
Supplementary Information

Table of contents

Table of contents 1

Methods 2
Hardware 2
Software 2
Training, tuning and predictions 2

Data splitting 2
Scalar data 4

Nested cross-validation 4
Bayesian hyperparameters optimization 4
Example 5

Images 7
Hyperparameters tuning upstream of the cross-validation 7
Cross-validation 10
Cross-validation example 11

Time series 12
Hyperparameters tuning upstream of the cross-validation 12
Tuning of the seed using a cross-validation 14

Generating average predictions for each participant 14
Interpretability of the predictions 16

Scalar data-based predictors 16
Time series and image-based predictors 16

Non-genetic correlates of accelerated aging 20
Imputation of the non-genetic X-variables 20
X-Wide Association Studies 22

Supplementary Figures 23

Supplementary Tables 36

Supplementary References 46



Methods

Hardware

We performed the computation for this project on Harvard Medical School’s compute cluster,

with access to both central processing units [CPUs] and general processing units [GPUs]

(Tesla-M40, Tesla-K80, Tesla-V100) via a Simple Linux Utility for Resource Management

[SLURM] scheduler.

Software

We coded the project in Python 1 and used the following libraries: NumPy 2,3, Pandas 4,

Matplotlib 5, Plotly 6, Python Imaging Library 7, SciPy 8–10, Scikit-learn 11, LightGBM 12, XGBoost

13, Hyperopt 14, TensorFlow 2 15, Keras 16, Keras-vis 17, iNNvestigate 18. We used Dash 19 to code

the website on which we shared the results. We set the seed for the os library, the numpy

library, the random library and the tensorflow library to zero.

Training, tuning and predictions

Data splitting

We split the 676,787 samples into ten data folds, while keeping all samples from the same

participant in the same fold. To ensure this, we split the 502,211 participants’ ids (referred to by

UKB as “eid”) into ten different buckets of the same size. To generate ten folds for each

sub-dataset (e.g. ECGs), we took the intersection of the samples in each of the ten folds with

2

https://paperpile.com/c/1hLSWD/CuN8z
https://paperpile.com/c/1hLSWD/Tj7Yl+7oyxr
https://paperpile.com/c/1hLSWD/f2vPD
https://paperpile.com/c/1hLSWD/g1P8h
https://paperpile.com/c/1hLSWD/38IM3
https://paperpile.com/c/1hLSWD/t97bM
https://paperpile.com/c/1hLSWD/bBQkf+IySCk+QB6IF
https://paperpile.com/c/1hLSWD/1O7EH
https://paperpile.com/c/1hLSWD/4FVaC
https://paperpile.com/c/1hLSWD/c4jSb
https://paperpile.com/c/1hLSWD/WzIjA
https://paperpile.com/c/1hLSWD/Cxc2d
https://paperpile.com/c/1hLSWD/njdhW
https://paperpile.com/c/1hLSWD/YEJ6V
https://paperpile.com/c/1hLSWD/XB81V
https://paperpile.com/c/1hLSWD/Y0EqE


the samples for which the sub-dataset data was available. This method had however one

important loophole, which is that we could not guarantee that the folds for the sub-datasets

would be balanced. For example, resting ECG data was only recorded for 42,360 out of the

502,211 participants. Since the 502,211 participants are split into ten folds, a fold contains

approximately 50,221 participants. Although unlikely, we could therefore not guarantee that all

or most of the ECG samples would be attributed to the first data fold, leading to highly

unbalanced folds for the ECGs analysis. Unbalanced folds can lead to problems during the

cross-validation (see further below), as models trained on a smaller number of samples will tend

to generalize worse. One solution would have been to use a different split for each dataset, but

this would have generated problems when building the ensemble models fold by fold (see

Methods - Models ensembling). To mitigate this issue of unbalanced data folds, we developed

the following heuristic. We randomly split the 502,211 participants into ten folds, 1,000 times.

For each of these 1,000 splits, we computed for each sub-dataset the variance of the

percentages of samples in each fold. We then scored each of the 1,000 splits using the

maximum of the variance among the different sub-datasets. For example, if the ECG samples

were not evenly split for the ith split out of the 1,000 splits (e.g. fold 1: 55% of the samples,

every other fold: 5% of the samples), the variance of the sample proportions would be high,

which would yield a poor score for the ith split. Finally, we selected the split with the lowest

score as the final split for the main dataset, and for all the sub-datasets. This selected split had

a score of 5.8e-4, which means that the most unbalanced sub-dataset had a variance in its

sample size proportion between its ten folds of 5.8e-4.

3



Scalar data

Nested cross-validation

Cross-validation is a method to tune the regularization of models and prevent overfitting 20. For

the models inputting scalar data (Figure 1A in green), we tuned the hyperparameters and

generated a testing prediction for each sample using a nested 10x9-folds cross-validation. We

refer to the two nested cross-validations as the “outer” and the “inner” cross-validations. The

outer-cross validation is used to generate an unbiased testing prediction for each sample, as

opposed to a simple split of the data into a “training+validation” set on one hand, and a testing

set on the other hand, which would only generate a testing prediction for one tenth of the

dataset. The inner cross-validation is used to tune the hyperparameters more precisely,

leveraging the full inner cross-validation dataset as a validation set, as opposed to a simple data

split of the “training+validation” dataset into a training and a validation sets, which would only

use one data fold as the validation set to estimate the performance associated with a specific

combination of hyperparameters. The nested cross-validation is illustrated in Table S29.

Bayesian hyperparameters optimization

To tune the hyperparameters, we used the Tree-structured Parzen Estimator Approach 21 [TPE]

of the hyperopt python package 22. TPE is a sequential Bayesian hyperparameters optimization

method that iteratively suggests the next most promising hyperparameters combination as a

function of the hyperparameters combinations that have already been tested, by building a

probabilistic representation of the objective function. We set the number of iterations to 30. For

each model, 30 different hyperparameter combinations are iteratively tested before selecting the

best performing one. The hyperparameters names and their ranges defining the

4

https://paperpile.com/c/1hLSWD/xl31n
https://paperpile.com/c/1hLSWD/YPUQS
https://paperpile.com/c/1hLSWD/8zJDq


hyperparameters space can be found in Table S39. It might be of interest to other researchers

that we initially tuned the hyperparameters using a random search 23 with the same number of

iterations, and we did not observe a significant improvement in the model’s performance after

implementing the Bayesian hyperparameters optimization.

Example

For the sake of clarity, let us walk through a concrete example, which is illustrated in Table S41.

Suppose we want to generate unbiased predictions for every sample in a dataset using an

elastic net. First, let us generate the testing prediction for the data fold F9, which is performed

by the first fold of the outer cross-validation (outer cross-validation fold 0). We select the data

fold F9 out of the ten data folds as the testing fold, and we select the remaining nine data folds

as “training+validation” folds for the inner cross-validation. We scale and center the target (age)

and the predictors using the mean and standard deviation values of the variables on the

“training+validation” dataset. We then enter the first inner-cross validation.

For the first inner cross-validation fold, we select the data fold F8 as the validation set, and the

remaining eight “training+validation” data folds as the training set. We re-scale and center age

and the predictors in the training and the validation sets using the mean and standard deviation

values of the training set. We train the model on the eight training data folds with the first

hyperparameters combination sampled by the TPE algorithm (one value for alpha and one

value for l1_ratio) and generate validation predictions on the validation fold (data fold F8), which

we unscale. This completes the first of the nine inner cross-validation folds (Inner CV fold 0). We

then permute the nine inner data folds. We scale the age and the predictors using the mean and

standard deviation computed on the new training set. Then we train the model with the same

5

https://docs.google.com/document/d/16MIja2f1sPfh3E_NlAhGjnA0Bocjji1xG2NpQ9POlD4/edit#sta_hyperparameters_space
https://paperpile.com/c/1hLSWD/Jkh6g
https://docs.google.com/document/d/16MIja2f1sPfh3E_NlAhGjnA0Bocjji1xG2NpQ9POlD4/edit#sta_nestedCV


first combination of hyperparameters on eight data folds, leaving aside the data fold F9 (still

being used as the testing set for the outer cross-validation) and the data fold F7 (now being

used as the validation set for the inner cross-validation). We then use the new trained model to

generate validation predictions on the data fold F7, which we unscale. This completes the

second of the nine inner-cross validation folds (Inner CV fold 1). We then reiterate these inner

permutation and training processes seven more times, until every data fold in the nine

“training+validation” data folds is used as the validation set once. At this point, we concatenate

the validation predictions from these nine validation folds to obtain the overall validation

predictions associated with the first hyperparameters combination, and compute the associated

performance metric (e.g. RMSE). This completes the inner-cross validation for the first

hyperparameters combination.

We then perform the same 9-folds inner cross-validation, this time with the second

hyperparameters combination suggested by the TPE algorithm. We iterate this process 28 more

times, until 30 different hyperparameters combinations have iteratively been tested. Next, we

select the hyperparameter combination that yielded the best validation performance (e.g.

minimum RMSE), and we retrain a model on the whole nine “training+validation” data folds (all

data folds except for data fold #1), using this best performing hyperparameters combination.

This completes the first inner cross-validation.

We then use the model to generate unbiased predictions on the unseen testing set (data fold

F9) and record these predictions. By anticipation for the ensembling algorithm (see Methods -

Models ensembling) we also need to compute validation predictions on the data fold F8. We do

this by training a model on all the data folds aside from the validation fold (data fold F8) and the

6



testing fold (data fold F9), with the selected hyperparameters combination. We then use this

trained model to compute predictions on the validation fold (data fold F8) and record these

predictions, after unscaling them. This completes the first of the ten outer cross-validation folds

(outer cross-validation 0).

We then complete the second outer cross-validation fold (outer cross-validation 1), this time

using the data fold F8 as the testing dataset, to obtain unbiased testing predictions on this data

fold, as well as validation predictions on the data fold F7. We reiterate the process eight more

times to obtain the testing and validation predictions on the remaining data folds. We then

concatenate the testing predictions from the ten data folds to obtain our final testing predictions

for the model. Similarly, we concatenate the validation predictions from the ten data folds to

obtain our final testing predictions for the model, which will later be used during ensemble

models building and model selection (see Methods - Models ensembling).

The final validation and testing predictions for each data fold are therefore not necessarily

associated with the same hyperparameters combination. It is also important to notice that we

performed a single outer cross-validation, but that we performed a separate inner-cross

validation for each outer cross-validation fold (hence the word “nested”), for a total of ten inner

cross-validations per outer cross-validation fold.

Images

Hyperparameters tuning upstream of the cross-validation

The hyperparameters we tuned were the number of added fully connected dense layers, the

number of nodes in these layers, their activation function, the optimizer, the initial learning rate,

the weight decay, the dropout rate, the data augmentation amplitude and the batch size.

7



Repeatedly tuning the values of the hyperparameters for different deep neural networks

architectures and on the different cross-validation folds would have been prohibitively time and

resource consuming. Instead, we sequentially explored how each hyperparameter was affecting

the training and validation performances for a single architecture (InceptionV3) on a single cross

validation fold (fold #0, see Methods - Training, tuning and predictions - Images -

Cross-validation for the detailed description of the cross-validation). We then extrapolated the

hyperparameter values to the other architectures, datasets and cross-validation folds. The

hyperparameters combinations tested during the tuning can be found in Table S30.

First, we maximized the batch size for each architecture. The maximum number of images per

batch depends on the memory of the GPU and the size of the architecture, which itself depends

on the dimensions of the image. We used a batch size of 32 for InceptionV3 and 8 for

InceptionResNetV2.

Then, we tested the learning rates, including 1e-6, 1e-5, 1e-4, 1e-3, 1e-2 and 1e-1. We

observed that learning rates larger than 1e-4 prevented the model from converging for some

runs. Second, we did not observe significant differences between the results obtained with

learning rates smaller than 1e-4. We therefore set the initial learning rate to be 1e-4 for all

models to shorten the time to convergence while ensuring that the learning rate was small

enough to allow convergence and the finding of a local minima for the loss function.

Then we tested three different optimizers to perform the gradient descent: Adam 24, Adadelta 25

and RMSprop 26. We did not observe any significant differences between the optimizers, so we

set the optimizer to be Adam.

8

https://paperpile.com/c/1hLSWD/Ax07K
https://paperpile.com/c/1hLSWD/enUwB
https://paperpile.com/c/1hLSWD/Ih7aC


We then added different numbers of fully connected layers between the base CNN and side

CNN’s concatenated outputs and the final activation layer. We set the number of nodes to be

1,024 in the first added layer and then decreased the number of nodes by a factor of two for

each successive layer. For example, if we added three fully connected layers, the number of

nodes was 1024, 512 and 256. We added zero, one and five layers. We did not observe

significant differences in the performance of the different architectures, so we set the number of

fully connected layers to one.

We then tested powers of two from 16 to 2,048 as the number of nodes in this single layer. We

did not observe significant differences between these architectures, so we set the number of

nodes to be 1,024 to keep the number close to the initial number of nodes in the imported CNN

architectures, as these were initially used to perform classification between 1,000 categories.

We tested two different activation functions for the activation functions of the fully connected

layers we added in the side neural network and before the final linear layer. We did not observe

any significant differences between the rectified linear units [ReLU] 27 and the scaled

exponential linear units [SELU] 28 as activation functions, so we used the more common ReLU.

We then tested different levels of data augmentation. We introduced a hyperparameter that we

called “data augmentation factor”. The data augmentation factor modulates the amount of

variation introduced by the data augmentation, while preserving the ratio between the different

transformations. For example, a data augmentation factor of one is equivalent to the default

data augmentation (see Preprocessing - Data augmentation - Images), but a data augmentation

9

https://paperpile.com/c/1hLSWD/hipsU
https://paperpile.com/c/1hLSWD/UYTFO


factor of two will double the ranges of the possible values sampled and the expected values for

the vertical shift, the horizontal shift, the rotation and the zoom on the original images. We

tested the following values for the data augmentation factor: 0, 0.1, 0.5, 1, 1.5 and 2. We found

that different values for the data augmentation factor hyperparameter yielded similar results, as

long as the data augmentation factor was not zero. We therefore set the data augmentation

factor to be one when training the final models.

We then tuned the dropout rate for the fully connected layers we added. We tested the following

values: 0, 0.1, 0.25, 0.3, 0.5, 0.75, 0.9 and 0.95. We observed that a dropout rate of 0.95 led to

underfitting and that smaller values reduced overfitting on the training set but without improving

the validation performance. As a consequence, we used a dropout rate of 0.5.

Finally, we tuned the weight decay. We tested the following values: 0, 0.1, 0.2, 0.3, 0.4, 0.5, 1, 5,

10 and 100. For the larger datasets, we found that weight decay values as low as 0.4 could lead

to underfitting. We found that lower weight decay values reduced overfitting on the training set

without significantly improving the validation performance. We set the weight decay to 0.1.

Altogether, we found that hyperparameter tuning had little effect on the validation performance

as long as extreme hyperparameters values were not selected.

Cross-validation

Training deep convolutional neural networks on images and videos is too time and resource

consuming to perform a nested cross-validation. Therefore, we tuned the hyperparameters

during the preliminary analysis, as described above. After hyperparameters tuning, we

performed a simple outer cross-validation to obtain a testing prediction for each sample of the

10



datasets, but we replaced the inner cross-validation with a simple split between the training fold

and the validation fold (Table S31). Although the hyperparameters were already tuned, a

validation set was still required for two reasons: (1) to perform early stopping 29, a form of

regularization. (2) to generate a set of validation predictions that are necessary for efficient

ensemble building (see Methods - Models ensembling) and model selection. During the

cross-validation, we scaled and centered the target variable (chronological age) as well as the

side predictors (sex and ethnicity) around zero with a standard deviation of one, using the

training summary statistics. Scaling the target and the input helps prevent the issues of

exploding and vanishing gradients 30,31.

Cross-validation example

For the sake of clarity, let us walk through an example. Let us say that we want to generate

unbiased predictions for every sample in a dataset using a CNN. First, we select the data fold

#0 as the validation set, the data fold #1 as the testing set, and the remaining data folds (#2-9)

as the training set. Then we scale and center the target (age), and the side predictors (sex and

ethnicity) using the training mean and standard deviation: for each of the variables, we subtract

the training mean to the variable on both the training, the validation and the testing set, and we

divide it by the training standard deviation. We then train the model on the training set until

convergence and select the architecture’s parameters (also known as “weights”) associated with

the epoch that yielded the lowest validation RMSE. We then use the optimal weights to generate

validation predictions for the data fold #0 and testing predictions on the data fold #1. Finally, we

unscale the validation and testing predictions by multiplying them by the initial age training

standard deviation before adding the initial age training mean to them. This completes the first

cross-validation fold.

11

https://paperpile.com/c/1hLSWD/say4y
https://paperpile.com/c/1hLSWD/6qqQX+RS6ke


We then reiterate the process, this time using the data fold #1 as the validation set, the data fold

#2 as the testing set, and the remaining data folds (#0 and #3-9) as the training set. We use the

optimized weights to generate the validation predictions on the data fold #2, and the testing

predictions on the data fold #3. We unscale the validation and testing predictions. This

completes the second cross-validation fold. We reiterate the process eight more times to

complete the cross-validation. We then concatenate the validation predictions from the ten data

folds to obtain the final validation predictions, and the testing predictions from the ten data folds

to obtain the final testing predictions.

Time series

We tuned the time series models in two steps. (1) We tuned the hyperparameters using a single

cross-validation fold. (2) We tuned the seed and performed early stopping (patience=40) using a

simple cross-validation, to generate a testing sample size for every sample. These two steps are

described in detail below.

Hyperparameters tuning upstream of the cross-validation

The hyperparameters we tuned were the number of convolutional layers in the architecture, the

number of nodes in the dropout rate and the strength of the kernel and the bias regularizations.

The tuned the hyperparameters using a single cross-validation fold. Specifically, we used the

data fold #0 as validation set and the data folds #2-9 as training set. We used the same pipeline

as for the images and the videos, with two differences. (1) Because the training of models built

on time series was significantly faster than the training of models built on images or videos, we

used a grid search to tune the hyperparameters rather than tune them sequentially. (2) We

12



scaled the input differently. For the models built on the ECGs and on the raw acceleration data

across the full week, we did not scale the data because we adapted architectures from

publications in which the input has not been scaled. The models built on PWA, features

extracted from acceleration data and three-dimensional walking data, we normalized every

sample separately by dividing each lead by the absolute value of its maximal value for the

sample. We then used this maximum value as a scalar predictor which we refer to in this paper

as “scaling factor”.

We tested architectures with one to ten convolutional layers for the convolutional block. The

default number of filters for each convolutional layer doubled with every layer, starting from 16

and capped at 1,024. For example, the default number of filters for a nine layers deep

convolutional block would be 16, 32, 64, 128, 256, 512, 1,024, 1,024 and 1,024. To allow the

architecture to increase its breadth without increasing its depth, we introduced another

hyperparameter which we called the “filters factor”, with a value of either one, two or four. The

number of filters in each convolutional layer was the default number of filters multiplied by the

filters factor value. For example, the number of filters for a three-layer deep convolutional block

with a filter factor of four would be 64, 128 and 256, instead of 16, 32 and 64. For the dropout

rate, we defined the hyperparameter space as eleven values uniformly spread between 0 and

50%, included. For the kernel and the bias regularizers, we defined the hyperparameter space

as the absence of regularization (0) and every negative power of 10 between three (10e-3) and

six (10e-6), included. We used the hyperparameters values selected on this first cross-validation

fold for the nine remaining cross-validation folds. The hyperparameters values selected can be

found in Table S46.

13

https://docs.google.com/document/d/16MIja2f1sPfh3E_NlAhGjnA0Bocjji1xG2NpQ9POlD4/edit#sta_hyperparameters_TS


Tuning of the seed using a cross-validation

We observed that the hyperparameters values selected on the first cross-validation fold did not

always perform as well for the other cross-validation folds. Similarly, we observed that similar

hyperparameter values combinations could lead to significantly different performances on the

first cross-validation fold. We hypothesized that these differences could be partly driven by

different random initializations of the weights of the neural network, which led to convergence to

different local minima. To mitigate this effect, we tuned the Keras seed independently for each of

the ten cross-validation folds. We tested every integer between zero and nine, included, and

selected the seed that yielded the best model in terms of performance on the validation set.

The cross-validation also served to generate a testing prediction on every sample and to

perform early stopping, as described under the pipeline for images.

Generating average predictions for each participant

We generated an average prediction for each individual, reported to UKB’s instance 0. We walk

through an example. Let us assume a participant had two carotid ultrasound samples collected

from them in instances 2 and 3, respectively at age 70 and 80. Let us assume that the age

predictions were respectively 64 and 78, so the residuals are respectively -6 years and -2 years,

for an average of -4 years. However, we still need to take into account the bias in the residuals,

defined as the difference between the participant’s chronological age and the prediction. As

explained in more details under Methods - Biological age definition, we observed a bias in the

residuals as a function of chronological age. Participants on the younger end of the

chronological age distribution tend to be predicted older than they actually are, whereas

14



participants on the older end of the distribution tend to be predicted younger than they actually

are. We need to properly account for this bias when translating a prediction from a more recent

instance to an older instance. Let us assume that the average bias in the residuals for

participants who are 70 and 80 years old is respectively -2 years and -4 years. After correcting

for this bias, the predictions are now respectively 64-(-2)=66 and 78-(-4) = 82. Therefore, the

corrected residuals for this participant are respectively -4 years and +2 years, for an average of

-1 years. Finally, let us assume that the participant was 60 years old in instance 0. We will

assign a single prediction of 60-1=59 years to the participant, but we still need to un-correct for

the bias in residuals. Let us assume that the average bias for the residuals at age 60 is +5

years. We will assign a final prediction for the participant of 59+5=64 years. This new set of

predictions reported on the instance 0 is more likely to have a non-zero sample size overlap

with other predictors based on datasets collected on instance 0 (e.g. blood biomarkers) and can

therefore be leveraged by the ensemble builder.

A key point we would like to highlight here is that we did not actually correct for the bias in the

residuals at this step of the pipeline. Instead, we corrected then un-corrected the predictions

that we translated from different instances to the instance 0. The actual correction for the

residual biases takes place when defining the biological age phenotypes (see Methods -

Biological age definition).

To distinguish between raw predictions on the instance 0, and the average predictions reported

to the instance 0, we created a new instance which we named instance “*”. We refer to these

predictions as “participants predictions”, as opposed to “samples predictions”.

15



Interpretability of the predictions

Scalar data-based predictors

For elastic nets, we interpreted the models using the values of the regression coefficients. Large

absolute values for these coefficients means they played an important role when generating the

predictions. For gradient boosted machines we used the feature importances, which are based

on the number of times a tree selected each of the variables. Variables with high feature

importances were selected more often and are therefore likely to play a key role in predicting

chronological age. For neural networks, we estimated the importance of each feature by

permuting it randomly between samples before computing the performance of the model. The

score of each feature is the difference between the R-Squared value before and after the

random permutations. Features whose random permutation leads to a large decrease in the

model’s performance are estimated to be important predictors of chronological age.

We estimated the concordance between the three different algorithms by computing the

Pearson and the Spearman correlations between their feature importances.

Time series and image-based predictors

To interpret the CNNs built on time series, images and videos, we used saliency maps 32. For

time series and images, we coded the saliency maps using the keract python library. For videos,

we generated a saliency map for each time frame using the iNNvestigate python library 18. For

each input sample, a saliency map uses the gradient of the final prediction with respect to each

individual input pixel to estimate whether changing the value of this pixel would affect the

16

https://paperpile.com/c/1hLSWD/B6FQp
https://paperpile.com/c/1hLSWD/XB81V


prediction. Pixels for which the gradient is close to zero are not important, whereas pixels with a

large gradient are estimated to be important. For videos, we computed both a saliency map for

each time frame, which we stored as a .gif file, and an average saliency map over all time

frames.

For images, we built a second attention map using a custom version of the Gradient-weighted

Class Activation Mapping [Grad-CAM] algorithm 33 adapted to regression rather than multi-class

classification: Gradient-weighted Regression Activation Mapping [Grad-RAM]. The intuition

behind Grad-CAM maps is that they are similar to saliency maps 33, but instead of computing

the gradient with respect to the input image, they compute it with respect to the activation of the

last convolutional layer. As convolutional layers maintain the spatial organization of the input

image, Grad-CAM can still identify which region of the image is driving the predictions. Because

Grad-CAM does not have to backpropagate the gradient all the way back to the input image, it

is considered a less noisy alternative to the saliency maps. In the same way that saliency maps

need to combine the attention maps generated in the different input channels (e.g. RGB) into a

single activation map, Grad-CAM must combine the attention maps generated on the different

filters of the last convolutional layer. For example, the last convolutional layer for

InceptionResNetV2 has 1,792 filters. Grad-CAM combines these 1,792 attention maps into a

single attention map using a linear combination. In the initial Class Activation Mapping [CAM]

algorithm 34, generating CAM activation maps required to retrain the model after modifying the

architecture and replacing all the fully connected layers after the final convolutional layer with a

global max pooling operation, which converted each filter into a scalar feature. The intuition

behind this substitution was that each filter could be interpreted as detecting a specific feature,

and global max pooling yielded a scalar that could be interpreted as the presence (high value)

17

https://paperpile.com/c/1hLSWD/IRccT
https://paperpile.com/c/1hLSWD/IRccT
https://paperpile.com/c/1hLSWD/rnH32


or absence (low value) of the feature anywhere on the image. The scalar values were then

linearly combined and activated using the softmax function to yield the probabilities of belonging

to different classes. To obtain the activation map for a specific class, the filters of the last

convolution layer were linearly combined using the weights connecting the scalar features

obtained after the max pooling operation to the final prediction score for that class. CAM was

later improved to become Grad-CAM 33. Grad-CAM saves the need for modifying the

architecture of the model and retraining it by approximating the linear regression weight for each

final convolutional filter by the mean activation gradient over the pixels of the filter. The intuition

behind this approximation is that a filter’s pixel is important if changing its value affects the final

prediction, so a high average gradient over the pixels of the filter justifies that this filter should

be given a higher weight when merging all the filters into a single attention map. To adapt

Grad-CAM to our regression task we (1) computed the derivatives of the chronological age

prediction rather than a class’ prediction and (2) removed the ReLU activation applied to the

weighted sum of the last convolutional filters, which we replaced by an absolute value. The

rationale is that for (Grad-)CAM maps, we only want to highlight the regions of the picture which

are associated with a high probability for the class. In contrast, for (Grad-)RAM we care as much

about the regions of the input image that can strongly increase the chronological age prediction

as about the regions that can strongly decrease it. Because the filters in the last convolutional

layer are the result of the processing of the input image by several convolutional layers with

possibly negative weights, the sign of the last convolutional layer’s pixels and regression

weights cannot be linked to either accelerated aging or decelerated aging, only to the magnitude

of the shift that would affect the prediction if each region of the input image was modified.

Regression Activation Mapping (RAM) was mentioned as a possible extension of CAM in the

original CAM publication 34 and has been used to interpret models CNNs built on retinal images

18

https://paperpile.com/c/1hLSWD/IRccT
https://paperpile.com/c/1hLSWD/rnH32


35 and cortical surfaces 36, but we are to our knowledge the first to describe the generalization of

Grad-CAM to a regression task. One notable difference between our implementation and Wang

and Yang.’s implementation 35 is that we are taking the absolute value of the final attention map,

as mentioned above. We found that not taking the absolute value led to misleading attention

maps for participants with high chronological age predictions. The attention map highlights

important areas with negative values, which are therefore depicted in blue, a color otherwise

associated with unimportant regions in traditional CAMs. Inversely, regions on the input image

for which the attention map has a slight positive value are spuriously considered to be the most

important and are highlighted in red. We therefore advise that RAM or Grad-RAM be

implemented using an absolute value. We coded Grad-RAM using the get_activations and

get_gradients_of_activations functions of the keract python library.

It is important to understand that unlike the feature importances described under “Scalar

data-based predictors”, which describe the model itself, attention maps are sample specific. In

other words, they can be used to explain which features drove the predictions for a specific

inputted sample but cannot provide an explanation for the way the model is performing

predictions in general.

For each aging subdimension, we generated the attention maps for the best performing CNN

architecture. We selected representative samples for which we computed the different attention

maps. We computed attention maps for the two sexes (female and male), for three age ranges

(ten youngest ages, ten middle ages and ten oldest ages of the chronological age distribution)

and for three aging rates (accelerated agers, normal agers, decelerated agers). For each

intersection of the three categories listed above, we selected the ten most representative

19

https://paperpile.com/c/1hLSWD/nX4tA
https://paperpile.com/c/1hLSWD/bxi3v
https://paperpile.com/c/1hLSWD/nX4tA


samples (e.g. the ten most accelerated agers among young males). The figures in this paper

only present the first, most representative of these ten samples. The complete set of samples

can be found on the website.

Non-genetic correlates of accelerated aging

Unlike DNA, biomarkers, phenotypes, diseases, family history, environmental variables and

socioeconomics can change over life. As a consequence, we compared each biomarker,

phenotype and environmental variable with the accelerated aging of the participant at the time

the exposure was measured and we used the “Samples predictions”, as opposed to the

“Participants predictions” that we used for the identification of genetic correlates (see Methods -

Models ensembling - Generating average predictions for each participant).

Imputation of the non-genetic X-variables

Most X-variables were not collected on all four instances. Additionally, no X-variables were

collected at the same time as the accelerometer data was collected. To identify the non-genetic

correlates of accelerated aging, we had to impute the values of the X-variables for the ages of

the participants for which they were not available. We considered two imputation methods,

which we refer to as the “cross-sectional” and the “longitudinal” imputations.

For the cross-sectional imputation, we computed a linear regression for each X variable as a

function of age, adjusting for sex. We then used the slope of the linear regression to extrapolate

the value of the XWAS variable at different ages.

20



For the longitudinal imputation, we first selected, for each X variable, all the participants that had

at least two measures taken for this X variable. We then performed a linear regression for each

participant. We then averaged the slope of the linear regressions over all the participants of the

same sex. Finally, we used this slope to extrapolate the value of the XWAS variable at different

ages for all participants depending on their sex, in the same way we did it for the cross-sectional

imputation.

It is important to notice that for both the cross-sectional imputation and the longitudinal

imputation, data can only be imputed when the XWAS variable has been measured at least

once for the participant. This raw measure is then used to extrapolate which value the X

variable was likely taking a couple years earlier and/or later.

The advantage of the cross-sectional imputation is larger sample sizes. The advantage of the

longitudinal method is that it corrects for generational effects. For example, old people have

shorter legs than young people on average 37. This is not because human legs shrink as we

grow older. Instead, people who are old today already had shorter legs when they were young.

If the cross-sectional regression is used to impute the length of the participants on instances

where it was not measured, it will spuriously assign smaller values to the older samples. In

contrast, the longitudinal regression learns the regression coefficient by comparing each

participant to themselves as they age and will therefore not capture the generational effect.

When used to predict the participants legs’ length, it will impute constant values over time. To

evaluate which of the two imputation methods should be preferred, we used them to predict

X-variables for which we knew the actual values and computed the R-Squared values

associated with the predictions. We found that, even with sample sizes as small as 200

21

https://paperpile.com/c/1hLSWD/bQwaQ


samples, longitudinal imputation outperformed cross-sectional imputation. We therefore used

longitudinal imputation.

X-Wide Association Studies

First, we tested for associations in an univariate context by computing the partial correlation

between each X-variable and arterial aging dimensions. To compute the partial correlation

between an X-variable and an aging, we followed a three steps process. (1) We ran a linear

regression on each of the two variables, using age, sex and ethnicity as predictors. (2) We

computed the residuals for the two variables. (3) We computed the correlation between the two

residuals and the associated p-value if their intersection had a sample size of at least ten

samples. We used a threshold for significance of 0.05 and corrected the p-values for multiple

testing using the Bonferroni correction. We plotted the results using a volcano plot. We refer to

this pipeline as an X-Wide Association study [XWAS].

In the supplementary tables and the results, we rank the X-variables subcategories by

decreasing percentage of variables associated with accelerated aging (note that the ranking is

therefore biased towards categories with fewer variables). For each subcategory, we list the

three most associated variables, based on the absolute value of the correlation coefficient. For

the exhaustive list, please refer to

https://www.multidimensionality-of-aging.net/xwas/univariate_associations.

22

https://www.multidimensionality-of-aging.net/xwas/univariate_associations


Supplementary Figures

Figure S1: Demographics of the UK Biobank cohort

23



Figure S2: Attention map example for pulse wave analysis time series

The participant is a correctly predicted 60-65-year-old male. Red data points represent time

steps for which a higher value would increase the chronological age prediction, and blue data

points represent time steps for which a higher value would decrease the chronological age

prediction.

24



Figure S3: Feature importances for the model built on all scalar features

25



Figure S4: Feature importances for the model built on carotid ultrasound scalar features

26



Figure S5: Feature importances for the model built on pulse wave analysis scalar

features

27



Figure S6: Feature importances for the model built on blood pressure features

28



Figure S7: Genome Wide Association Study results for accelerated arterial aging

negative log10(p-value) vs. chromosomal position. Dotted line denotes 5e-8.

Figure S8: Genome Wide Association Study results for carotid ultrasound-measured

accelerated arterial aging

negative log10(p-value) vs. chromosomal position. Dotted line denotes 5e-8.

29



Figure S9: Correlation between carotid ultrasound image-measured and pulse wave

analysis-measured accelerated arterial aging, in terms of association with non-genetic

factors

Figure S10: Survival prediction performances

30



Demographics refers to the model built on the sole demographic features. Features refers to the

scalar features extracted from the pulse wave analysis raw data. PWA refers to the pulse wave

analysis time series, with each time step treated as a scalar predictor. For the three CNN

models, the first dataset corresponds to the side predictors fed to the side, fully connected

neural network. The convolutional neural network is trained on the time series (PWA).

Figure S11: Preprocessing of carotid ultrasound images: screenshot of the software used

to record the images as shared by UK Biobank

31



Figure S12: Sample preprocessed carotid ultrasound images

The participant is a 55-60-year-old male.

32



Supplementary Figure 70: Architecture of the convolutional neural network trained on

pulse wave analysis records to predict chronological age - Summary figure

33

https://docs.google.com/document/d/13qFahGqrmaaYptL6bRe39VO_LgjoQHxJRM0FT4T8JJI/edit#sfigu_architecture_PWA_summary


Supplementary Figure 71: Architecture of the convolutional neural network trained on

pulse wave analysis records to predict chronological age - Detailed figure

34

https://docs.google.com/document/d/13qFahGqrmaaYptL6bRe39VO_LgjoQHxJRM0FT4T8JJI/edit#sfigu_architecture_PWA_detailed


Figure S13: Architecture of the convolutional neural network trained on pulse wave

analysis records to predict survival

35



Supplementary Tables

Table S1: GWASs summary - Heritability, number of SNPs and genes associated with

accelerated aging in each dimension

Accelerated arterial
aging dimension

Sample
size

SNPs Genes
Heritability

(%)
R-Squared for CA

prediction (%)

General 7,549 0 0 32.6±7.3 67.1±2.0

Carotid Ultrasound 7,885 0 0 28.6±7.0 64.8±1.9

Pulse Wave Analysis 184,825 192 109 17.2±0.4 41.3±0.3

Table S2: Feature importances for the model built on all scalar features

See supplementary data

Table S3: Feature importances for the model built on carotid ultrasound scalar features

See supplementary data

Table S4: Feature importances for the model built on pulse wave analysis scalar features

Feature Correlation with age Elastic Net GBM Neural Network

Pulse wave peak to peak time -0.069 +/- 0.001 0.017 +/- 0.0 0.169 +/- 0.002 0.415 +/- 0.003

Pulse wave Arterial Stiffness index 0.065 +/- 0.006 0.01 +/- 0.0 0.161 +/- 0.002 0.254 +/- 0.002

Pulse rate -0.013 +/- 0.001 -0.055 +/- 0.0 0.144 +/- 0.001 0.016 +/- 0.0

Pulse wave reflection index 0.011 +/- 0.001 -0.058 +/- 0.0 0.137 +/- 0.002 0.046 +/- 0.001

Position of pulse wave notch -0.011 +/- 0.001 -0.032 +/- 0.0 0.13 +/- 0.002 0.015 +/- 0.0

Position of the shoulder on the pulse waveform 0.104 +/- 0.001 0.109 +/- 0.0 0.099 +/- 0.001 0.011 +/- 0.001

Position of the pulse wave peak 0.103 +/- 0.001 0.145 +/- 0.0 0.096 +/- 0.001 0.022 +/- 0.0

Sex 0.022 +/- 0.001 0.078 +/- 0.0 0.018 +/- 0.0 0.021 +/- 0.0

Absence of notch position in the pulse waveform 0.101 +/- 0.001 0.181 +/- 0.0 0.012 +/- 0.001 0.01 +/- 0.0

White 0.065 +/- 0.001 0.1 +/- 0.0 0.006 +/- 0.0 0.095 +/- 0.006

36



Asian -0.036 +/- 0.001 0.0 +/- 0.0 0.005 +/- 0.0 0.01 +/- 0.001

British 0.065 +/- 0.001 0.056 +/- 0.0 0.004 +/- 0.0 0.005 +/- 0.001

Irish -0.006 +/- 0.001 0.0 +/- 0.0 0.003 +/- 0.0 0.001 +/- 0.0

Indian -0.024 +/- 0.001 0.001 +/- 0.0 0.002 +/- 0.0 0.017 +/- 0.001

White_Other -0.023 +/- 0.001 -0.028 +/- 0.0 0.002 +/- 0.0 0.001 +/- 0.001

Prefer_not_to_answer -0.001 +/- 0.001 0.024 +/- 0.0 0.002 +/- 0.0 0.002 +/- 0.0

African -0.03 +/- 0.001 -0.017 +/- 0.0 0.002 +/- 0.0 0.004 +/- 0.001

Caribbean -0.03 +/- 0.001 0.0 +/- 0.0 0.002 +/- 0.0 0.007 +/- 0.001

Mixed -0.023 +/- 0.001 -0.008 +/- 0.0 0.001 +/- 0.0 0.004 +/- 0.0

Pakistani -0.02 +/- 0.001 -0.021 +/- 0.0 0.001 +/- 0.0 0.002 +/- 0.0

Other_ethnicity -0.022 +/- 0.001 -0.005 +/- 0.0 0.001 +/- 0.0 0.004 +/- 0.001

Black -0.043 +/- 0.001 -0.021 +/- 0.0 0.001 +/- 0.0 0.014 +/- 0.001

Other -0.021 +/- 0.001 0.0 +/- 0.0 0.001 +/- 0.0 0.012 +/- 0.001

White_and_Asian -0.01 +/- 0.001 0.0 +/- 0.0 0.001 +/- 0.0 0.002 +/- 0.0

Asian_Other -0.016 +/- 0.001 -0.007 +/- 0.0 0.001 +/- 0.0 0.001 +/- 0.0

Chinese -0.011 +/- 0.001 -0.001 +/- 0.0 0.0 +/- 0.0 0.003 +/- 0.0

White_and_Black_Caribbean -0.013 +/- 0.001 -0.008 +/- 0.0 0.0 +/- 0.0 0.003 +/- 0.0

Black_Other -0.005 +/- 0.001 0.0 +/- 0.0 0.0 +/- 0.0 0.0 +/- 0.0

Do_not_know -0.003 +/- 0.001 0.002 +/- 0.0 0.0 +/- 0.0 0.0 +/- 0.0

Mixed_Other -0.013 +/- 0.001 -0.001 +/- 0.0 0.0 +/- 0.0 0.001 +/- 0.0

Ethnicity: nan -0.005 +/- 0.001 0.0 +/- 0.0 0.0 +/- 0.0 0.001 +/- 0.0

White_and_Black_African -0.008 +/- 0.001 0.0 +/- 0.0 0.0 +/- 0.0 0.0 +/- 0.0

Bangladeshi -0.009 +/- 0.002 -0.013 +/- 0.0 0.0 +/- 0.0 0.0 +/- 0.0

Table S5: Feature importances for the model built on blood pressure features

Feature Correlation with age Elastic Net GBM Neural Network

Diastolic blood pressure 0.003 +/- 0.003 -0.322 +/- 0.0 0.253 +/- 0.002 0.12 +/- 0.002

Systolic blood pressure 0.249 +/- 0.003 0.459 +/- 0.0 0.241 +/- 0.004 0.246 +/- 0.002

Pulse rate -0.003 +/- 0.003 0.04 +/- 0.0 0.235 +/- 0.003 0.005 +/- 0.0

Sex 0.028 +/- 0.002 0.014 +/- 0.0 0.073 +/- 0.003 0.005 +/- 0.0

British 0.088 +/- 0.002 0.019 +/- 0.0 0.023 +/- 0.001 0.04 +/- 0.01

White 0.091 +/- 0.002 0.038 +/- 0.0 0.019 +/- 0.001 0.198 +/- 0.023

White_Other -0.035 +/- 0.002 -0.015 +/- 0.0 0.016 +/- 0.001 0.019 +/- 0.005

Asian -0.046 +/- 0.003 0.0 +/- 0.0 0.015 +/- 0.001 0.033 +/- 0.003

Indian -0.028 +/- 0.002 0.001 +/- 0.0 0.012 +/- 0.001 0.014 +/- 0.004

Black -0.059 +/- 0.002 -0.015 +/- 0.0 0.012 +/- 0.001 0.012 +/- 0.005

Other_ethnicity -0.037 +/- 0.002 -0.009 +/- 0.0 0.011 +/- 0.001 0.052 +/- 0.004

37



Irish -0.007 +/- 0.002 0.0 +/- 0.0 0.01 +/- 0.001 0.015 +/- 0.003

Caribbean -0.038 +/- 0.002 0.0 +/- 0.0 0.01 +/- 0.001 0.005 +/- 0.003

Other -0.032 +/- 0.003 0.0 +/- 0.0 0.009 +/- 0.001 0.14 +/- 0.007

African -0.045 +/- 0.002 -0.013 +/- 0.0 0.009 +/- 0.001 0.001 +/- 0.003

Mixed -0.035 +/- 0.002 -0.008 +/- 0.0 0.008 +/- 0.001 0.005 +/- 0.001

Pakistani -0.031 +/- 0.003 -0.013 +/- 0.0 0.007 +/- 0.001 0.002 +/- 0.001

Asian_Other -0.021 +/- 0.002 -0.004 +/- 0.0 0.007 +/- 0.0 0.001 +/- 0.001

Prefer_not_to_answer 0.001 +/- 0.003 0.012 +/- 0.0 0.006 +/- 0.0 0.042 +/- 0.002

White_and_Black_Caribbean -0.021 +/- 0.003 -0.005 +/- 0.0 0.005 +/- 0.0 0.001 +/- 0.001

Mixed_Other -0.019 +/- 0.003 -0.0 +/- 0.0 0.004 +/- 0.001 0.002 +/- 0.001

Chinese -0.022 +/- 0.003 -0.003 +/- 0.0 0.004 +/- 0.001 0.006 +/- 0.003

White_and_Asian -0.017 +/- 0.002 0.0 +/- 0.0 0.004 +/- 0.001 0.001 +/- 0.001

Ethnicity: nan -0.006 +/- 0.003 0.002 +/- 0.0 0.003 +/- 0.0 0.018 +/- 0.004

White_and_Black_African -0.013 +/- 0.003 -0.001 +/- 0.0 0.002 +/- 0.0 0.002 +/- 0.001

Black_Other -0.007 +/- 0.003 -0.0 +/- 0.0 0.0 +/- 0.0 0.001 +/- 0.0

Do_not_know -0.004 +/- 0.002 0.0 +/- 0.0 0.0 +/- 0.0 0.008 +/- 0.002

Bangladeshi -0.014 +/- 0.004 -0.007 +/- 0.0 0.0 +/- 0.0 0.005 +/- 0.001

Table S6: Comparison between the models trained on scalar features

Arterial
dimension

Number of
Predictors

(non-
demographics)

Elastic Net
(R-Squared)

GBM
(R-Squared)

Neural Network
(R-Squared)

Blood
Pressure

3 0.202±0.003 0.222±0.003 0.221±0.003

Carotid
Ultrasound

12 0.183±0.015 0.206±0.015 0.201±0.018

Pulse Wave
Analysis

8 0.129±0.003 0.229±0.003 0.197±0.072

All Scalars 23 0.313±0.013 0.368±0.014 0.353±0.021

Table S7: Pearson correlations between the feature importances for different scalar

features-based algorithms

Arterial
dimension

Correlation
vs.

ElasticNet

Correlation
vs.

GBM

Correlation
vs.

NeuralNetwork

ElasticNe
vs.

LightGBM

ElasticNet
vs.

NeuralNetwork

GBM
vs.

NeuralNetwork

Blood
Pressure

0.671 0.38 0.721 0.821 0.724 0.505

Carotid 0.552 0.912 -0.058 0.779 0.241 0.07

38



Ultrasound

Pulse Wave
Analysis

0.759 0.366 0.374 0.292 0.014 0.646

All Scalars 0.171 0.35 -0.093 0.566 0.411 0.589

Table S8: Spearman correlations between the feature importances for different scalar

features-based algorithms

Arterial
dimension

Correlation
vs.

ElasticNet

Correlation
vs.

GBM

Correlation
vs.

NeuralNetwork

ElasticNet
vs.

GBM

ElasticNet
vs.

NeuralNetwork

GBM
vs.

NeuralNetwork

Blood
Pressure

0.233 0.462 0.227 0.592 0.295 0.516

Carotid
Ultrasound

0.477 0.823 0.183 0.473 0.207 0.189

Pulse Wave
Analysis

0.487 0.572 0.664 0.628 0.512 0.819

All Scalars 0.28 0.534 0.123 0.52 0.463 0.524

Table S9: List of biomarkers by subcategories for the Biomarkers Wide Association

Study

See supplementary data

Table S10: Biomarkers associated with accelerated arterial aging

See supplementary data

Table S11: Biomarkers associated with decelerated arterial aging

See supplementary data

Table S12: List of clinical phenotypes by subcategories for the Clinical Phenotypes Wide

Association Study

See supplementary data

39



Table S13: Clinical phenotypes associated with accelerated arterial aging

See supplementary data

Table S14: Clinical phenotypes associated with decelerated arterial aging

See supplementary data

Table S15: List of diseases by subcategories for the Diseases Wide Association Study

See supplementary data

Table S16: Diseases associated with accelerated arterial aging

See supplementary data

Table S17: Diseases associated with decelerated arterial aging

See supplementary data

Table S18: List of family history variables by subcategories for the Family History

Phenotypes Wide Association Study

See supplementary data

Table S19: Family history variables associated with accelerated arterial aging

Arterial dimension X-subcategory Variables

General FamilyHistory (0%)

Carotid Ultrasound FamilyHistory (0%)

Pulse Wave
Analysis

FamilyHistory (0.0%)

40



Table S20: Family history variables associated with decelerated arterial aging

Arterial dimension X-subcategory Variables

General FamilyHistory (0%)

Carotid Ultrasound FamilyHistory (0%)

Pulse Wave
Analysis

FamilyHistory (1.1%) Illnesses of mother.Alzheimer's disease/dementia (.023)

Table S21: List of environmental variables by subcategories for the Environmental Wide

Association Study

See supplementary data

Table S22: Environmental variables associated with accelerated arterial aging

See supplementary data

Table S23: Environmental variables associated with decelerated arterial aging

See supplementary data

Table S24: List of socioeconomic variables by subcategories for the Socioeconomics

Wide Association Study

See supplementary data

Table S25: Socioeconomic variables associated with accelerated arterial aging

See supplementary data

Table S26: Socioeconomic variables associated with decelerated arterial aging

See supplementary data

41



Table S27: Survival prediction performances

demographics features PWA all demographics+PWA features+PWA all+PWA

ElasticNet 69.5+/-0.9 71.0+/-1.0 71.0+/-1.0 71.4+/-0.9

GBM 69.3+/-1.0 69.7+/-1.0 69.8+/-0.9 70.2+/-1.1

Neural Network 69.4+/-0.9 70.0+/-1.0 70.2+/-1.0 70.2+/-0.9

CNN 70.1+/-0.9 67.8+/-1.0 71.1+/-0.9

Demographics refers to the model built on the sole demographic features. Features refers to the

scalar features extracted from the pulse wave analysis raw data. PWA refers to the pulse wave

analysis time series, with each time step treated as a scalar predictor. For the three CNN

models, the first dataset corresponds to the side predictors fed to the side, fully connected

neural network. The convolutional neural network is trained on the time series (PWA).

Table S28: Hyperparameter space for scalar features-based models Bayesian

optimization

Algorithm Hyperparameter Scale Low High

Elastic
net

alpha loguniform -10 0

l1_ratio uniform 0 1

Gradient
Boosted
Machine

num_leaves quniform 5 45

min_child_samples quniform 100 500

min_child_weight loguniform -5 4

subsample uniform 0.2 0.8

colsample uniform 0.4 0.6

reg_alpha loguniform -2 2

reg_lambda loguniform -2 2

n_estimators quniform 150 450

Neural
network

learning_rate_init loguniform -5 -1

apha loguniform -6 3

42



Table S29: Nested Cross-Validation pipeline

43



Table S30: Hyperparameters tuning upstream of the cross-validation for images-based

models

See supplementary data

Table S31: Outer Cross-Validation with inner split pipeline

The values displayed are validation RMSE values. Lower values are associated with better

hyperparameter tuning. When two values are displayed (value1/value2), the second value

corresponds to the training RMSE. The architecture used was InceptionV3, with an initial

learning rate of 0.001. The model was trained on the data folds 2-9, and validated on the data

fold #0. The data fold #1 was set aside as the testing set and was not used.

Dat
a

Fold

N=
10
0

Outer
CV

folds 0

Outer
CV

folds 1

Outer
CV

folds 2

Outer
CV

folds 3

Outer
CV

folds 4

Outer
CV

folds 5

Outer
CV

folds 6

Outer
CV

folds 7

Outer
CV

folds 8

Outer
CV

folds 9

F0
N=
10

Train Train Train Train Train Train Train Train
Validati

on
Test

F1
N=
10

Train Train Train Train Train Train Train
Validati

on
Test Train

F2
N=
10

Train Train Train Train Train Train
Validati

on
Test Train Train

F3
N=
10

Train Train Train Train Train
Validati

on
Test Train Train Train

F4
N=
10

Train Train Train Train
Validati

on
Test Train Train Train Train

F5
N=
10

Train Train Train
Validati

on
Test Train Train Train Train Train

F6
N=
10

Train Train
Validati

on
Test Train Train Train Train Train Train

F7
N=
10

Train
Validati

on
Test Train Train Train Train Train Train Train

F8 N= Validati Test Train Train Train Train Train Train Train Train

44



10 on

F9
N=
10

Test Train Train Train Train Train Train Train Train
Validati

on

45



Supplementary References

1. Van Rossum, G. & Drake, F. L. The Python Language Reference Manual. (Network Theory

Limited, 2011).

2. Oliphant, T. E. A guide to NumPy. vol. 1 (Trelgol Publishing USA, 2006).

3. Walt, S. van der, van der Walt, S., Chris Colbert, S. & Varoquaux, G. The NumPy Array: A

Structure for Efficient Numerical Computation. Computing in Science & Engineering vol. 13

22–30 (2011).

4. McKinney, W. & Others. Data structures for statistical computing in python. in Proceedings

of the 9th Python in Science Conference vol. 445 51–56 (Austin, TX, 2010).

5. Hunter, J. D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 9, 90–95 (2007).

6. Inc, P. T. Collaborative data science. Montreal: Plotly Technologies Inc Montral (2015).

7. Clark, A. Pillow Python Imaging Library. Pillow—Pillow (PIL Fork) 5. 4. 1 documentation

(2018).

8. Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python.

Nature Methods vol. 17 261–272 (2020).

9. Oliphant, T. E. Python for Scientific Computing. Computing in Science Engineering 9,

10–20 (2007).

10. Millman, K. J., Jarrod Millman, K. & Aivazis, M. Python for Scientists and Engineers.

Computing in Science & Engineering vol. 13 9–12 (2011).

11. Pedregosa, F. et al. Scikit-learn: Machine learning in Python. the Journal of machine

Learning research 12, 2825–2830 (2011).

12. Ke, G. et al. LightGBM: A Highly Efficient Gradient Boosting Decision Tree. in Advances in

46

http://paperpile.com/b/1hLSWD/CuN8z
http://paperpile.com/b/1hLSWD/CuN8z
http://paperpile.com/b/1hLSWD/Tj7Yl
http://paperpile.com/b/1hLSWD/7oyxr
http://paperpile.com/b/1hLSWD/7oyxr
http://paperpile.com/b/1hLSWD/7oyxr
http://paperpile.com/b/1hLSWD/f2vPD
http://paperpile.com/b/1hLSWD/f2vPD
http://paperpile.com/b/1hLSWD/g1P8h
http://paperpile.com/b/1hLSWD/38IM3
http://paperpile.com/b/1hLSWD/t97bM
http://paperpile.com/b/1hLSWD/t97bM
http://paperpile.com/b/1hLSWD/bBQkf
http://paperpile.com/b/1hLSWD/bBQkf
http://paperpile.com/b/1hLSWD/IySCk
http://paperpile.com/b/1hLSWD/IySCk
http://paperpile.com/b/1hLSWD/QB6IF
http://paperpile.com/b/1hLSWD/QB6IF
http://paperpile.com/b/1hLSWD/1O7EH
http://paperpile.com/b/1hLSWD/1O7EH
http://paperpile.com/b/1hLSWD/4FVaC


Neural Information Processing Systems 30 (eds. Guyon, I. et al.) 3146–3154 (Curran

Associates, Inc., 2017).

13. Chen, T. & Guestrin, C. XGBoost: A Scalable Tree Boosting System. in Proceedings of the

22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining

785–794 (Association for Computing Machinery, 2016).

14. Bergstra, J., Yamins, D. & Cox, D. D. Hyperopt: A python library for optimizing the

hyperparameters of machine learning algorithms. in Proceedings of the 12th Python in

science conference vol. 13 20 (Citeseer, 2013).

15. Abadi, M. et al. TensorFlow: Large-scale machine learning on heterogeneous systems.

(2015).

16. Chollet, F. & Others. keras. (2015).

17. Kotikalapudi, R. & Others. keras-vis. 2017. URL https://github. com/raghakot/keras-vis

(2019).

18. Alber, M. et al. iNNvestigate neural networks. J. Mach. Learn. Res. 20, 1–8 (2019).

19. Hossain, S., Calloway, C., Lippa, D., Niederhut, D. & Shupe, D. Visualization of

Bioinformatics Data with Dash Bio. in Proceedings of the 18th Python in Science

Conference 126–133 (2019).

20. Kohavi, R. & Others. A study of cross-validation and bootstrap for accuracy estimation and

model selection. in Ijcai vol. 14 1137–1145 (Montreal, Canada, 1995).

21. Bergstra, J. S., Bardenet, R., Bengio, Y. & Kégl, B. Algorithms for Hyper-Parameter

Optimization. in Advances in Neural Information Processing Systems 24 (eds.

Shawe-Taylor, J., Zemel, R. S., Bartlett, P. L., Pereira, F. & Weinberger, K. Q.) 2546–2554

(Curran Associates, Inc., 2011).

22. Bergstra, J., Yamins, D. & Cox, D. Making a Science of Model Search: Hyperparameter

47

http://paperpile.com/b/1hLSWD/4FVaC
http://paperpile.com/b/1hLSWD/4FVaC
http://paperpile.com/b/1hLSWD/c4jSb
http://paperpile.com/b/1hLSWD/c4jSb
http://paperpile.com/b/1hLSWD/c4jSb
http://paperpile.com/b/1hLSWD/WzIjA
http://paperpile.com/b/1hLSWD/WzIjA
http://paperpile.com/b/1hLSWD/WzIjA
http://paperpile.com/b/1hLSWD/Cxc2d
http://paperpile.com/b/1hLSWD/Cxc2d
http://paperpile.com/b/1hLSWD/njdhW
http://paperpile.com/b/1hLSWD/YEJ6V
http://paperpile.com/b/1hLSWD/YEJ6V
http://paperpile.com/b/1hLSWD/XB81V
http://paperpile.com/b/1hLSWD/Y0EqE
http://paperpile.com/b/1hLSWD/Y0EqE
http://paperpile.com/b/1hLSWD/Y0EqE
http://paperpile.com/b/1hLSWD/xl31n
http://paperpile.com/b/1hLSWD/xl31n
http://paperpile.com/b/1hLSWD/YPUQS
http://paperpile.com/b/1hLSWD/YPUQS
http://paperpile.com/b/1hLSWD/YPUQS
http://paperpile.com/b/1hLSWD/YPUQS
http://paperpile.com/b/1hLSWD/8zJDq


Optimization in Hundreds of Dimensions for Vision Architectures. in (eds. Dasgupta, S. &

McAllester, D.) vol. 28 115–123 (PMLR, 2013).

23. Bergstra, J. & Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn.

Res. 13, 281–305 (2012).

24. Kingma, D. P. & Ba, J. Adam: A Method for Stochastic Optimization. arXiv [cs.LG] (2014).

25. Zeiler, M. D. ADADELTA: An Adaptive Learning Rate Method. arXiv [cs.LG] (2012).

26. Hinton, G. Slide 29 of Lecture 6, Geoffrey Hinton coursera’s class.

http://www.cs.toronto.edu

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf.

27. Nair, V. & Hinton, G. E. Rectified Linear Units Improve Restricted Boltzmann Machines.

(2010).

28. Klambauer, G., Unterthiner, T., Mayr, A. & Hochreiter, S. Self-Normalizing Neural Networks.

in Advances in Neural Information Processing Systems 30 (eds. Guyon, I. et al.) 971–980

(Curran Associates, Inc., 2017).

29. Prechelt, L. Early Stopping - But When? in Neural Networks: Tricks of the Trade (eds. Orr,

G. B. & Müller, K.-R.) 55–69 (Springer Berlin Heidelberg, 1998).

30. Hochreiter, S. Untersuchungen zu dynamischen neuronalen Netzen. Diploma, Technische

Universität München 91, (1991).

31. Hochreiter, S., Bengio, Y., Frasconi, P., Schmidhuber, J. & Others. Gradient flow in

recurrent nets: the difficulty of learning long-term dependencies. (2001).

32. Alqaraawi, A., Schuessler, M., Weiß, P., Costanza, E. & Berthouze, N. Evaluating saliency

map explanations for convolutional neural networks: a user study. in Proceedings of the

25th International Conference on Intelligent User Interfaces 275–285 (Association for

Computing Machinery, 2020).

48

http://paperpile.com/b/1hLSWD/8zJDq
http://paperpile.com/b/1hLSWD/8zJDq
http://paperpile.com/b/1hLSWD/Jkh6g
http://paperpile.com/b/1hLSWD/Jkh6g
http://paperpile.com/b/1hLSWD/Ax07K
http://paperpile.com/b/1hLSWD/enUwB
http://paperpile.com/b/1hLSWD/Ih7aC
http://paperpile.com/b/1hLSWD/Ih7aC
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://paperpile.com/b/1hLSWD/Ih7aC
http://paperpile.com/b/1hLSWD/hipsU
http://paperpile.com/b/1hLSWD/hipsU
http://paperpile.com/b/1hLSWD/UYTFO
http://paperpile.com/b/1hLSWD/UYTFO
http://paperpile.com/b/1hLSWD/UYTFO
http://paperpile.com/b/1hLSWD/say4y
http://paperpile.com/b/1hLSWD/say4y
http://paperpile.com/b/1hLSWD/6qqQX
http://paperpile.com/b/1hLSWD/6qqQX
http://paperpile.com/b/1hLSWD/RS6ke
http://paperpile.com/b/1hLSWD/RS6ke
http://paperpile.com/b/1hLSWD/B6FQp
http://paperpile.com/b/1hLSWD/B6FQp
http://paperpile.com/b/1hLSWD/B6FQp
http://paperpile.com/b/1hLSWD/B6FQp


33. Selvaraju, R. R. et al. Grad-cam: Visual explanations from deep networks via

gradient-based localization. in Proceedings of the IEEE international conference on

computer vision 618–626 (2017).

34. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A. & Torralba, A. Learning deep features for

discriminative localization. in Proceedings of the IEEE conference on computer vision and

pattern recognition 2921–2929 (2016).

35. Wang, Z. & Yang, J. Diabetic Retinopathy Detection via Deep Convolutional Networks for

Discriminative Localization and Visual Explanation. arXiv [cs.CV] (2017).

36. Duffy, B. A. et al. Regression activation mapping on the cortical surface using graph

convolutional networks. (2019).

37. Le Goallec, A. & Patel, C. J. Age-dependent co-dependency structure of biomarkers in the

general population of the United States. Aging 11, 1404–1426 (2019).

49

http://paperpile.com/b/1hLSWD/IRccT
http://paperpile.com/b/1hLSWD/IRccT
http://paperpile.com/b/1hLSWD/IRccT
http://paperpile.com/b/1hLSWD/rnH32
http://paperpile.com/b/1hLSWD/rnH32
http://paperpile.com/b/1hLSWD/rnH32
http://paperpile.com/b/1hLSWD/nX4tA
http://paperpile.com/b/1hLSWD/nX4tA
http://paperpile.com/b/1hLSWD/bxi3v
http://paperpile.com/b/1hLSWD/bxi3v
http://paperpile.com/b/1hLSWD/bQwaQ
http://paperpile.com/b/1hLSWD/bQwaQ

