibility conditions for the positivity of the transmission
rate

Recall from (4.51):

τ(t) =

χN(t)

(
1−

(
N(t)
N∞

)θ)
I(t) + κU(t)

×

[
A
(
N(t)
N∞

)2θ

−B
(
N(t)
N∞

)θ
+ C

]
E0 + S0 − E(t)− αCE(t)

.

Here we require that the numerator and the denominator of the last fraction stay positive for all times.

Positivity of the numerator: The model is compatible with the data if the transmission rate τ(t)
stays positive for all times t ∈ R. The numerator

p(N) := AN2 −BN + C

is a second-order polynomial with N ∈ (0, 1). Let ∆ := B2−4AC the be the discriminant of p(N). Since
p′(0) = −B < 0 and

p′(N) = 0⇔ N =
B

2A

we have two cases: 1)
B

2A
≥ 1; or 2) 0 <

B

2A
< 1.

Case 1: If
B

2A
≥ 1, p(N) is non-negative for all N ∈ [0, 1] if and only if

p(1) > 0⇔ A+ C −B > 0. (5.56)
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Substituting A, B, C by their expression, we get

A+ C −B = χ2(1 + θ)(1 + 2θ) + (α+ χ)(χ+ ν)− χ(1 + θ)(χ(2 + θ) + α+ ν)

= χ2 + 2χ2θ + χ2θ + 2χ2θ2 + αχ+ αν + χ2 + χν

− 2χ2 − χθ − 2χ2θ − χ2θ2 − αχ− νχ− αχθ − νχθ
= χ2θ2 + αν − αχθ − νχθ
= (α− χθ)(ν − χθ).

Case 2: If
B

2A
< 1, p(N) is non-negative for all N ∈ [0, 1] if and only if

p

(
B

2A

)
(1) > 0⇔ ∆ < 0⇔ B2 − 4AC < 0. (5.57)

Lemma 5 ∆ < 0⇒ A+ C −B > 0.

Proof. We have

∆ < 0⇒ B2 − 4AC ≤ (B − 2A)
2 ⇔ B2 − 4AC ≤ B2 − 4AB + 4A2

and after simplifying the result follows.

Positivity of the denominator: Next we turn to the denominator in the expression of τ , i.e. we want
to ensure

E0 + S0 − E(t)− αCE(t) > 0 for all t ∈ R. (5.58)

We let Y :=
N(t)

N∞
and remark that E(t) + αCE(t) can be written as

E(t) + αCE(t) =
1

ανf

[
χN∞Y (1− Y θ)(χ+ ν − χ(1 + θ)Y θ)

+ αN∞Y (χ+ ν − χY θ)− αN∞Y0(χ+ ν − Y θ0 )
]

=
N∞
ανf

Y
[
(χ+ α)(χ+ ν)− χ(α+ ν + χ(2 + θ))Y θ + χ2(1 + θ)Y 2θ

]
− N0

νf

(
χ+ ν − Y θ0

)
,

since we know that A > 0. Therefore (5.58) becomes

Y
[
(χ+α)(χ+ν)−χ(χ+ν+χ(1+θ)+α)Y θ+χ2(1+θ)Y 2θ

]
≤ ανf

N∞

[
E0 + S0 +

N0

νf

(
χ+ ν −

(
N0

N∞

)θ)]
.

We let

g(Y ) := Y
[
(χ+ α)(χ+ ν)− χ(α+ ν + χ(2 + θ))Y θ + χ2(1 + θ)Y 2θ

]
and notice that

g′(Y ) = (χ+ α)(χ+ ν)− χ(1 + θ)(α+ ν + χ(2 + θ))Y θ + χ2(1 + 2θ)(1 + θ)Y 2θ,

is exactly p(N) := AN2 −BN + C.
Therefore assuming that A+ C − B > 0 the derivative g′(Y ) is positive and g is strictly increasing.

So we only have to check the final value g(1). We get

ανf

N∞

(
S0 + E0 +

N0

νf

(
χ+ ν −

(
N0

N∞

)θ))
≥ (χ+ α)(χ+ ν)− χ(α+ ν − χ(2 + θ)) + χ2(1 + θ)

= χ2 + αν + αχ+ νχ+ χ2 + χ2θ

− αχ− νχ− 2χ2 − χ2θ

= αν.
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Compatibility for the positivity

The SEIUR model is compatible with the data only when τ(t) stays positive for all t ≥ t0.
Therefore the following two conditions should be met:

(ν − χθ)(α− χθ) ≥ 0, (5.59)

and

f +
1

ν

N0

S0 + E0

(
χ+ ν −

(
N0

N∞

)θ)
≥ N∞
S0 + E0

. (5.60)

6 Computing the explicit formula for τ(t) during an endemic
phase

Recall that during an endemic phase the cumulative number of cases is assumed to be a line. There-
fore,

CR(t) = A (t− t0) +B,

and
CR′(t) = A and CR′′(t) = 0.

Therefore

I(t) =
CR′(t)

νf
=

A

νf
, (6.61)

and

E(t) =
I ′ + νI

α
=

A

αf
. (6.62)

Hence

CE(t) =
A

αf
(t− t0) . (6.63)

Moreover

U(t) = e−η(t−t0)U0 +

∫ t

t0

e−η(t−s)ν(1− f)I(s)ds,

and we obtain

U(t) = e−η(t−t0)U0 +
(1− f)A

ηf

(
1− e−η(t−t0)

)
. (6.64)

By combining (1.5) and (6.61)-(6.64) we obtain the following explicit formula.

Explicit formula for the transmission rate during an endemic phase

The transmission rate τ(t) can be computed as

τ(t) =
1

A
νf + κ

(
e−η(t−t0)U0 +

1− f
ηf

A
(
1− e−η(t−t0)

)) × A

fS0 −A (t− t0)
, (6.65)

with the compatibility condition

t0 ≤ t <
fS0

A
+ t0.

Remark 6 The above transmission rate corresponds to a constant number of daily infected A. Therefore
it is not possible to maintain such a constant flux of new infected whenever the number of susceptible

individuals is finite. The time t =
fS0

A
+ t0 corresponds to the maximal time starting from t0 during

which we can maintain such a regime.
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7 Additional information for the results section

Period Interpretation Parameters value Method
U0 Number of unreported symptomatic infectious at time t0 1 Fixed
R0 Number of reported symptomatic infectious at time t0 0 Fixed
τ(t) Transmission rate (1.5)-(1.8) Computed
f Fraction of reported symptomatic infectious 0.8 Fixed

κ
Fraction of unreported symptomatic infectious

capable to transmit the pathogen 1 Fixed

1/α Average duration of the exposed period 1 days Fixed
1/ν Average duration of the asymptomatic infectious period 3 days Fixed
1/η Average duration of the symptomatic infectious period 7 days Fixed

Table 1: In this table we list the values of the parameters of the epidemic model used for the simulations.

7.1 California
Figure 4 of the main text is devoted to the reproduction number of the model. The instantaneous

reproduction number t→ Re(t) starts at around 1.8 on March 4 2020, then goes to a minimum above 1
on June 3 2020. Then we observe a peak during the endemic phase. During the second epidemic wave
from June 23 to September 20 the Re(t) goes from 1.55 down to 0.81 on September 13 2020. Then we
observe a new transmission period during the second endemic phase. During the last epidemic period
Re(t) reaches a maximum at 1.39 on November 13 2020 then goes down to 0.75 on February 1 2021.

Period Interpretation Parameters value Method
t0 Time at which we started the epidemic model Mar 26, 2020 Fixed
S0 Number of susceptibles at time t0 3.95× 107 Fixed
E0 Number of exposed at time t0 7.91× 102 Computed
I0 Number of asymptomatic infectious at time t0 2.06× 103 Computed

Table 2: In this table we list the values of the parameters of the epidemic model used for the simulations.

Compatibility condition between data and epidemic model

By using the Californian data for the first, the second and the third epidemic waves, we get from (5.59)
and (5.60) the following estimates for the average duration of the exposed and asymptomatic infectious
periods and the fraction of reported cases

First epidemic wave 1
α
and 1

ν
≤ 1

χθ
= 5.23× 101 days f ≥ N∞

S0
= 8.21× 10−3

Second epidemic wave 1
α
and 1

ν
≤ 1

χθ
= 2.52× 101 days f ≥ N∞

S0
= 2.08× 10−2

Third epidemic wave 1
α
and 1

ν
≤ 1

χθ
= 1.54× 101 days f ≥ N∞

S0
= 6.72× 10−2

7.2 France
Figure 4 of the main text is devoted to the reproduction number of the model. The instantaneous

reproduction number t → Re(t) starts at around 3.4 on February 27 2020 then goes to a minimum 0.6
on May 7 2020. The first confinement period started on March 17 and stopped on May 11 2020. Then
we observe a transition during the first endemic phase. The second epidemic wave starts on July 5 2020
with a constant Re(t) = 1.23 until October 15. Re(t) = 0.64 goes to a minimum on November 21 2020.
This corresponds to the second confinement period in France which goes from October 30 to December
15 2020. Then we observe a new endemic period during a transition to the third epidemic phase. During
the last epidemic period Re(t) reaches a maximum at 1.1 on January 4 2021 then goes down to 0.92 on
February 25 2021.

In Figure 4 of the main text the difference between Re(t) and R0
e(t) is almost not visible.
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Period Interpretation Parameters value Method
t0 Time at which we started the epidemic model Feb 27, 2020 Fixed
S0 Number of susceptibles at time t0 6.50× 107 Fixed
E0 Number of exposed at time t0 4.27× 101 Computed
I0 Number of asymptomatic infectious at time t0 6.30× 101 Computed

Table 3: In this table we list the values of the parameters of the epidemic model used for the simulations.

Compatibility condition between data and epidemic model

By using the French data for the first, the second and the third epidemic waves, we get from (5.59)
and (5.60) the following estimates for the average duration of the exposed and asymptomatic infectious
periods and the fraction of reported cases

First epidemic wave 1
α
and 1

ν
≤ 1

χθ
= 1.17× 101 days f ≥ N∞

S0
= 2.19× 10−3

Second epidemic wave 1
α
and 1

ν
≤ 1

χθ
= 4.15 days f ≥ N∞

S0
= 3.06× 10−2

Third epidemic wave 1
α
and 1

ν
≤ 1

χθ
= 3.11× 101 days f ≥ N∞

S0
= 3.28× 10−2

7.3 India
Figure 4 of the main text is devoted to the reproduction number of the model. The instantaneous

reproduction number t→ Re(t) is decreasing from February 01, 2020 until February 25, 2021.

Period Interpretation Parameters value Method
t0 Time at which we started the epidemic model Feb 01, 2020 Fixed
S0 Number of susceptibles at time t0 1.39× 109 Fixed
E0 Number of exposed at time t0 4.29× 101 Computed
I0 Number of asymptomatic infectious at time t0 1.12× 102 Computed

Table 4: In this table we list the values of the parameters of the epidemic model used for the simulations.

Compatibility condition between data and epidemic model

By using the Indian data for the first single wave, we get from (5.59) and (5.60) the following estimates
for the average duration of the exposed and asymptomatic infectious periods and the fraction of reported
cases

First epidemic wave 1
α
and 1

ν
≤ 1

χθ
= 3.99× 101 days f ≥ N∞

S0
= 7.93× 10−3

7.4 Israel
Figure 4 of the main text is devoted to the reproduction number of the model. The instantaneous

reproduction number t→ Re(t) starts at around 3.3 on February 27, 2020 and then decreases to a global
minimum at 0.5 on May 10, 2020. The Israeli government gradually imposed restrictions from the first
cases, by limiting social gatherings on March 10, 2020. The lockdown measures were eased starting May
3, 2020 with the reopening of schools and ended on May 20 with the reopening of beaches and museums.
The reproductive number Re(t) becomes greater than one on May 21 and stays above one until the period
of July 2, 2020 to August 13 when it stays sligthly lower than one. The maximal value of Re(t) between
May 21 and July 27 is 1.7. After August 13, there is a peak with maximum of 1.3 until September 29
2020 when the Re(t) becomes lower than one and stays below one until November 20 2020. The minimal
value during this period is 0.6. There is a final peak of the value of Re(t) with maximal value at 1.4
on December 05 2020 after which the basic reproduction number decreases until February 25, 2021 to a
value of 0.7. It becomes lower than one on January 21 2021.
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Period Interpretation Parameters value Method
t0 Time at which we started the epidemic model Feb 27, 2020 Fixed
S0 Number of susceptibles at time t0 8.74× 106 Fixed
E0 Number of exposed at time t0 4.16 Computed
I0 Number of asymptomatic infectious at time t0 6.25 Computed

Table 5: In this table we list the values of the parameters of the epidemic model used for the simulations.

Compatibility condition between data and epidemic model

By using the Israeli data for the first, the second, the third and the fourth epidemic waves, we get from
(5.59) and (5.60) the following estimates for the average duration of the exposed and asymptomatic
infectious periods and the fraction of reported cases

First epidemic wave 1
α
and 1

ν
≤ 1

χθ
= 1.04× 101 days f ≥ N∞

S0
= 1.95× 10−3

Second epidemic wave 1
α
and 1

ν
≤ 1

χθ
= 1.67× 101 days f ≥ N∞

S0
= 9.91× 10−3

Third epidemic wave 1
α
and 1

ν
≤ 1

χθ
= 5.74 days f ≥ N∞

S0
= 2.69× 10−2

Fourth epidemic wave 1
α
and 1

ν
≤ 1

χθ
= 1.71× 101 days f ≥ N∞

S0
= 5.57× 10−2

7.5 Japan
Figure 4 of the main text is devoted to the reproduction number of the model. The instantaneous

reproduction number t → Re(t) decreases from 2.0 on January 20 2020 to 0.5 on May 13 2020. The
basic reproductive number then increases again and becomes greater than one at the end of the first
wave, on May 27 2020. There is an oscillation between the endemic phase May 27 2020 - June 13 2020,
during which Re(t) takes values between 1.1 and 0.9. During the second epidemic phase (June 13, 2020
- September 13, 2020) the basic reproduction number first increases from the value 0.9 on June 13, 2020
to the maximal value of 1.6 on June 30, 2020, and then decreases back to a minimum of 0.8 on August
30. During the second endemic phase (September 10, 2020 - October 18, 2020) it stays close to the value
1.0. For the third and last epidemic phase, we identified three different regimes, with three different sets
of parameters: October 18, 2020 - December 5, 2020, then December 05, 2020 - December 30, 2020, and
finally December 30, 2020 - February 25, 2021. In the first period (October 18, 2020 - December 5, 2020)
the basic reproduction number has a single peak at 1.3 on November 4, 2020 and the final value is 1.1
on December 05, 2020. During the second period (December 05, 2020 - December 30, 2020) the basic
reproduction number increases until the value of 1.2 on December 20, 2020. In the last period, the basic
reproduction number is decreasing, crosses the value 1.0 on January 14, 2021 and reaches the value of
0.6 on February 25, 2021.

Period Interpretation Parameters value Method
t0 Time at which we started the epidemic model Feb 20, 2020 Fixed
S0 Number of susceptibles at time t0 1.26× 108 Fixed
E0 Number of exposed at time t0 2.61 Computed
I0 Number of asymptomatic infectious at time t0 5.45 Computed

Table 6: In this table we list the values of the parameters of the epidemic model used for the simulations.
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Compatibility condition between data and epidemic model

By using the Japanese data for the first, the second, the third, the fourth and the fifth epidemic waves,
we get from (5.59) and (5.60) the following estimates for the average duration of the exposed and asymp-
tomatic infectious periods and the fraction of reported cases

First epidemic wave 1
α
and 1

ν
≤ 1

χθ
= 8.18 days f ≥ N∞

S0
= 1.29× 10−4

Second epidemic wave 1
α
and 1

ν
≤ 1

χθ
= 1.34× 101 days f ≥ N∞

S0
= 4.77× 10−4

Third epidemic wave 1
α
and 1

ν
≤ 1

χθ
= 6.92 days f ≥ N∞

S0
= 7.22× 10−4

Fourth epidemic wave 1
α
and 1

ν
≤ 1

χθ
= 7.17 days f ≥ N∞

S0
= 2.77× 10−3

Fifth epidemic wave 1
α
and 1

ν
≤ 1

χθ
= 1.30× 101 days f ≥ N∞

S0
= 1.82× 10−3

7.6 Peru
In Figure 2-(c) the difference between Re(t) and R0

e(t) is visible only starting from the second epidemic
phase.

(c) (d)

Figure 2: In figure (c) we plot the instantaneous reproduction number Re(t) defined in (1.9) (in black)
and the quasi instantaneous reproduction number R0

e(t) defined in (1.10) (in green) starting from the
beginning of the first epidemic wave. In the figure (d), we plot the instantaneous reproduction number
Re(t) defined in (1.9) (in black) and the one obtained by the standard method [8, 18] (in green). The
transmission rate τ(t) is obtained by using the formula (1.5)-(1.8) together with the phenomenological
model plotted in blue in Figure ??-(a). The parameters values used for the simulation are listed in Table
1 and Table 7.

Period Interpretation Parameters value Method
t0 Time at which we started the epidemic model Mar 20, 2020 Fixed
S0 Number of susceptibles at time t0 3.32× 107 Fixed
E0 Number of exposed at time t0 1.64× 102 Computed
I0 Number of asymptomatic infectious at time t0 3.85× 102 Computed

Table 7: In this table we list the values of the parameters of the epidemic model used for the simulations.
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Compatibility condition between data and epidemic model

By using the Peruvian data for the first, the second and the third epidemic waves, we get from (5.59)
and (5.60) the following estimates for the average duration of the exposed and asymptomatic infectious
periods and the fraction of reported cases

First epidemic wave 1
α
and 1

ν
≤ 1

χθ
= 2.20× 101 days f ≥ N∞

S0
= 1.09× 10−2

Second epidemic wave 1
α
and 1

ν
≤ 1

χθ
= 3.47× 101 days f ≥ N∞

S0
= 2.32× 10−2

Third epidemic wave 1
α
and 1

ν
≤ 1

χθ
= 2.01 days f ≥ N∞

S0
= 2.11× 10−1

7.7 Spain
Figure 4 of the main text is devoted to the reproduction number of the model. The instantaneous

reproduction number t → Re(t) decreases from 3.9 on February 15, 2020 to 0.5 on April 29, 2020. The
instantaneous reproduction number then increases again and reaches 0.7 at the end of the first wave,
on May 10, 2020. During the first endemic period (May 10, 2020 - June 22, 2020) the instantaneous
reproduction number increases to a plateau at 1.0 from May 27, 2020 to June 8, 2020 and then decreases
to a valley at 0.9 on June 19, 2020. It does not significantly increase until June 22, 2020. During the
second epidemic phase (June 22, 2020 - October 2nd, 2020) the instantaneous reproduction number first
sharply increases from 0.9 on July 30, 2020 to the maximal value of 1.4 on July 11, 2020, and then slowly
decreases to a valley at 1.0 on September 25, 2020. It does not significantly increase until October 2nd,
2020. During the second endemic phase (October 2nd, 2020 - October 18, 2021) it increases to reach
a peak at 1.8 on October 18, 2020. During the third epidemic phase (October 18, 2020 - December
06, 2021), the instantaneous reproduction number decreases to a valley at 0.8 on November 23, 2020
and then increases to 1.0 on December 06, 2020. During the third endemic phase (December 06, 2020 -
December 26, 2020), it increases to reach the value of 1.2. Finally during the fourth and last epidemic
phase (December 26, 2020 - February 25, 2021), the instantaneous reproduction number reaches a peak
at 1.4 on January 3rd, 2021 and then decreases to 0.5 on February 25.

Period Interpretation Parameters value Method
t0 Time at which we started the epidemic model Feb 15, 2020 Fixed
S0 Number of susceptibles at time t0 3.95× 107 Fixed
E0 Number of exposed at time t0 5.10 Computed
I0 Number of asymptomatic infectious at time t0 6.87 Computed

Table 8: In this table we list the values of the parameters of the epidemic model used for the simulations.

Compatibility condition between data and epidemic model

By using the Spanish data for the first, the second, the third and the fourth epidemic waves, we get
from (5.59) and (5.60) the following estimates for the average duration of the exposed and asymptomatic
infectious periods and the fraction of reported cases

First epidemic wave 1
α
and 1

ν
≤ 1

χθ
= 1.05× 101 days f ≥ N∞

S0
= 5.87× 10−3

Second epidemic wave 1
α
and 1

ν
≤ 1

χθ
= 2.81× 101 days f ≥ N∞

S0
= 2.50× 10−2

Third epidemic wave 1
α
and 1

ν
≤ 1

χθ
= 1.58× 101 days f ≥ N∞

S0
= 2.49× 10−2

Fourth epidemic wave 1
α
and 1

ν
≤ 1

χθ
= 9.84 days f ≥ N∞

S0
= 3.29× 10−2

7.8 United Kingdom
Figure 4 of the main text is devoted to the reproduction number of the model. The instantaneous

reproduction number t→ Re(t) decreases from 3.2 on February 15, 2020 to a valley at 0.8 on June 1st,
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2020. Then it increases to 0.9 at the end of the first epidemic phase on June 15, 2020. During the first
endemic period (June 15, 2020 - September 1st, 2020) the instantaneous reproduction number increases
to a plateau at 1.0 from June 21, 2020 to August 23, 2020 and then increases to 1.4 on September 1st,
2020. During the second epidemic phase (September 1st, 2020 - November 20, 2020) the instantaneous
reproduction number first increases to a peak at 1.5 on September 9, 2020 and then decreases to 0.9
on November 20, 2020. During the second endemic phase (November 20, 2020 - December 10, 2021) it
increases to 1.2. Finally during the third and last epidemic phase (December 10, 2020 - February 25,
2021), the instantaneous reproduction number reaches a peak at 1.3 on December 16, 2020 and then
decreases to 0.6 on February 25.

Period Interpretation Parameters value Method
t0 Time at which we started the epidemic model Feb 15, 2020 Fixed
S0 Number of susceptibles at time t0 6.81× 107 Fixed
E0 Number of exposed at time t0 3.41 Computed
I0 Number of asymptomatic infectious at time t0 5.15 Computed

Table 9: In this table we list the values of the parameters of the epidemic model used for the simulations.

Compatibility condition between data and epidemic model

By using the data from Great Britain for the first, the second and the third epidemic waves, we get
from (5.59) and (5.60) the following estimates for the average duration of the exposed and asymptomatic
infectious periods and the fraction of reported cases

First epidemic wave 1
α
and 1

ν
≤ 1

χθ
= 2.06× 101 days f ≥ N∞

S0
= 4.20× 10−3

Second epidemic wave 1
α
and 1

ν
≤ 1

χθ
= 3.14× 101 days f ≥ N∞

S0
= 3.15× 10−2

Third epidemic wave 1
α
and 1

ν
≤ 1

χθ
= 1.08× 101 days f ≥ N∞

S0
= 3.56× 10−2
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8 Plot of the multiple Bernoulli-Verhuslt’s models fitted to each
epidemic phase

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3: In this figure, we plot the cumulative number of cases for California (black dots) and the best
fit of Bernoulli-Verhulst for each epidemic wave for (a) California; (b) France; (c) India; (d) Israel; (e)
Japan; (f) Peru; (g) Spain; (h) United Kingdom.
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9 Dependency with respect to the parameters for the French
data

Influence of f on basic reproduction number:

Figure 4: In this figure we plot (t, f) → Re(t) defined in (1.9) when t varies from January 03 2020 to
January 04 2021 and f varies from 0.1 to 1.
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Figure 5: In this figure we explore the influence of the parameter f on the solution of model (1.1). The
figure (a) corresponds to f = 0.1 and figure (b) corresponds to f = 1. The remaining parameters are
unchanged.

Influence of κ on basic reproduction number:

Figure 6: In this figure we plot (t, κ) → Re(t) defined in (1.9) when t varies from January 03 2020 to
January 04 2021 and κ varies from 0.1 to 3.
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Figure 7: In this figure we explore the influence of the parameter f on the solution of model (1.1). The
figure (a) corresponds to κ = 0.1 and figure (b) corresponds to κ = 3. The remaining parameters are
unchanged.

Influence of ν on basic reproduction number:

Figure 8: In this figure we plot (t, ν) → Re(t) defined in (1.9) when t varies from January 03 2020 to
January 04 2021 and ν varies from 0.1 to 1 (or equivalently 1/ν varies from 10 days to 1 day).

(a)

Apr 2020 Oct 2020
0

50000

100000

150000

200000

250000

300000
E

I

U

R

(b)

Apr 2020 Oct 2020

0

100000

200000

300000

400000

500000
E

I

U

R

Figure 9: In this figure we explore the influence of the parameter 1/ν on the solution of model (1.1). The
figure (a) corresponds to 1/ν = 1 and figure (b) corresponds to 1/ν = 10. The remaining parameters are
unchanged.
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Influence of η on basic reproduction number:

Figure 10: In this figure we plot (t, η) → Re(t) defined in (1.9) when t varies from January 03 2020 to
January 04 2021 and η varies from 0.1 to 1 (or equivalently 1/η varies from 10 days to 1 day).
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Figure 11: In this figure we explore the influence of the parameter f on the solution of model (1.1). The
figure (a) corresponds to 1/η = 1 days and figure (b) corresponds to 1/η = 10 days. The remaining
parameters are unchanged.

Influence of α on basic reproduction number:

Figure 12: In this figure we plot (t, α) → Re(t) defined in (1.9) when t varies from January 03 2020 to
January 04 2021 and α varies from 0.1 to 1 (or equivalently 1/α varies from 10 days to 1 day).
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Figure 13: In this figure we explore the influence of the parameter f on the solution of model (1.1). The
figure (a) corresponds to 1/α = 1 days and figure (b) corresponds to 1/α = 10 days. The remaining
parameters are unchanged.

10 Computing R0

The basic reproduction number R0 can be computed for the SEIUR model by the formula (see [10,
12])

R0 = ρ(FV −1),

where F is the matrix containing new infections and V contains the rates of transfer between classes:

F :=


0 τS τκS 0
0 0 0 0
0 0 0 0
0 0 0 0

 , V :=


α 0 0 0
−α ν 0 0
0 −ν(1− f) η 0
0 ν(1− f) 0 η

 ,

see [10] and [12] for details. Therefore

V −1 =


1/α 0 0 0
1/ν 1/ν 0 0

(1− f)/η (1− f)/η 1/η 0
f/η f/η 0 1/η

 , FV −1 =
τS

ην


η + κν(1− f) η + κν(1− f) κν 0

0 0 0 0
0 0 0 0
0 0 0 0

 .

It follows that

R0 =
τS

ην

(
η + κν(1− f)

)
. (10.66)

11 Relative error of the fitted curve compared to the data in
each geographic area

11.1 California
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Figure 14: Relative error between the data and the model for California State, expressed in percent.
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11.2 France
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Figure 15: Relative error between the data and the model for France, expressed in percent.

11.3 India
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Figure 16: Relative error between the data and the model for India, expressed in percent.

11.4 Israel
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Figure 17: Relative error between the data and the model for Israel, expressed in percent.
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11.5 Japan
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Figure 18: Relative error between the data and the model for Japan, expressed in percent.

11.6 Peru
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Figure 19: Relative error between the data and the model for Peru, expressed in percent.

11.7 Spain
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Figure 20: Relative error between the data and the model for Spain, expressed in percent.
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11.8 UK

Feb 01 Apr 01 May 31 Jul 30 Sep 28 Nov 27 Jan 26
0

20

40

date

er
ro
r
(%

)

Data

Figure 21: Relative error between the data and the model for UK, expressed in percent.
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12 Table of estimated parameters for the phenomenological model

12.1 California

Period Parameters value Method 95% Confidence interval

Period 1: Epidemic phase
Mar 26, 2020 - Jun 11, 2020

N0 = 7.34× 103

Nbase = 1.14× 10−5

N∞ = 3.24× 105

χ = 4.14× 104

θ = 4.62× 10−7

fitted
fitted
fitted
fitted
fitted

N0 ∈ [4.16× 103, 1.05× 104]
Nbase ∈ [−4.33× 103, 4.33× 103]
N∞ ∈ [2.52× 105, 3.96× 105]
χ ∈ [7.74× 102, 8.20× 104]
θ ∈ [2.39× 10−8, 9.00× 10−7]

Period 2: Endemic phase
Jun 11, 2020 - Jun 23, 2020

a = 3.81× 103

N0 = 1.36× 105
computed
computed

Period 3: Epidemic phase
Jun 23, 2020 - Sep 20, 2020

N0 = 1.57× 105

Nbase = 2.45× 104

N∞ = 8.22× 105

χ = 5.54× 10−2

θ = 7.18× 10−1

fitted
fitted
fitted
fitted
fitted

N0 ∈ [5.96× 104, 2.55× 105]
Nbase ∈ [−7.58× 104, 1.25× 105]
N∞ ∈ [7.36× 105, 9.08× 105]
χ ∈ [5.32× 10−3, 1.05× 10−1]
θ ∈ [−3.59× 10−2, 1.47]

Period 4: Endemic phase
Sep 20, 2020 - Nov 01, 2020

a = 3.66× 103

N0 = 7.76× 105
computed
computed

Period 5: Epidemic phase
Nov 01, 2020 - Feb 25, 2021

N0 = 6.27× 104

Nbase = 8.67× 105

N∞ = 2.66× 106

χ = 6.36× 10−2

θ = 1.02

fitted
fitted
fitted
fitted
fitted

N0 ∈ [4.95× 104, 7.59× 104]
Nbase ∈ [8.45× 105, 8.88× 105]
N∞ ∈ [2.64× 106, 2.67× 106]
χ ∈ [5.73× 10−2, 6.98× 10−2]
θ ∈ [8.79× 10−1, 1.16]

Table 10: In this table we list the values of the parameters of the phenomenological model which give the
best fit to the cumulative number of cases data in California from January 03 2020 to February 25 2021.

12.2 France

Period Parameters value Method 95% Confidence interval

Period 1: Epidemic phase
Feb 27, 2020 - May 17, 2020

N0 = 3.61× 10−4

Nbase = 0.00
N∞ = 1.43× 105

χ = 1.17× 102

θ = 7.29× 10−4

fitted
fixed
fitted
fitted
fitted

N0 ∈ [−3.77, 3.77]

N∞ ∈ [−1.58× 104, 3.01× 105]
χ ∈ [−1.09× 107, 1.09× 107]
θ ∈ [−6.84× 101, 6.84× 101]

Period 2: Endemic phase
May 17, 2020 - Jul 05, 2020

a = 3.14× 102

N0 = 1.39× 105
computed
computed

Period 3: Epidemic phase
Jul 05, 2020 - Nov 26, 2020

N0 = 1.50× 104

Nbase = 1.40× 105

N∞ = 1.99× 106

χ = 3.68× 10−2

θ = 6.55

fitted
fitted
fitted
fitted
fitted

N0 ∈ [1.36× 104, 1.65× 104]
Nbase ∈ [1.33× 105, 1.46× 105]
N∞ ∈ [1.97× 106, 2.01× 106]
χ ∈ [3.60× 10−2, 3.76× 10−2]
θ ∈ [5.52, 7.58]

Period 4: Endemic phase
Nov 26, 2020 - Dec 20, 2020

a = 1.28× 104

N0 = 2.11× 106
computed
computed

Period 5: Epidemic phase
Dec 20, 2020 - Feb 25, 2021

N0 = 2.73× 105

Nbase = 2.15× 106

N∞ = 2.13× 106

χ = 5.88× 10−2

θ = 5.47× 10−1

fitted
fitted
fitted
fitted
fitted

N0 ∈ [−2.43× 103, 5.48× 105]
Nbase ∈ [1.86× 106, 2.43× 106]
N∞ ∈ [1.88× 106, 2.39× 106]
χ ∈ [−6.11× 10−2, 1.79× 10−1]
θ ∈ [−9.19× 10−1, 2.01]

Table 11: In this table we list the values of the parameters of the phenomenological model which give the
best fit to the cumulative number of cases data in France from January 03 2020 to February 25 2021.
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12.3 India

Period Parameters value Method 95% Confidence interval

Period 1: Epidemic phase
Feb 01, 2020 - Feb 25, 2021

N0 = 5.83× 102

Nbase = 1.97× 104

N∞ = 1.10× 107

χ = 4.89× 10−2

θ = 5.12× 10−1

fitted
fitted
fitted
fitted
fitted

N0 ∈ [3.45× 102, 8.20× 102]
Nbase ∈ [5.36× 103, 3.39× 104]
N∞ ∈ [1.10× 107, 1.11× 107]
χ ∈ [4.59× 10−2, 5.20× 10−2]
θ ∈ [4.71× 10−1, 5.54× 10−1]

Table 12: In this table we list the values of the parameters of the phenomenological model which give the
best fit to the cumulative number of cases data in India from January 03 2020 to February 25 2021.

12.4 Israel

Period Parameters value Method 95% Confidence interval

Period 1: Epidemic phase
Feb 27, 2020 - Jun 01, 2020

N0 = 1.08× 10−2

Nbase = 4.27× 101

N∞ = 1.71× 104

χ = 9.18× 10−1

θ = 1.05× 10−1

fitted
fitted
fitted
fitted
fitted

N0 ∈ [−3.85× 10−2, 6.02× 10−2]
Nbase ∈ [−3.36× 101, 1.19× 102]
N∞ ∈ [1.70× 104, 1.72× 104]
χ ∈ [1.71× 10−1, 1.67]
θ ∈ [1.55× 10−2, 1.94× 10−1]

Period 2: Endemic phase
Jun 01, 2020 - Jun 25, 2020

a = 2.04× 102

N0 = 1.70× 104
computed
computed

Period 3: Epidemic phase
Jun 25, 2020 - Aug 08, 2020

N0 = 2.48× 103

Nbase = 1.95× 104

N∞ = 8.66× 104

χ = 2.93× 10−1

θ = 2.04× 10−1

fitted
fitted
fitted
fitted
fitted

N0 ∈ [3.43× 102, 4.61× 103]
Nbase ∈ [1.70× 104, 2.20× 104]
N∞ ∈ [7.78× 104, 9.55× 104]
χ ∈ [−2.61× 10−1, 8.48× 10−1]
θ ∈ [−2.43× 10−1, 6.50× 10−1]

Period 4: Endemic phase
Aug 08, 2020 - Sep 03, 2020

a = 1.54× 103

N0 = 7.97× 104
computed
computed

Period 5: Epidemic phase
Sep 03, 2020 - Oct 20, 2020

N0 = 4.59× 104

Nbase = 7.38× 104

N∞ = 2.35× 105

χ = 5.05× 10−2

θ = 3.45

fitted
fitted
fitted
fitted
fitted

N0 ∈ [2.88× 104, 6.31× 104]
Nbase ∈ [5.53× 104, 9.23× 104]
N∞ ∈ [2.19× 105, 2.52× 105]
χ ∈ [3.77× 10−2, 6.34× 10−2]
θ ∈ [1.96, 4.93]

Period 6: Endemic phase
Oct 20, 2020 - Nov 14, 2020

a = 8.90× 102

N0 = 3.04× 105
computed
computed

Period 7: Epidemic phase
Nov 14, 2020 - Feb 25, 2021

N0 = 3.16× 103

Nbase = 3.23× 105

N∞ = 4.87× 105

χ = 8.28× 10−2

θ = 7.06× 10−1

fitted
fitted
fitted
fitted
fitted

N0 ∈ [2.16× 103, 4.17× 103]
Nbase ∈ [3.21× 105, 3.25× 105]
N∞ ∈ [4.79× 105, 4.95× 105]
χ ∈ [7.22× 10−2, 9.34× 10−2]
θ ∈ [5.69× 10−1, 8.43× 10−1]

Table 13: In this table we list the values of the parameters of the phenomenological model which give the
best fit to the cumulative number of cases data in Israel from January 03 2020 to February 25 2021.
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12.5 Japan

Period Parameters value Method 95% Confidence interval

Period 1: Epidemic phase
Feb 20, 2020 - May 27, 2020

N0 = 5.83
Nbase = 3.25× 102

N∞ = 1.63× 104

χ = 1.48× 10−1

θ = 8.29× 10−1

fitted
fitted
fitted
fitted
fitted

N0 ∈ [1.91, 9.74]
Nbase ∈ [2.55× 102, 3.95× 102]
N∞ ∈ [1.62× 104, 1.64× 104]
χ ∈ [1.30× 10−1, 1.65× 10−1]
θ ∈ [6.88× 10−1, 9.70× 10−1]

Period 2: Endemic phase
May 27, 2020 - Jun 13, 2020

a = 7.07× 101

N0 = 1.65× 104
computed
computed

Period 3: Epidemic phase
Jun 13, 2020 - Sep 10, 2020

N0 = 1.49× 102

Nbase = 1.75× 104

N∞ = 6.02× 104

χ = 1.19× 10−1

θ = 6.28× 10−1

fitted
fitted
fitted
fitted
fitted

N0 ∈ [8.52× 101, 2.13× 102]
Nbase ∈ [1.73× 104, 1.78× 104]
N∞ ∈ [5.93× 104, 6.10× 104]
χ ∈ [1.03× 10−1, 1.35× 10−1]
θ ∈ [5.04× 10−1, 7.52× 10−1]

Period 4: Endemic phase
Sep 10, 2020 - Oct 18, 2020

a = 5.36× 102

N0 = 7.27× 104
computed
computed

Period 5: Epidemic phase
Oct 18, 2020 - Dec 05, 2020

N0 = 6.33× 103

Nbase = 8.68× 104

N∞ = 9.10× 104

χ = 5.60× 10−2

θ = 2.58

fitted
fitted
fitted
fitted
fitted

N0 ∈ [4.64× 103, 8.01× 103]
Nbase ∈ [8.48× 104, 8.88× 104]
N∞ ∈ [7.75× 104, 1.05× 105]
χ ∈ [4.74× 10−2, 6.46× 10−2]
θ ∈ [1.00, 4.16]

Period 6: Epidemic phase
Dec 05, 2020 - Dec 30, 2020

N0 = 1.23× 105

Nbase = 3.43× 104

N∞ = 3.49× 105

χ = 1.78× 10−2

θ = 7.84

fitted
fitted
fitted
fitted
fitted

N0 ∈ [−2.43× 105, 4.90× 105]
Nbase ∈ [−3.33× 105, 4.01× 105]
N∞ ∈ [−2.92× 107, 2.99× 107]
χ ∈ [−3.59× 10−2, 7.15× 10−2]
θ ∈ [−1.28× 103, 1.30× 103]

Period 7: Epidemic phase
Dec 30, 2020 - Feb 25, 2021

N0 = 2.00× 104

Nbase = 2.05× 105

N∞ = 2.29× 105

χ = 7.98× 10−1

θ = 9.61× 10−2

fitted
fitted
fitted
fitted
fitted

N0 ∈ [1.59× 103, 3.84× 104]
Nbase ∈ [1.85× 105, 2.25× 105]
N∞ ∈ [2.11× 105, 2.47× 105]
χ ∈ [−2.54, 4.13]
θ ∈ [−3.15× 10−1, 5.07× 10−1]

Table 14: In this table we list the values of the parameters of the phenomenological model which give the
best fit to the cumulative number of cases data in Japan from January 03 2020 to February 25 2021.

12.6 Peru

Period Parameters value Method 95% Confidence interval

Period 1: Epidemic phase
Mar 20, 2020 - Jul 01, 2020

N0 = 8.36× 102

Nbase = 3.00× 10−5

N∞ = 3.61× 105

χ = 1.08× 10−1

θ = 4.20× 10−1

fitted
fitted
fitted
fitted
fitted

N0 ∈ [2.63× 102, 1.41× 103]
Nbase ∈ [−1.74× 103, 1.74× 103]
N∞ ∈ [3.44× 105, 3.79× 105]
χ ∈ [7.59× 10−2, 1.41× 10−1]
θ ∈ [2.41× 10−1, 5.98× 10−1]

Period 2: Endemic phase
Jul 01, 2020 - Jul 30, 2020

a = 3.67× 103

N0 = 2.83× 105
computed
computed

Period 3: Epidemic phase
Jul 30, 2020 - Nov 10, 2020

N0 = 1.86× 105

Nbase = 2.03× 105

N∞ = 7.69× 105

χ = 4.84× 10−1

θ = 5.95× 10−2

fitted
fitted
fitted
fitted
fitted

N0 ∈ [−2.61× 104, 3.98× 105]
Nbase ∈ [−1.11× 104, 4.18× 105]
N∞ ∈ [5.65× 105, 9.72× 105]
χ ∈ [−6.23, 7.20]
θ ∈ [−7.74× 10−1, 8.93× 10−1]

Period 4: Endemic phase
Nov 10, 2020 - Jan 11, 2021

a = 1.80× 103

N0 = 9.16× 105
computed
computed

Period 5: Epidemic phase
Jan 11, 2021 - Feb 25, 2021

N0 = 3.23× 105

Nbase = 7.04× 105

N∞ = 7.00× 106

χ = 1.36× 10−2

θ = 3.67× 101

fitted
fitted
fitted
fitted
fitted

Table 15: In this table we list the values of the parameters of the phenomenological model which give the
best fit to the cumulative number of cases data in Peru from January 03 2020 to February 25 2021.
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12.7 Spain

Period Parameters value Method 95% Confidence interval

Period 1: Epidemic phase
Feb 15, 2020 - May 10, 2020

N0 = 5.19× 10−4

Nbase = 5.77× 102

N∞ = 2.32× 105

χ = 9.80× 10−1

θ = 9.75× 10−2

fitted
fitted
fitted
fitted
fitted

N0 ∈ [−5.00× 10−3, 6.04× 10−3]
Nbase ∈ [−4.50× 102, 1.60× 103]
N∞ ∈ [2.30× 105, 2.34× 105]
χ ∈ [−1.26× 10−1, 2.09]
θ ∈ [−1.83× 10−2, 2.13× 10−1]

Period 2: Endemic phase
May 10, 2020 - Jun 22, 2020

a = 5.67× 102

N0 = 2.28× 105
computed
computed

Period 3: Epidemic phase
Jun 22, 2020 - Oct 02, 2020

N0 = 2.38× 103

Nbase = 2.50× 105

N∞ = 9.89× 105

χ = 9.29× 10−2

θ = 3.84× 10−1

fitted
fitted
fitted
fitted
fitted

N0 ∈ [1.39× 103, 3.36× 103]
Nbase ∈ [2.48× 105, 2.53× 105]
N∞ ∈ [9.02× 105, 1.08× 106]
χ ∈ [7.07× 10−2, 1.15× 10−1]
θ ∈ [2.38× 10−1, 5.29× 10−1]

Period 4: Endemic phase
Oct 02, 2020 - Oct 18, 2020

a = 1.09× 104

N0 = 8.14× 105
computed
computed

Period 5: Epidemic phase
Oct 18, 2020 - Dec 06, 2020

N0 = 1.68× 105

Nbase = 8.20× 105

N∞ = 9.85× 105

χ = 3.15× 10−1

θ = 2.02× 10−1

fitted
fitted
fitted
fitted
fitted

N0 ∈ [−3.50× 104, 3.72× 105]
Nbase ∈ [6.12× 105, 1.03× 106]
N∞ ∈ [8.01× 105, 1.17× 106]
χ ∈ [−1.05, 1.68]
θ ∈ [−7.15× 10−1, 1.12]

Period 6: Endemic phase
Dec 06, 2020 - Dec 26, 2020

a = 9.15× 103

N0 = 1.72× 106
computed
computed

Period 7: Epidemic phase
Dec 26, 2020 - Feb 25, 2021

N0 = 5.94× 104

Nbase = 1.84× 106

N∞ = 1.30× 106

χ = 1.30× 10−1

θ = 7.84× 10−1

fitted
fitted
fitted
fitted
fitted

N0 ∈ [3.86× 104, 8.02× 104]
Nbase ∈ [1.81× 106, 1.87× 106]
N∞ ∈ [1.28× 106, 1.32× 106]
χ ∈ [9.90× 10−2, 1.60× 10−1]
θ ∈ [5.50× 10−1, 1.02]

Table 16: In this table we list the values of the parameters of the phenomenological model which give the
best fit to the cumulative number of cases data in Spain from January 03 2020 to February 01 2021.

12.8 United Kingdom

Period Parameters value Method 95% Confidence interval

Period 1: Epidemic phase
Feb 15, 2020 - Jun 15, 2020

N0 = 2.65× 10−2

Nbase = 1.12× 102

N∞ = 2.86× 105

χ = 1.76
θ = 2.76× 10−2

fitted
fitted
fitted
fitted
fitted

N0 ∈ [−8.82× 10−2, 1.41× 10−1]
Nbase ∈ [−4.82× 102, 7.06× 102]
N∞ ∈ [2.84× 105, 2.88× 105]
χ ∈ [−1.46, 4.98]
θ ∈ [−2.38× 10−2, 7.90× 10−2]

Period 2: Endemic phase
Jun 15, 2020 - Sep 01, 2020

a = 9.43× 102

N0 = 2.70× 105
computed
computed

Period 3: Epidemic phase
Sep 01, 2020 - Nov 20, 2020

N0 = 7.85× 103

Nbase = 3.36× 105

N∞ = 2.14× 106

χ = 2.41× 10−1

θ = 1.32× 10−1

fitted
fitted
fitted
fitted
fitted

N0 ∈ [3.63× 103, 1.21× 104]
Nbase ∈ [3.28× 105, 3.43× 105]
N∞ ∈ [1.93× 106, 2.36× 106]
χ ∈ [2.16× 10−2, 4.60× 10−1]
θ ∈ [−9.25× 10−3, 2.74× 10−1]

Period 4: Endemic phase
Nov 20, 2020 - Dec 10, 2020

a = 1.61× 104

N0 = 1.48× 106
computed
computed

Period 5: Epidemic phase
Dec 10, 2020 - Feb 01, 2021

N0 = 2.26× 105

Nbase = 1.58× 106

N∞ = 2.42× 106

χ = 8.57× 10−2

θ = 1.08

fitted
fitted
fitted
fitted
fitted

N0 ∈ [1.16× 105, 3.35× 105]
Nbase ∈ [1.46× 106, 1.70× 106]
N∞ ∈ [2.34× 106, 2.51× 106]
χ ∈ [5.14× 10−2, 1.20× 10−1]
θ ∈ [4.85× 10−1, 1.68]

Table 17: In this table we list the values of the parameters of the phenomenological model which give the
best fit to the cumulative number of cases data in United Kingdom from January 03 2020 to February 01
2021.
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13 Stochastic approach to effective reproductive ratio
In numerical applications, we also present the results obtained by applying the method described

in the paper of Cori et al. [8]. Let us summarize the principle of the method. We consider that the
incidence data (i.e. the daily number of new reported cases) correspond to infection events that have
occurred in the past. For each new reported case we reconstruct the time at which the infectious period
started by sampling a Gamma distribution (i.e. the time from the infection to the moment at which the
individual are reported follows a Gamma distribution). The parameters of this Gamma distribution are
computed to match the differential equation framework. In numerical application, 1/µ = 10 days we
took the average for the average of the Gamma distribution as well as its standard deviation. We denote
It the resulting number of individuals that begin their infectious period on day t. As described in [8],
we use a smoothing window of τ days (τ = 14 days in numerical applications). The resulting effective
reproductive ratio Rt is then computed as

Rt =

a+

t∑
s=t−τ+1

Is

1
b +

∑t
s=t−τ+1 Λs

,

where a and b are a prior distribution on Rt (we took a = 1 and b = 5, as in [8]) and Λs is computed by
the formula

Λs =

t∑
s=1

It−sws,

where ws is the average infectiousness profile after time s. In numerical applications, and following [8,
Web Appendix 11], we used the following formula for ws

ws = sFΓ,α,β(s) + (s− 2)FΓ,α,β(s− 2)− 2(s− 1)FΓ,α,β(s− 1)

+ αβ(2FΓ,α+1,β(s− 1)− FΓ,α+1,β(s− 2)− FΓ,α+1,β(s)),

where FΓ,α,β(s) is the cumulative density of a Gamma distribution of parameters (α, β):

FΓ,α,β(t) =

∫ t

0

1

Γ(α)βα
sα−1e−

s
β ds.

The parameters α and β are computed to match the Gamma distribution of the serial intervals which,
in our case, have mean value 1/µ = 10 days and standard deviation as well of 1/µ, so that α = 1/µ and
β = 1/µ.

Because of the sampling of random numbers involved in the computation of Rt, the procedure de-
scribed above was repeated 100 times (each time drawing a new sequence of Is from the daily number of
new cases) and the final value of Rt presented in Figure 4 of the main text (green curves) is the average
of the values obtained during these 100 simulations.

14 Upper bound of the duration for the exposed period and the
asymptomatic infectious period

Let us finally mention that for each country and each epidemic wave we evaluated the parameter
1/(χ θ). In Figure 22 we plot the histogram of its estimated value and obtain a median value be 15.61
days. Therefore the length of exposure and the length asymptomatic infectious period should smaller
than 15.61 days.
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Figure 22: In this Figure we plot the histogram for the estimated values 1/(χ θ) (see Appendix E). The
red vertical line is mean value which is equal to 21 days. The yellow vertical line is median value which
is equal to 15.61 days.

In this section, we plot the estimated values of the parameter 1/(χ θ) for each epidemic period and
each country consider in this study. The parameter corresponds to the upper bound of the length of the
exposed period and asymptomatic infectious period. Indeed from the section devoted to the compatibility
condition we know that the average duration of the exposed period should satisfy

1/ν ≤ 1/(χ θ),

and the average duration of the asymptomatic infectious period should should satisfy

1/α ≤ 1/(χ θ).
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Figure 23: In this figure we plot the values of the parameter 1/(χ θ) estimated for each epidemic wave
and for California (a), France (b), India (c), Israel (d). This parameter represents the maximal length
of the incubation period. In each figure, we plot this parameter for each epidemic wave and for each
country.
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Figure 24: In this figure we plot the values of the parameter 1/(χ θ) estimated for each epidemic wave
and for Japan (e), Peru (f), Spain (g) and United Kingdom (h). This parameter represents the maximal
length of the incubation period. In each figure, we plot this parameter for each epidemic wave and for
each country.
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